JPS6050320B2 - Decontamination method for equipment handling radioactive materials - Google Patents
Decontamination method for equipment handling radioactive materialsInfo
- Publication number
- JPS6050320B2 JPS6050320B2 JP10604979A JP10604979A JPS6050320B2 JP S6050320 B2 JPS6050320 B2 JP S6050320B2 JP 10604979 A JP10604979 A JP 10604979A JP 10604979 A JP10604979 A JP 10604979A JP S6050320 B2 JPS6050320 B2 JP S6050320B2
- Authority
- JP
- Japan
- Prior art keywords
- decontamination
- oxide film
- radioactive
- decontaminated
- radioactive materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は、原子炉施設の機器や配管等のような放射性物
質取扱設備の除染方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for decontaminating radioactive material handling equipment such as equipment and piping of a nuclear reactor facility.
一般に、原子炉施設の一次冷却系では、第1図に示すよ
うに、運転経過と共に、放射線線量率が100〜150
mR/れ/EFPY程度で増大していく。Generally, in the primary cooling system of a nuclear reactor facility, as shown in Figure 1, the radiation dose rate increases from 100 to 150 over the course of operation.
It increases at about mR/re/EFPY.
放射線線量率の上昇は、原子炉施設の保守、点検時に作
業者、従業員の被曝線量を増大させ、また、原子炉施設
の維持に支障をきたす。この放射線線量率の上昇は、放
射性物質を含有する腐食生成物が機器、配管等の表面に
付着する量が増大していくためである。このため、保修
時に腐食生成物を除染することが行われる。この除染方
法としては、大別して機械的除染と化学除染とがあり、
その除染効率は、除染係数(DF)で表わすと、それぞ
れ約1.5及び1.5〜1000となつている。An increase in the radiation dose rate increases the exposure dose of workers and employees during maintenance and inspection of nuclear reactor facilities, and also impedes the maintenance of nuclear reactor facilities. This increase in radiation dose rate is due to an increase in the amount of corrosion products containing radioactive substances adhering to the surfaces of equipment, piping, and the like. For this reason, corrosion products are decontaminated during maintenance. This decontamination method can be broadly divided into mechanical decontamination and chemical decontamination.
The decontamination efficiency, expressed as a decontamination factor (DF), is approximately 1.5 and 1.5 to 1000, respectively.
機械的除染にはブラッシング、超音波、ジェット水を用
いる方法があるが、ブラッシング法、超音波法は、単独
では十分な除染効果は期待できない。またジェット水を
用いる方法は、水圧を十分高くして被除染体に噴射する
ことで十分な効果を上げることができる。一方、化学除
染には、大別して強い除染液を用いる方法と、弱い除染
液を用いる方法、及び電解を用いる方法とがあり、除染
効果はいずれも前記の係数で表わされるように期待でき
る。Mechanical decontamination methods include methods that use brushing, ultrasound, and jet water, but brushing and ultrasound methods alone cannot be expected to have a sufficient decontamination effect. In addition, the method using jet water can be sufficiently effective by increasing the water pressure sufficiently and spraying it onto the object to be decontaminated. On the other hand, chemical decontamination can be roughly divided into methods that use strong decontamination solutions, methods that use weak decontamination solutions, and methods that use electrolysis. You can expect it.
表1は、配管除染の一例として、超音波洗浄J後、蓚酸
洗浄を行い、その後再び超音波洗浄を行つた場合の残留
放射能割合を示すもので、化学除染法である蓚酸洗浄に
よつて大きな除染効果が得られ、また、機械的除染法で
ある超音波洗浄を組み合わせた処理を行うことによつて
さらに十分な除染効果が得られることを示している。As an example of pipe decontamination, Table 1 shows the residual radioactivity percentage when oxalic acid cleaning is performed after ultrasonic cleaning J, and then ultrasonic cleaning is performed again. This shows that a large decontamination effect can be obtained, and that an even more sufficient decontamination effect can be obtained by combining ultrasonic cleaning, which is a mechanical decontamination method.
