JPS61180811A - Control system of feedwater pump for power station - Google Patents

Control system of feedwater pump for power station

Info

Publication number
JPS61180811A
JPS61180811A JP1658285A JP1658285A JPS61180811A JP S61180811 A JPS61180811 A JP S61180811A JP 1658285 A JP1658285 A JP 1658285A JP 1658285 A JP1658285 A JP 1658285A JP S61180811 A JPS61180811 A JP S61180811A
Authority
JP
Japan
Prior art keywords
steam
water supply
pressure
turbine
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1658285A
Other languages
Japanese (ja)
Inventor
本野 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP1658285A priority Critical patent/JPS61180811A/en
Publication of JPS61180811A publication Critical patent/JPS61180811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transplanting Machines (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Fertilizing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電所の給水ポンプ制御システムに係シ、特に
、発電機を駆動する主蒸気タービンの駆動源となる蒸気
を発生する蒸気発生装置に給水する給水ポンプを発電所
の運転状態に応じて効率良く制御するのに好適な発電所
の給水ポンプ制御システムに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a feed water pump control system for a power plant, and particularly to a steam generator that generates steam that is a driving source for a main steam turbine that drives a generator. The present invention relates to a water supply pump control system for a power plant that is suitable for efficiently controlling a water supply pump that supplies water according to the operating state of the power plant.

〔発明の背景〕[Background of the invention]

火力発電設備におけるボイラ給水、あるいは、原子力発
電設備における原子炉給水ポンプは、発電機を駆動する
主蒸気タービンの駆動源となる蒸気が供給され、この蒸
気圧に応じて作動する給水ポンプタービンによって駆動
されることが多い。
The boiler feed water pump in thermal power generation equipment or the reactor feed water pump in nuclear power generation equipment is supplied with steam, which is the driving source for the main steam turbine that drives the generator, and is driven by a feed water pump turbine that operates according to the steam pressure. It is often done.

この給水ポンプタービンを用いて給水ポンプを作動する
システムは、例えば、給水ポンプタービンの回転速度を
検出し、この検出値と蒸気発生装置に対する給水流量の
要求値に対応づけられた給水ポンプタービン回転速度に
ついての設定値とを比較して、その偏差を求め、この偏
差を抑制する蒸気圧制御信号を出力する制御部と、給水
ポンプタービンに供給される蒸気の圧力を、蒸気圧制御
信号によシ可変する蒸気圧調整部とを備え、給水ポンプ
の作動に応じた流量の水を蒸気発生装置に給水するよう
に構成されたものが提案されている。
A system for operating a water supply pump using this water supply pump turbine, for example, detects the rotational speed of the water supply pump turbine, and sets the rotational speed of the water supply pump turbine in correspondence with this detected value and the required value of the water supply flow rate for the steam generator. A control section that compares the set value of An apparatus has been proposed that includes a variable steam pressure adjustment section and is configured to supply water to a steam generator at a flow rate corresponding to the operation of a water supply pump.

このシステムは、給水ポンプタービンの回転速度を設定
値に維持することにより、所望の給水流量を得ることが
出来る。
This system can obtain a desired feedwater flow rate by maintaining the rotational speed of the feedwater pump turbine at a set value.

