JPS61180892A - Plate type heat exchanger - Google Patents

Plate type heat exchanger

Info

Publication number
JPS61180892A
JPS61180892A JP2093985A JP2093985A JPS61180892A JP S61180892 A JPS61180892 A JP S61180892A JP 2093985 A JP2093985 A JP 2093985A JP 2093985 A JP2093985 A JP 2093985A JP S61180892 A JPS61180892 A JP S61180892A
Authority
JP
Japan
Prior art keywords
plates
portions
plate
contact
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2093985A
Other languages
Japanese (ja)
Inventor
Tsuneo Azuma
恒夫 東
Shunji Kasuga
春日 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2093985A priority Critical patent/JPS61180892A/en
Publication of JPS61180892A publication Critical patent/JPS61180892A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the heat transfer rate and the pressure resistance of the titled plate type heat exchanger by alternately turning back a plurality of plates in which projection portions and recess projections are disposed alternately in a grid shape as portions and recess portions have contact points and are continued smoothly at the contact points, allowing the positions of neighboring projections portions of respective plates to be coincident to each other and made contact with each other, and causing a fluid to flow between respective plates along clearances formed between respective plates. CONSTITUTION:Separate fluids flow along flowpaths alternately formed between respective plates 6. Upon this occasion, since projection portions 14 and recess portions 13 of plates 6 are projected in flowpaths 15 and 16, flows of respective fluids repeat expansion and contraction, and the turbulent effect is amplified. By this turbulent effect, the heat transfer rate becomes high and the heat transfer wall surface becomes difficult to be stained. Further, since respective plates make multi-point contact at respective contact portions of recess portions 13 and projection portions 14 and the plates 6 are constituted to smoothly continue, it is possible to cause the thermal stress to escape as the distortion of the plates 6. Hence, the heat exchange becomes strong in the thermal impact and the pressure resistance is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱交換器殊にプレート式熱交換器に関する。[Detailed description of the invention] Industrial applications The present invention relates to heat exchangers, particularly plate heat exchangers.

従来の技術 プレートを二流体の隔壁とし、この隔壁を伝熱壁面とし
て熱交換を行う熱交換器は、一般にプレート式熱交換器
と呼ばれている。
BACKGROUND ART A heat exchanger that uses a plate as a two-fluid partition and performs heat exchange using the partition as a heat transfer wall surface is generally called a plate heat exchanger.

第7乃至9図は、このようなプレート式熱交換器の従来
例を示すものである。
7 to 9 show conventional examples of such a plate heat exchanger.

すなわち、従来のプレ、−ト式熱交換器は、第7図に示
すような複数のプレー)1が積層されて構成されている
。これらプレート1の周囲には、ガスケット2が介装さ
れている。更にプレート1は、タイボルト(図示せず)
によって締付けられている。これにより、各プレート1
の間を流れる流体をシールするようにしている。このと
き、プレート1として、例えば第8図に示すような形状
にプレスされた板が使用される。
That is, the conventional plate-to-plate heat exchanger is constructed by stacking a plurality of plates 1 as shown in FIG. A gasket 2 is interposed around these plates 1. Furthermore, plate 1 has tie bolts (not shown).
It is tightened by. This allows each plate 1
This is to seal the fluid flowing between them. At this time, a plate pressed into the shape shown in FIG. 8, for example, is used as the plate 1.

従来のプレート式熱交換器の他の例として、第9図に示
すような波形にプレスされたプレート3を積層し、プレ
ート3の相対する二辺を交互に溶接して流路を形成する
ようにした形式のものもある。
As another example of a conventional plate heat exchanger, as shown in FIG. 9, plates 3 pressed into a corrugated shape are stacked and two opposing sides of the plates 3 are alternately welded to form a flow path. There are also some formats.