また、表1は次のことをも意味している。Table 1 also means the following:
機器や配管等の被除染体が銅材でなる場合、その腐食生
成物は、第2図に示すように、被除染体1の表面に、深
層2と表層3との2層に形成され、CO一60,Mn−
54等の放射性物質4は、表層3においては、四三酸化
鉄(Fe3O4)と三二酸化鉄(Fe2O3)等のクラ
ッドに付着しており、この表層は比較的除去しやすい形
態であり、前記超音波洗浄等の機械的除染法でも容易に
除染できる。一方、全放射能の大部分(〜85%)を含
む深層2は、被除染体1の酸化皮膜てあり、放射性物質
4はスピンネル化合物(例えばCOFe2O4)として
安定な形態で強固に保持されているから、この深層2の
除去は、前記表1で示した蓚酸洗浄等の化学除染により
溶出させるか、高圧ジェット水で剥離させる。しかして
、上記した従来技術によると、下記のような問題を生じ
る。When the object to be decontaminated, such as equipment or piping, is made of copper material, corrosion products are formed on the surface of the object to be decontaminated 1 in two layers, a deep layer 2 and a surface layer 3, as shown in Figure 2. , CO-60, Mn-
In the surface layer 3, radioactive substances 4 such as No. 54 adhere to cladding of triiron tetroxide (Fe3O4) and iron sesquioxide (Fe2O3), and this surface layer is in a form that is relatively easy to remove. It can also be easily decontaminated by mechanical decontamination methods such as sonic cleaning. On the other hand, the deep layer 2, which contains most of the total radioactivity (~85%), is the oxide film of the decontaminated object 1, and the radioactive material 4 is firmly held in a stable form as a spinel compound (e.g. COFe2O4). Therefore, the deep layer 2 can be removed by eluting it by chemical decontamination such as oxalic acid cleaning shown in Table 1, or by peeling it off with high-pressure jet water. However, the above-mentioned conventional technology causes the following problems.
前記のように化学除染等によつて深層2を除去すると、
除染表面は局所的に.クレータを生じたりして非常に粗
くなる。これを原子炉施設に戻して運転に入ると、被除
染体表面が粗面となつており、付着面積も非常に大きく
なつているから、第3図に示すように、被除染体表面は
急激に酸化されて皮膜5を形成し、この酸化!皮膜5内
に冷却水中の放射能物質4がとり込まれるため、被除染
体表面の放射線線量率は急激に上昇する。この上昇率は
、除染しない場合に比べて約2ゐ倍にもなり、結局、除
染を行なつたものの方が放射線線量率が大となることが
あつた。このように、従来技術によると、除染を行う保
修時には一時的に被曝線量の低減という効果をもたらす
が、長期的な観点にたつと線量レベルを上昇させること
になるので、原子炉等の放射性物質取扱施設の保全性を
低下させ、ひいては施設の維持を困難にさせるおそれが
ある。本発明は、上記した従来技術の問題点に鑑み、被
除染体を施設に戻した後の放射性物質の付着量を可及的
に少なくすることができ、これによつて放射線線量率の
上昇を抑制することのできる放射性物質取扱設備の除染
方法を提供することを目的とする。When deep layer 2 is removed by chemical decontamination etc. as mentioned above,
Decontaminate surfaces locally. It becomes very rough and may cause craters. When this was returned to the reactor facility and started operation, the surface of the object to be decontaminated was rough and the adhesion area was very large, so as shown in Figure 3, the surface of the object to be decontaminated was is rapidly oxidized to form a film 5, and this oxidation! Since the radioactive substances 4 in the cooling water are incorporated into the coating 5, the radiation dose rate on the surface of the object to be decontaminated rapidly increases. This rate of increase was approximately twice that of the case without decontamination, and in the end, the radiation dose rate was sometimes higher in the case of decontamination. In this way, conventional technology has the effect of temporarily reducing the exposure dose during decontamination maintenance, but in the long term it increases the dose level, so radioactive There is a risk that the integrity of the material handling facility may be reduced, making it difficult to maintain the facility. In view of the problems of the prior art described above, the present invention makes it possible to reduce as much as possible the amount of radioactive substances that adhere to objects to be decontaminated after returning them to the facility, thereby increasing the radiation dose rate. The purpose of this study is to provide a decontamination method for equipment handling radioactive materials that can suppress
この目的を達成するため、本発明においては、”被除染
体に付着している放射性物質を除去した後、露出した被
除染体の金属表面を事前に強制的に酸化させるようにし
、これにより、被除染体が施設に組み込まれた際に、放
射性物質を取り込みながら酸化しないようにしたことを
特徴とするものである。In order to achieve this objective, the present invention ``After removing the radioactive substances attached to the object to be decontaminated, the exposed metal surface of the object to be decontaminated is forcibly oxidized in advance. This system is characterized by preventing oxidation while incorporating radioactive materials when the decontamination target is incorporated into a facility.