又、このシステムでは、給水ポンプタービンが蒸気圧に
応じて給水ポンプを作動するように構成されているので
、抽気供給系と主蒸気供給系の二系統の蒸気を給水ポン
プタービンに供給すると共に、これらの二系統に配役て
れた加減弁の開度を、給水流量の要求値に応じて調整し
て給水ポンプタービンの回転速度を設定値に維持するよ
うに構成されている。従来、この二つのエネルギ量の異
なる蒸気系統に配設された加減弁の制御法として、比例
積分演算器を抽気供給系と主蒸気供給系用の各々一つず
つ持ち、給水ポンプタービンの速度と、給水流量の要求
値に対応づけられた速度設定値との偏差信号を各々の比
例積分演算器に入力し、その演算結果の信号を切替えて
使用することにより蒸気条件にかかわらず給水ポンプを
安定に制御する方法が知られている。(特開昭59−2
9704号公報。) ところで、発電所では、送電線系統などに事故が生じた
場合には、発電ユニットを系統から切り離し、瞬時に発
電出力を通常運転時の数%に相当する所内補機電力まで
低下させるFast Cut Back(PCB)運転
が行なわれる。PCB運転時や、通常起動運転時には主
蒸気タービンからの抽気量は減少する。
Furthermore, in this system, the feedwater pump turbine is configured to operate the feedwater pump according to the steam pressure, so that steam from two systems, the extraction supply system and the main steam supply system, is supplied to the feedwater pump turbine, and The opening degrees of the regulating valves assigned to these two systems are adjusted in accordance with the required value of the water supply flow rate to maintain the rotational speed of the water supply pump turbine at a set value. Conventionally, as a control method for regulating valves installed in steam systems with two different amounts of energy, one proportional-integral calculator was used for each of the extraction supply system and the main steam supply system, and the speed of the feedwater pump turbine and The feed water pump can be stabilized regardless of steam conditions by inputting the deviation signal between the speed setting value corresponding to the required value of the feed water flow rate to each proportional-integral calculator, and switching and using the calculated signal. There are known methods to control this. (Unexamined Japanese Patent Publication No. 59-2
Publication No. 9704. ) By the way, at a power plant, when an accident occurs in the power transmission line system, etc., the power generation unit is disconnected from the system and the power generation output is instantly reduced to the power of the auxiliary equipment in the station, which is equivalent to a few percent of normal operation. Back (PCB) operation is performed. During PCB operation or normal start-up operation, the amount of extracted air from the main steam turbine decreases.

低圧の抽気によって駆動する給水ポンプタービンは、抽
気量の減少によシ駆動力を主蒸気供給系からの主蒸気に
よって駆動することが必要となる。
Feedwater pump turbines driven by low-pressure bleed air need to be driven by main steam from the main steam supply system due to a reduction in the amount of bleed air.

そうしなければ、給水ポンプタービンの回転速度が低下
し、所望の給水流量を得ることができない。
Otherwise, the rotational speed of the water supply pump turbine will decrease and the desired water supply flow rate cannot be obtained.

前述のシステムでは、二種の比例積分演算器をもち、抽
気供給系の蒸気制御用の低圧加減弁と主蒸気供給系の蒸
気制御用の高圧加減弁を切替えて使用しているが、各々
の比例積分演算器内の設定値は固定であり、発電所の運
転状態によっては加減弁開度に対する蒸気量の特性が変
化し、どの運転状態にも適応する設定ができなかった。
The above-mentioned system has two types of proportional-integral calculators, and uses a low-pressure regulating valve for steam control in the bleed air supply system and a high-pressure regulating valve for steam control in the main steam supply system. The set values in the proportional-integral calculator are fixed, and the characteristics of the amount of steam with respect to the opening degree of the control valve change depending on the operating conditions of the power plant, making it impossible to set the settings to adapt to any operating condition.

つまり、加減弁開度に対する給水ポンプタービン流入蒸
気量の変化量が急変し、そのため、給水系にハンチング
を起こす状態が考えられた。
In other words, the amount of change in the amount of steam flowing into the water supply pump turbine with respect to the opening degree of the control valve suddenly changed, which could cause hunting in the water supply system.

特に、起動運転状態で蒸気駆動による給水ポンプタービ
ン二台運転では、主蒸気供給系の主蒸気を使用する割合
が高く、一台運転時とは加減弁に対する蒸気特性が変わ
る。これは、抽気を二台の給水ポンプタービンで振シ分
けて使用するため、一台当シの抽気量が減少するためで
ある。
In particular, when two feed water pump turbines are operated by steam drive in the start-up operation state, the main steam of the main steam supply system is used at a high rate, and the steam characteristics with respect to the control valve are different from when one turbine is operated. This is because the extracted air is distributed and used between the two water supply pump turbines, which reduces the amount of extracted air per unit.