発明が解決しようとする問題点 これら従来のプレート式熱交換器においては、内圧によ
るプレートの変形を防止する方法として、前者では第7
図のプレート1の凸部4が一定角をなして多点で接触す
ることにより、後者では第9図の凹部5を溶接で固定す
る方法がとられ、適当なスペーサ(図示せず)が設けら
れたりしている。
Problems to be Solved by the Invention In these conventional plate heat exchangers, as a method for preventing plate deformation due to internal pressure,
Since the convex parts 4 of the plate 1 shown in the figure form a certain angle and contact each other at multiple points, in the latter case, the concave part 5 shown in FIG. 9 is fixed by welding, and an appropriate spacer (not shown) is provided. I've been exposed to a lot of things.

前者は、主として液−液熱交換器に使用されているが、
プレート1間をガスケット2でシールする構造を採用し
ていることにより、20 kg/cyst G以下程度
の低圧、200°C以下程度の低温の用途に限定される
The former is mainly used in liquid-liquid heat exchangers,
By employing a structure in which the gasket 2 is used to seal between the plates 1, applications are limited to low pressures of about 20 kg/cyst G or less and low temperatures of about 200°C or less.

一方、後者の場合、l kf/cd G以下の使用限界
のものが大部分で、その用途としては低圧のガス用熱交
換器に使用されるのが限界である。
On the other hand, in the case of the latter, most of them have a usage limit of less than 1 kf/cd G, and their use is limited to low-pressure gas heat exchangers.

そこで本発明は、より高温・高圧に耐えることのできる
プレートを伝熱エレメントとして提供し、これにより熱
交換器のコンパクト化、軽量化及びコストダウンを図り
、より広範囲な用途に安価なプレート式熱交換器を提供
しようとするものである。
Therefore, the present invention provides a plate that can withstand higher temperatures and pressures as a heat transfer element, thereby making the heat exchanger more compact, lighter, and less expensive. The aim is to provide a replacement device.

問題点を解決するだめの手段 本発明は、凹凸配置に工夫が施されている複数のプレー
トを積層し、これら各プレート間に流体を流すようにす
ることによって、プレート式熱交換器の熱伝達率・耐圧
性等を向上させるようにしたものである。
Means to Solve the Problems The present invention improves heat transfer in a plate heat exchanger by stacking a plurality of plates each having a concave and convex arrangement and allowing fluid to flow between these plates. This is designed to improve the rate, pressure resistance, etc.

更に詳述すれば、本発明によるプレート式熱交換器は、
凸部と凹部とが接点を有しつつ交互に格子状に配置され
ているとともに前記各接点ではなめらかに連続している
プレートを、複数枚交互に裏返し、これら各プレートの
隣り合う凸部の位置を一致させて当接し、前記各プレー
トの間に形成される隙間に流体を流すようにしである。
More specifically, the plate heat exchanger according to the present invention includes:
A plurality of plates in which convex portions and concave portions have contact points and are arranged alternately in a lattice pattern and are smoothly continuous at each contact point are alternately turned over, and the positions of adjacent convex portions of each of these plates are determined. The plates are brought into contact with each other so that the fluid flows through the gaps formed between the plates.

実施例 以下図面を参照して本発明の好適な実施例について詳述
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本実施例によるプレート式熱交換器を概念的
に示す図である。
FIG. 1 is a diagram conceptually showing a plate heat exchanger according to this embodiment.

図において、複数のプレート6が相互に間隔を置いて積
重ねられている。そして、各プレート6間の隙間は、隣
接する二つのプレート6が両端部7及びこれら両端部7
と直交する位置の両端部8とが一層毎交互に溶接されて
、一段毎直交する流路9と10とを形成している。これ
ら流路域及び10を夫々別の流体が流れて熱交換が行わ
れる。
In the figure, a plurality of plates 6 are stacked at intervals from each other. The gap between each plate 6 is such that two adjacent plates 6 have both ends 7 and these both ends 7.
Both end portions 8 at positions orthogonal to each other are alternately welded layer by layer to form flow paths 9 and 10 which are perpendicular to each other in each layer. Different fluids flow through these flow path areas and 10 to perform heat exchange.