以下本発明の詳細な説明験例により説明する。The present invention will be explained below using detailed experimental examples.
実験においては、試験片として、炭素鋼製で、巾、長さ
、厚さがそれぞれ10T!N,5OTTr!N,3瓢の
ものを用い、下記の化学除染処理、酸化処理を行つた。
〔化学除染処理〕
(1)アルカリ処理
アルカリ処理液として、ターコ社製商品名ターコ●デコ
ン4502のものを用い、これをビーカに入れて80〜
90℃に加温しておき、その中に前記試験片を入れ、約
4時間浸漬し、その後試験片をビーカにより取り出し、
アルカリ性を示さなくなるまで水洗した。In the experiment, the test pieces were made of carbon steel and had a width, length, and thickness of 10T each! N,5OTTr! Using N.3 Gourd, the following chemical decontamination treatment and oxidation treatment were performed.
[Chemical decontamination treatment] (1) Alkaline treatment As the alkaline treatment liquid, use Turco Decon 4502 (trade name, manufactured by Turco Co., Ltd.), put it in a beaker, and heat it for 80~
The test piece was heated to 90°C and placed in it, immersed for about 4 hours, and then taken out using a beaker.
It was washed with water until it no longer showed alkalinity.
(2)酸処理
酸処理液として、ターコ社製商品名ターコ・デコン45
21のものを用い、これをビーカに入れて80〜90℃
に加温しておき、前述のアルカリ処理後の試験片をその
中に入れて約6時間浸漬した後、試験片をビーカより取
り出し、酸性を示さなくなるまで水洗した。(2) Acid treatment As an acid treatment solution, Turco Decon 45 (trade name) manufactured by Turco Co., Ltd.
21, put it in a beaker and heat it to 80-90℃
The test piece after the alkali treatment was placed therein and immersed for about 6 hours, and then the test piece was taken out from the beaker and washed with water until it no longer showed acidity.
(1)前記の化学除染処理した試験片の一部を、水質維
持装置の付いたオートクレーブ内に入れ、オートクレー
ブには脱気した純水を満たし、約120℃まで昇温して
約20叫間保持することにより、厚さ数μ程度の酸化皮
膜(Fe3O4)を生成させた。(1) Place a part of the test piece that has been chemically decontaminated as described above into an autoclave equipped with a water quality maintenance device, fill the autoclave with degassed pure water, and raise the temperature to about 120°C for about 20 seconds. By holding the sample for a while, an oxide film (Fe3O4) having a thickness of several microns was formed.
(2)次にオートクレーブ内に酸素を注入して純水中の
酸素濃度を約50ppm程度にし、約50時間保持して
Fe3O4の表面をより化学的に安定なFe2O3にし
、放射性物質を含む液体中にさらされた時の放射性物質
の取り込み量が少なくなるようにする。(2) Next, oxygen is injected into the autoclave to bring the oxygen concentration in the pure water to about 50 ppm, and the water is kept for about 50 hours to make the surface of Fe3O4 more chemically stable Fe2O3, and it is added to the liquid containing radioactive substances. To reduce the amount of radioactive material taken in when exposed to
次に、酸化皮膜生成による効果を確かめるため、前記の
化学除染処理したままの試験片と、化学除染処理した後
に前のように酸化皮膜を生成した試験片を、放射性コバ
ルトを含む水を満たしたオートクレーブに入れ、原子炉
の炉水温度である約280′Cまで昇温し保持した。Next, in order to confirm the effect of the oxide film formation, the test piece that had undergone the chemical decontamination treatment and the test piece that had an oxide film formed as before after the chemical decontamination treatment were treated with water containing radioactive cobalt. The reactor was placed in a filled autoclave, and the temperature was raised to approximately 280'C, which is the reactor water temperature, and maintained.
約5ケ月後の試験片の放射能汚染度は下記の表2に示す
通りとなつた。このように、本発明に基づいて酸化皮膜
を表面に生成させたものは、従来のように生成させない
ものに比べ、放射能汚染度が著しく低下する。After about 5 months, the degree of radioactive contamination of the test piece was as shown in Table 2 below. As described above, the product on which an oxide film is formed on the surface according to the present invention has a significantly lower degree of radioactive contamination than the conventional product on which no oxide film is formed.