このような理由により、給水ポンプタービンによる給水
流量が要求値に即応することが困難であった。
For these reasons, it has been difficult for the water supply flow rate by the water supply pump turbine to immediately respond to the required value.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、給水流量の要求値に即応した給水流量
の制御が行なえる発電所の給水ポンプ制御システムを提
供することにある。
An object of the present invention is to provide a water supply pump control system for a power plant that can control the water supply flow rate in response to a required value of the water supply flow rate.

〔発明の概要〕[Summary of the invention]

本発明は、発電機を駆動する主蒸気タービンの駆動源と
なる蒸気が蒸気発生装置から供給され、この蒸気圧に応
じて給水ポンプを作動する給水ポンプタービンの回転速
度を検出し、この検出値と、蒸気発生装置に対する給水
流量の要求値に対応づけられた給水ポンプタービン回転
速度についテノ設定値とを比較してその偏差を求め、こ
の偏差を抑制する蒸気圧制御信号を出力する制御部と、
給水ポンプタービンに供給される蒸気の圧力を、蒸気圧
制御信号によシ変える蒸気圧調整部とを備え、給水ポン
プの作動に応じた流量の水を蒸気発生装置に給水する発
電所の給水ポンプ制御システムにおいて、発電所°の起
動運転時、及び、発電所の発電出力急落時の給水ポンプ
タービンへの駆動蒸気源の切替における本体加減弁開度
に対する蒸気量の非線形関係を、加減弁制御信号調整の
ための関数発生器を追加することにより、リニアーな関
係にするようにしたことを特徴とするう 〔発明の実施例〕 以下、図面に基づいて本発明の詳細な説明する。
In the present invention, steam that is a driving source for a main steam turbine that drives a generator is supplied from a steam generator, and the rotational speed of a water supply pump turbine that operates a water supply pump is detected according to the steam pressure, and this detected value is and a control unit that compares the feedwater pump turbine rotational speed corresponding to the requested value of the feedwater flow rate for the steam generator with a teno set value to determine the deviation, and outputs a steam pressure control signal to suppress this deviation. ,
Feed water pump A water feed pump for a power plant that is equipped with a steam pressure adjustment unit that changes the pressure of steam supplied to a turbine in accordance with a steam pressure control signal, and supplies water to a steam generator at a flow rate corresponding to the operation of the feed water pump. In a control system, the non-linear relationship between the amount of steam and the opening of the main body control valve is determined by the control valve control signal when the power plant is started up and when the power plant's power generation output suddenly drops, when the driving steam source to the feedwater pump turbine is switched. [Embodiments of the Invention] Hereinafter, the present invention will be described in detail based on the drawings.

本実施例のシステムは、第1図に示されるように、蒸気
発生装置(図示省略)から供給される蒸気圧に応じて給
水ポンプ10を作動する給水ボ/ブタ−ピン12の回転
速度を検出し、この検出値と蒸気発生装置に対する給水
流量の要求値に対応づけられた給水ポンプタービン回転
速度についての設定値とを比較してその偏差を求め、こ
の偏差を抑制する蒸気圧制御信号を出力する制御部lと
、給水ポンプタービン12に供給される蒸気の圧力を、
蒸気圧制御信号により変える蒸気圧調整部2を備え、給
水ポンプ10の作動に応じた流量の水を蒸気発生装置に
給水することができる。
As shown in FIG. 1, the system of this embodiment detects the rotational speed of the water supply port/bottom pin 12 that operates the water supply pump 10 according to the steam pressure supplied from the steam generator (not shown). Then, this detected value is compared with the set value for the feed water pump turbine rotation speed that corresponds to the required value of the feed water flow rate for the steam generator to find the deviation, and a steam pressure control signal is output to suppress this deviation. and the pressure of the steam supplied to the feed water pump turbine 12,
It is equipped with a steam pressure adjustment section 2 that changes the steam pressure according to a steam pressure control signal, and can supply water to the steam generator at a flow rate corresponding to the operation of the water supply pump 10.