こうして積重ねられたプレート6は、内圧に応じたバッ
クアッププレート11とタイロッド12とによって締付
けられる。そして、流路9及び10を流れる流体の出入
口となるマニホールド(図示せず)が取付けられれば、
プレート式熱交換器が完成する。
The plates 6 stacked in this manner are tightened by a backup plate 11 and tie rods 12 depending on the internal pressure. Then, if a manifold (not shown) is installed, which serves as an inlet and outlet for the fluid flowing through the channels 9 and 10,
The plate heat exchanger is completed.

以上本実施例によるプレート式熱交換器の概要を説明し
たが、本実施例によるプレート式熱交換器の特徴は、プ
レート6の形状及びその積重ね方にある。これにつき以
下説明する。
Although the outline of the plate heat exchanger according to this embodiment has been described above, the feature of the plate heat exchanger according to this embodiment lies in the shape of the plates 6 and the way they are stacked. This will be explained below.

第2図は、プレート6の部分平面図である。FIG. 2 is a partial plan view of the plate 6.

図に示すように、プレート6には、略半球形の凹部13
が格子状に配置されている。そして更にプレート6には
、略半球形の凸部14が夫々、一つの格子を形成する四
つの凹部13に内接する大きさで、やはり格子状に配置
されている。
As shown in the figure, the plate 6 has a substantially hemispherical recess 13.
are arranged in a grid pattern. Further, on the plate 6, substantially hemispherical convex portions 14 are arranged in a lattice shape, each of which is sized to be inscribed in each of the four concave portions 13 forming one lattice.

第3図は、第2図の!−1断面図であって、プレート6
が積層された状態を、隣接する上下のプレート6′及び
6′と共に示す。
Figure 3 is the same as Figure 2! -1 sectional view, plate 6
The stacked state is shown together with adjacent upper and lower plates 6' and 6'.

図において、プレート6′及び6“は、プレート6を裏
返した状態で積層されている。そして、プレート6の各
凸部14a、 14bの先端部とプレート6′の各凸部
14a′、14b′の先端部とが当接するように、各プ
レートの位置決めがなされている。
In the figure, the plates 6' and 6'' are stacked with the plate 6 turned over.The tips of the protrusions 14a and 14b of the plate 6 and the protrusions 14a' and 14b' of the plate 6' Each plate is positioned so that the tip of the plate comes into contact with the tip of the plate.

こうして、プレート6とプレート6′との間、すなわち
凸部14同士が当接している側の隙間には、流路15が
形成される。一方、同様にして、プレート6とプレート
6“との間、すなわち凹部13同士が当接している側の
隙間には、流路16が形成される。好適には、これら流
路15及び流路16における各流体の流れ方向は、格子
状に配置劣れている凸部14及び凹部13の格子の向き
と略同−(第2図における矢印A及びB方向)とされて
いる。流路15と流路16との関係は、第1図に概念的
に示した流路9と流路10との関係に相当する。
In this way, a flow path 15 is formed between the plate 6 and the plate 6', that is, in the gap on the side where the convex portions 14 are in contact with each other. On the other hand, similarly, a flow path 16 is formed between the plates 6 and 6'', that is, in the gap on the side where the recesses 13 are in contact with each other. The flow direction of each fluid in the channel 16 is approximately the same as the direction of the lattice of the convex portions 14 and the concave portions 13, which are arranged in a lattice-like manner (direction of arrows A and B in FIG. 2).Flow path 15 The relationship between the flow path 16 and the flow path 16 corresponds to the relationship between the flow path 9 and the flow path 10 conceptually shown in FIG.

第4図は、第2図のIV−IV断面、すなわち、プレー
ト6の凹部13と凸部14との接点を含む断面を、プレ
ー)6/と共に示す。
FIG. 4 shows the IV-IV cross section of FIG. 2, that is, the cross section including the contact point between the concave portion 13 and the convex portion 14 of the plate 6, together with the plate 6/.