この理由は次のように考えられる。酸化皮膜を生成しな
かつたものは、炉水条件で酸化する過程でFe(0H)
2,Fe(0H)3を生じるが、これがコバルトをよく
吸着して化合物を生成し、放射化する一方、本発明によ
り第4図のように酸化皮膜6を金属表面に形成するもの
は、放射性コバルトが存在しない状態でFe(0H)2
,Fe(0H)3をへてFe3O4を生成させるもので
あり、この酸化皮膜(Fe3O4)はFe面への付着力
が強く、結晶化などの凝集力が大きく、緻密な皮膜を作
つて試験片を被うため、炉水条件で浸漬しても腐食速度
が律速され、腐食量が少なくなると共に、酸化皮膜が内
部から生成するため、表層3の生成量が少なくなるとい
う理由によると考えられる。なお、前記した実施例は一
例にすぎず、化学除染処理に用いる処理液や処理方法は
種々に選択可能である。The reason for this is thought to be as follows. Those that did not form an oxide film were converted to Fe(0H) during the oxidation process under reactor water conditions.
2, Fe(0H)3 is produced, which adsorbs cobalt well to form a compound and becomes radioactive.On the other hand, the material that forms an oxide film 6 on the metal surface as shown in Fig. 4 according to the present invention is radioactive. Fe(0H)2 in the absence of cobalt
, Fe(0H)3 to generate Fe3O4, and this oxide film (Fe3O4) has strong adhesion to the Fe surface and has a large cohesive force such as crystallization, and forms a dense film to form a test piece. This is thought to be due to the fact that the corrosion rate is rate-limited even when immersed in reactor water conditions, and the amount of corrosion is reduced, and since the oxide film is generated from within, the amount of surface layer 3 formed is reduced. Note that the above-mentioned embodiments are merely examples, and various treatment liquids and treatment methods can be selected for the chemical decontamination treatment.
またこの除染処理は、化学除染以外に、高圧ジェット水
によつて機械的除染を行う方法も採用でき、さらに化学
除染と機械的除染を共に行うことにより、効率のよい除
染が行える。また、被除染体表面の強制的酸化は、上記
例以外に、例えは過酸化水素等の酸化剤を含む溶液に被
除染体を浸漬する方法、もしくは酸素や清浄な空気中に
おける低温(例えば100゜C)加熱方法や、酸化剤を
含む溶液中における陽極分極による方法など、予め酸化
皮膜を形成しうる方法であればよい。以上述べたように
、本発明の除染方法は、除染後に強制的に酸化皮膜を生
成させることを要旨とするものであり、酸化皮膜を生成
させない従来方法に比べ、再汚染を大幅に低減しうる。In addition to chemical decontamination, this decontamination process can also employ mechanical decontamination using high-pressure jet water. Furthermore, by performing both chemical and mechanical decontamination, efficient decontamination can be achieved. can be done. In addition to the above examples, forced oxidation of the surface of the object to be decontaminated can be carried out by, for example, immersing the object in a solution containing an oxidizing agent such as hydrogen peroxide, or by oxidizing the object at low temperatures in oxygen or clean air. For example, any method that can form an oxide film in advance may be used, such as heating at 100° C. or anodic polarization in a solution containing an oxidizing agent. As described above, the decontamination method of the present invention is to forcibly generate an oxide film after decontamination, and compared to conventional methods that do not generate an oxide film, recontamination is significantly reduced. I can do it.
従つて本発明によれば、原子炉のように放射性物質を取
扱う施設における保守点検時の被曝線量が低減され、保
全性が高まり、施設の維持が容易となる。また、除染の
間隔を長くすることができるため、施設の維持コストを
低減しうる。・図面の簡単な説明
第1図は原子炉一次冷却系の放射線線量率の経時変化を
示す図、第2図は配管等に生じた酸化物層を示す断面図
、第3図は従来の除染法を用いて除染した後運転により
生じる酸化物層を示す断面フ図、第4図は本発明によつ
て除染した後の酸化物層の生成状況を示す断面図である
。Therefore, according to the present invention, the radiation dose during maintenance and inspection in a facility that handles radioactive materials such as a nuclear reactor is reduced, maintainability is improved, and maintenance of the facility is facilitated. Furthermore, since the interval between decontamination can be extended, maintenance costs for the facility can be reduced.・Brief explanation of the drawings Figure 1 shows the change in radiation dose rate over time in the reactor primary cooling system, Figure 2 is a cross-sectional view showing the oxide layer formed in piping, etc., and Figure 3 shows the conventional removal method. FIG. 4 is a cross-sectional view showing the formation of an oxide layer after decontamination according to the present invention.