即ち、制御部1は、速度検出器18.20をもち、給水
ポンプ10、給水ポンプタービン12の駆動軸に連結さ
れた歯車220回転数を、速度検出器18,20で検出
し、この検出値を給水ポンプタービン12の回転速度信
号として検出するように構成されている。速度検出器1
8.20による検出信号は、それぞれ、速度信号変換器
24゜26を介して真値選択器28に供給される。真値
選択器28は、二つの回転速度信号のうち真値とされる
値を選択する。即ち、三信号の差が許容値以内であれば
高値を真値とし、差が許容値以上であれば変化率の小さ
い方を真値とする処理を行ない、真値を偏差演算器30
、給水制御装置32に供給する。
That is, the control unit 1 has speed detectors 18 and 20, and detects the rotation speed of the gear 220 connected to the drive shaft of the water pump 10 and the water pump turbine 12, and uses the detected value. is configured to be detected as a rotational speed signal of the water supply pump turbine 12. Speed detector 1
The detection signals according to 8.20 are respectively supplied to a true value selector 28 via speed signal converters 24 and 26. The true value selector 28 selects the true value from among the two rotational speed signals. That is, if the difference between the three signals is within the tolerance value, the higher value is determined to be the true value, and if the difference is greater than or equal to the tolerance value, the one with the smaller rate of change is determined to be the true value.
, is supplied to the water supply control device 32.

給水制御装置32は、真値選択器28からの信号を、蒸
気発生装置に対する給水流量の要求値に対応づけられた
給水ポンプタービン回転速度についての設定値に変換し
、この信号を偏差演算器30に供給する。偏差演算器3
0は、真値選択器28と給水制御装置32からの出力信
号とを比較して、その偏差を求め、比例積分演算器34
に供給する。比例積分演算器34は、偏差演算器30か
らの偏差を抑制する演算を行ない、この演算値に従った
蒸気圧制御信号を蒸気圧調整部2に供給する。
The feed water control device 32 converts the signal from the true value selector 28 into a set value for the feed water pump turbine rotation speed that is associated with the requested value of the feed water flow rate for the steam generator, and converts this signal into a set value for the feed water pump turbine rotation speed. supply to. Deviation calculator 3
0 compares the output signal from the true value selector 28 and the water supply control device 32, calculates the deviation, and calculates the deviation from the output signal from the proportional integral calculator 34.
supply to. The proportional-integral calculator 34 performs a calculation to suppress the deviation from the deviation calculator 30, and supplies a steam pressure control signal to the steam pressure adjustment section 2 in accordance with this calculated value.

蒸気圧調整部2は、増幅器38、電気−油圧変換器40
、油圧サーボ42、リンク機構44、低圧加減弁46、
高圧加減弁48から構成されている。蒸気圧制御信号が
増幅器38に供給されると、この信号は、増幅器38で
増幅されたあと電気−油圧変換器40に供給され油圧サ
ーボレベルに変換される。そして、油圧サーボ42が、
油圧サーボレベルに従ってリンク機構44を作動するこ
とによシ低圧加減弁46、高圧加減弁48の開度が制御
され、抽気供給系50、主蒸気供給系52から給水ポン
プタービン12に供給される蒸気の圧力が変えられる。
The steam pressure adjustment section 2 includes an amplifier 38 and an electro-hydraulic converter 40.
, hydraulic servo 42, link mechanism 44, low pressure regulating valve 46,
It is composed of a high pressure regulating valve 48. When the vapor pressure control signal is supplied to amplifier 38, this signal is amplified by amplifier 38 and then supplied to electro-hydraulic converter 40 for conversion to a hydraulic servo level. Then, the hydraulic servo 42
By operating the link mechanism 44 according to the hydraulic servo level, the opening degrees of the low pressure regulating valve 46 and the high pressure regulating valve 48 are controlled, and the steam supplied to the feedwater pump turbine 12 from the extraction supply system 50 and the main steam supply system 52 is controlled. pressure can be changed.