図に示すように、凹部13と凸部14との接点部分にお
いては、プレート6がなめらかに連続するように、凹部
13及び凸部14の形状が定められている。
As shown in the figure, the shapes of the recess 13 and the projection 14 are determined so that the plate 6 is smoothly continuous at the contact point between the recess 13 and the projection 14.

次に作用について説明する。Next, the effect will be explained.

第3図に示すように、各プレート6間に交互に形成され
た流路15及び16を別々の流体が流れる。このとき流
路15及び16には、プレート6の凸部14及び凹部1
3が夫々突き出しているので、各流体共に流れが拡大・
縮小を繰り返し、乱流作用が増幅される。この乱流効果
によって、熱伝達率が高くなるとともK、伝熱壁面が汚
れにくくなる。
As shown in FIG. 3, different fluids flow through channels 15 and 16 alternately formed between each plate 6. As shown in FIG. At this time, the channels 15 and 16 include the convex portion 14 and the concave portion 1 of the plate 6.
3 protrudes from each other, so the flow of each fluid expands and
As the contraction is repeated, the turbulence effect is amplified. Due to this turbulent flow effect, the heat transfer coefficient increases and the heat transfer wall surface becomes less likely to be contaminated.

また、各プレート6は互いに凹部13同士或いは凸部1
4同士が多点接触して積層されているので、耐圧能力が
増大する。
Moreover, each plate 6 has a concave portion 13 or a convex portion 1
Since the 4 pieces are stacked in contact with each other at multiple points, the pressure resistance is increased.

更に、本実施例によるプレート式熱交換器は、凹部13
と凸部14との接点において、プレート6がなめらかに
連続するようにされているので、熱応力をプレート6の
歪みとして逃がすことができ熱衝撃に強い。また、耐圧
性もより一層向上する。しだがって、プレート式熱交換
器として、実用的に100 kg/cdt G程度のも
のまで製作することができる。
Furthermore, the plate heat exchanger according to this embodiment has a recess 13.
Since the plate 6 is arranged to be smoothly continuous at the contact point between the plate 6 and the convex portion 14, thermal stress can be released as distortion of the plate 6, and the plate 6 is strong against thermal shock. Moreover, pressure resistance is further improved. Therefore, it is possible to practically manufacture a plate type heat exchanger up to about 100 kg/cdt G.

この点について更に詳述すれば、プレート6がなめらか
に連続していると球形の座屈となるので非常に強くなる
わけである。例えば、第6c図に 。
To explain this point in more detail, if the plates 6 are smoothly continuous, the buckling will be spherical and therefore very strong. For example, in Figure 6c.

示すように、凹部17と凸部18とがなめらかに連続し
ないで段19がつくと、その部分は平板となるので弱く
なり耐圧性が低下してしまう。
As shown, if the concave portion 17 and the convex portion 18 do not continue smoothly and a step 19 is formed, that portion becomes a flat plate and becomes weak, resulting in a decrease in pressure resistance.

なお、第4図において、凹部13と凸部14との接点に
おけるプレート6のなめらかな連続性を維持すると同時
に、凹部13及び凸部14の形状を夫々異なった形状と
することにより、流路16及び15を流れる各流体の性
質に応じた流路形状とすることができる。
In FIG. 4, while maintaining the smooth continuity of the plate 6 at the contact point between the recess 13 and the protrusion 14, by making the recess 13 and the protrusion 14 different shapes, the flow path 16 and 15 can have a flow path shape depending on the properties of each fluid flowing through them.

また、第5図に示すように、プレート6の凹部13及び
/又は凸部14の先端部を部分的に平板状にして、隣接
するプレート6同士の接触面積を大きくすることもでき
る。このとき、二つのプレート6の接触部分20を溶接
するようにすれば、更に耐圧性を向上させることができ
る。
Further, as shown in FIG. 5, the tip portions of the recesses 13 and/or the protrusions 14 of the plates 6 may be made partially flat to increase the contact area between adjacent plates 6. At this time, if the contact portions 20 of the two plates 6 are welded, the pressure resistance can be further improved.