1・・・・・・被除染体、2・・・・・・深層、3・・
・・・・表層、4・・・放射性物質、6・・・・・・酸
化皮膜。1... Body to be decontaminated, 2... Deep layer, 3...
... Surface layer, 4 ... Radioactive substance, 6 ... Oxide film.
Claims (1)
手段、及び高圧ジェット水を用いた機械的手段の少なく
とも何れか一方によつて除染してその表面の放射性物質
を除去した後、該部材の表面に、放射性物質が実質的に
無い状態にて強制的に酸化皮膜を形成させることを特徴
とする放射性物質取扱設備の除染方法。 2 前記の酸化皮膜を強制的に形成させる操作は、前記
の鉄鋼製部材の表面に四三酸化鉄でなる酸化皮膜を形し
た後、該酸化皮膜の表面をより安定な三二酸化鉄に酸化
することを特徴とする特許請求の範囲第1項に記載の放
射性物質設備の除染方法。[Claims] 1. Decontaminating steel members of equipment that handles radioactive materials by at least one of chemical means and mechanical means using high-pressure jet water to remove radioactive materials on their surfaces. 1. A method for decontaminating radioactive material handling equipment, which comprises forcibly forming an oxide film on the surface of the member in a state in which there is substantially no radioactive material after removing the radioactive material. 2 The operation of forcibly forming the oxide film is to form an oxide film made of triiron tetroxide on the surface of the steel member, and then oxidize the surface of the oxide film to more stable iron sesquioxide. A method for decontaminating radioactive material equipment according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10604979A JPS6050320B2 (en) | 1979-08-22 | 1979-08-22 | Decontamination method for equipment handling radioactive materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10604979A JPS6050320B2 (en) | 1979-08-22 | 1979-08-22 | Decontamination method for equipment handling radioactive materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5630698A JPS5630698A (en) | 1981-03-27 |
JPS6050320B2 true JPS6050320B2 (en) | 1985-11-07 |
Family
ID=14423763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10604979A Expired JPS6050320B2 (en) | 1979-08-22 | 1979-08-22 | Decontamination method for equipment handling radioactive materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050320B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS607398A (en) * | 1983-06-28 | 1985-01-16 | 三菱原子燃料株式会社 | Decontaminating method |
-
1979
- 1979-08-22 JP JP10604979A patent/JPS6050320B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5630698A (en) | 1981-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3013909A (en) | Method of chemical decontamination of stainless steel nuclear facilities | |
CA2749642C (en) | Method for decontaminating radioactively contaminated surfaces | |
FR2547450A1 (en) | METHOD AND APPARATUS FOR IMPROVEMENT IN OR WITH RESPECT TO DECONTAMINATION OF METAL SURFACES IN NUCLEAR POWER PLANT REACTORS AND OXIDIZING SOLUTION USED THEREFOR | |
JPS6158800B2 (en) | ||
KR970011260B1 (en) | Process for the decontamination of surfaces | |
JPS601600B2 (en) | Method of chemical decontamination of nuclear reactor structural parts | |
US5724668A (en) | Method for decontamination of nuclear plant components | |
CA1224123A (en) | Hypohalite oxidation in decontamination nuclear reactors | |
JP2006078336A (en) | Method for decontaminating radioactive substance and chemical decontamination device | |
JPS6050320B2 (en) | Decontamination method for equipment handling radioactive materials | |
US2981643A (en) | Process for descaling and decontaminating metals | |
JPH0765204B2 (en) | Method for dissolving and removing iron oxide | |
US3437521A (en) | Radioactive decontamination | |
EP0727243B1 (en) | Ozone containing decontamination foam and decontamination method using this foam | |
JPS59126996A (en) | Atomic power plant | |
WO1995000681A1 (en) | Method for decontamination | |
US5545795A (en) | Method for decontaminating radioactive metal surfaces | |
JPH0553400B2 (en) | ||
JP2010101762A (en) | Method for decontaminating radioactive metal waste | |
JPS59126997A (en) | Atomic power plant | |
JPS61182000A (en) | Method of decontaminating stainless nuclear fuel coated tube | |
JPS59162496A (en) | Method of removing iron oxide film | |
Baybarz | Process for Descaling and Decontaminating Metals | |
JPH0222597A (en) | Chemical decontamination method for radioactive metal waste | |
JPH01176081A (en) | Surface treatment for nuclear reactor pipe and the like |