上記いずれの例においても、各プレート6間の流路15
及び16の流体流れの方向は、第2図に示す矢印A及び
Bの方向、すなわち格子に沿った方向が好ましい。これ
は、例えば、第2図に示す矢印C及びDの方向に流体が
流れる場合を考えると、流路が小さくなり(第4図に示
す流路15参照)、また、流路の中心に凸部(又は凹部
)が位置するため、圧損が増大して低性能なVEとなる
からである。
In any of the above examples, the flow path 15 between each plate 6
The direction of fluid flow in and 16 is preferably in the direction of arrows A and B shown in FIG. 2, ie, along the grid. For example, if we consider the case where fluid flows in the directions of arrows C and D shown in Figure 2, the flow path becomes smaller (see flow path 15 shown in Figure 4), and there is a convexity in the center of the flow path. This is because the pressure loss increases due to the location of the concave portion (or concave portion), resulting in low performance VE.

発明の効果 以上詳述したように、本発明によるプレート式熱交換器
は、形状及び配置が工夫されている複数の凸部及び凹部
を有するプレートの積層構造がらなっているので、高い
熱伝達率を得ることができると同時に、高温・高圧にも
耐えることができる。
Effects of the Invention As detailed above, the plate heat exchanger according to the present invention has a laminated structure of plates having a plurality of convex portions and concave portions whose shape and arrangement are devised, so that the plate type heat exchanger according to the present invention has a high heat transfer coefficient. At the same time, it can withstand high temperatures and pressures.

したがって、プレートに薄板を使用することができるの
で、プレート式熱交換器のコンパクト化、軽量化、更に
はコストダウンを図ることができる。
Therefore, since thin plates can be used for the plates, it is possible to make the plate heat exchanger more compact, lighter, and furthermore cost-reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるプレート式熱交換器を概念的に示
す図、第2図は本発明の一例を示すプレートの部分平面
図、第3図は第2図のト」断面図、第4図は第2図のr
V−IV断面図、第5図は本発明の他の例を示すプレー
トの部分縦断面図、第6a図は本発明を説明するために
プレートの一部を示す平面図、第6b図は第6a図のv
’+b−vrb  断面図、第6C図は第6a図のVl
c−■C断面図、第7乃至9図は従来のプレート式熱交
換器を示す図である。 6・−プレート、13・・凹部、14自・凸部、15.
16・・流路。 (ほか/名] 第1図 第7図   第8図 第9図
FIG. 1 is a diagram conceptually showing a plate heat exchanger according to the present invention, FIG. 2 is a partial plan view of a plate showing an example of the present invention, FIG. 3 is a sectional view of FIG. The figure is r in Figure 2.
FIG. 5 is a partial vertical sectional view of a plate showing another example of the present invention, FIG. 6a is a plan view showing a part of the plate to explain the present invention, and FIG. v in figure 6a
'+b-vrb sectional view, Figure 6C is Vl of Figure 6a
The c--C sectional view and FIGS. 7 to 9 are diagrams showing a conventional plate heat exchanger. 6.-Plate, 13.-Concave portion, 14.-Convex portion, 15.
16...Flow path. (Others/names) Figure 1 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims]  凸部と凹部とが接点を有しつつ交互に格子状に配置さ
れているとともに前記各接点ではなめらかに連続してい
るプレートを、複数枚交互に裏返し、これら各プレート
の隣り合う凸部の位置を一致させて当接し、前記各プレ
ートの間に形成される隙間に流体を流すようにしてなる
熱交換器。
A plurality of plates in which convex portions and concave portions have contact points and are arranged alternately in a lattice pattern and are smoothly continuous at each contact point are alternately turned over, and the positions of adjacent convex portions of each of these plates are determined. A heat exchanger in which the plates are brought into contact with each other so as to allow fluid to flow through the gaps formed between the plates.
JP2093985A 1985-02-07 1985-02-07 Plate type heat exchanger Pending JPS61180892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093985A JPS61180892A (en) 1985-02-07 1985-02-07 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093985A JPS61180892A (en) 1985-02-07 1985-02-07 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JPS61180892A true JPS61180892A (en) 1986-08-13

Family

ID=12041174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093985A Pending JPS61180892A (en) 1985-02-07 1985-02-07 Plate type heat exchanger

Country Status (1)

Country Link
JP (1) JPS61180892A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207694A (en) * 1987-02-24 1988-08-29 Asahi Chem Ind Co Ltd Stencil original paper for thermal stencil printing
JPH01200991A (en) * 1987-03-05 1989-08-14 Asahi Chem Ind Co Ltd Highly-sensitive photo-perforative film or base paper
US4919200A (en) * 1989-05-01 1990-04-24 Stanislas Glomski Heat exchanger wall assembly
JP2002372335A (en) * 2001-06-12 2002-12-26 Smc Corp Heat exchanger, and heat exchange apparatus using it
KR100822528B1 (en) * 2002-02-20 2008-04-16 한라공조주식회사 Structure for arranging embossing beads of plate in laminated type heat exchanger
JP2013145068A (en) * 2012-01-13 2013-07-25 Panasonic Corp Heat exchange element and heat exchange type ventilator using the same
KR20140072658A (en) * 2012-12-05 2014-06-13 주식회사 두원공조 Stack type oil cooler
CN104266513A (en) * 2014-09-25 2015-01-07 德艾柯工程技术(上海)有限公司 Vertical condenser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207694A (en) * 1987-02-24 1988-08-29 Asahi Chem Ind Co Ltd Stencil original paper for thermal stencil printing
JPH01200991A (en) * 1987-03-05 1989-08-14 Asahi Chem Ind Co Ltd Highly-sensitive photo-perforative film or base paper
US4919200A (en) * 1989-05-01 1990-04-24 Stanislas Glomski Heat exchanger wall assembly
JP2002372335A (en) * 2001-06-12 2002-12-26 Smc Corp Heat exchanger, and heat exchange apparatus using it
KR100822528B1 (en) * 2002-02-20 2008-04-16 한라공조주식회사 Structure for arranging embossing beads of plate in laminated type heat exchanger
JP2013145068A (en) * 2012-01-13 2013-07-25 Panasonic Corp Heat exchange element and heat exchange type ventilator using the same
KR20140072658A (en) * 2012-12-05 2014-06-13 주식회사 두원공조 Stack type oil cooler
CN104266513A (en) * 2014-09-25 2015-01-07 德艾柯工程技术(上海)有限公司 Vertical condenser

Similar Documents

Publication Publication Date Title
US3473604A (en) Recuperative heat exchanger
US4781248A (en) Plate heat exchanger
US4073340A (en) Formed plate type heat exchanger
WO1987006686A1 (en) Counterflow heat exchanger with floating plate
JPS6227352B2 (en)
US4893673A (en) Entry port inserts for internally manifolded stacked, finned-plate heat exchanger
JPH11270985A (en) Plate-type heat exchanger
US4179781A (en) Method for forming a heat exchanger core
US4470453A (en) Primary surface for compact heat exchangers
JPS61180892A (en) Plate type heat exchanger
JPH06174393A (en) Heat exchanger
US4396057A (en) Plate heat exchanger
JP2004184075A (en) Heat-transfer plate and plate-type heat-exchanger
JPH06174391A (en) Heat exchanger
CA1069883A (en) Compact primary surface heat exchanger
JPH053912Y2 (en)
JP2761517B2 (en) Plate heat exchanger
JPS63210595A (en) Plate fin type heat exchanger
JPH053913Y2 (en)
CN112146484B (en) Plate heat exchanger
JPH0547960Y2 (en)
US3804162A (en) Heat exhanger
JPH0351669Y2 (en)
JP2741950B2 (en) Stacked heat exchanger
JPH04371794A (en) Lamination type heat exchanger