高圧加減弁48は、低圧加減弁46の弁が全開となった
あと開くように構成されているので、給水ポンプタービ
ン12に供給される蒸気量は、油圧サーボレベルに応じ
て第2図に示されるような関係となる。
Since the high pressure regulating valve 48 is configured to open after the low pressure regulating valve 46 is fully opened, the amount of steam supplied to the feed water pump turbine 12 is determined according to the hydraulic servo level as shown in FIG. The relationship will be such that

即ち、油圧サーボレベルがO%〜a%の範囲では低圧j
an着弁46の間奮萌E 0”l〜100Vの間麿とな
り、そのと色の蒸気量が特性人に従うて変化する。又、
油圧サーボレベルがa%を越えると高圧加減弁48の弁
が開き始め、油圧サーボレベルが8%〜100%の範囲
で高圧加減弁48の開度が、0%〜100%となり、蒸
気量が特性Bに従って変化する。そして、油圧サーボレ
ベルが100%のときには、蒸気量C十蒸気量りの蒸気
量が給水ポンプタービン12に供給される。又、この特
性は起動運転時やPCB運転時には、特性Eの様な圧力
低の特性となろう 本発明は、発電所の起動運転時、特に、給水ポンプ二台
の運転時、及び、発電所の運転がPCB運転に移行した
ときの給水流量の要求値に即応することを特徴とする。
That is, when the hydraulic servo level is in the range of 0% to a%, the pressure is low.
During the arrival of the valve 46, it becomes active between 0"l and 100V, and the amount of vapor of the color changes according to the characteristics.Also,
When the hydraulic servo level exceeds a%, the high pressure regulating valve 48 starts to open, and when the hydraulic servo level is in the range of 8% to 100%, the opening degree of the high pressure regulating valve 48 becomes 0% to 100%, and the steam amount increases. Varies according to characteristic B. When the hydraulic servo level is 100%, the amount of steam equal to the amount of steam C10 is supplied to the water supply pump turbine 12. In addition, this characteristic will be a low pressure characteristic like characteristic E at the time of start-up operation or PCB operation. It is characterized in that it immediately responds to the required value of the water supply flow rate when the operation shifts to the PCB operation.

蒸気圧調整部2に蒸気圧制御信号に対する油圧サニポレ
ベルのゲインを変えられる関数発生器63を追加した。
A function generator 63 that can change the gain of the hydraulic pressure level with respect to the steam pressure control signal is added to the steam pressure adjustment section 2.

また、この関数発生器63の関数特性を抽気供給系50
に設置した低圧蒸気圧力検出器60からの低圧蒸気圧力
61によって発電所運転状態にあわせて設定でき入よら
に糟戊1.介2 即ち、関数発生器63に低圧蒸気圧力61を入力し特性
A / 、 B / 、 c /を変えて起動信号64
、FCB信号65が入力された時に、最適な特性がセッ
トできるようにする。このことによシ、比例積分演算器
34からの蒸気圧制御信号の変化量を調整し、油圧サー
ボレベルに対する給水ポンプタービン流入蒸気量を一定
の変化量にすることができる。
Furthermore, the function characteristics of this function generator 63 are determined by the bleed air supply system 50.
The low-pressure steam pressure 61 from the low-pressure steam pressure detector 60 installed in the 1. Intervention 2 That is, input the low pressure steam pressure 61 to the function generator 63, change the characteristics A/, B/, c/ and generate the start signal 64.
, FCB signal 65 is input, optimal characteristics can be set. As a result, the amount of change in the steam pressure control signal from the proportional-integral calculator 34 can be adjusted to maintain a constant amount of change in the amount of steam flowing into the feedwater pump turbine relative to the hydraulic servo level.

関数発生器63の特性を、第3図の(a)〜(b)を用
いて説明する。(a)図は第2図の特性E及び特性Bを
書き直したもので給水ポンプタービン流入蒸気の総量を
表わしたものであシ、負荷の状態によシ特性E、Bと特
性E / 、 B /の状態があることを示す。又特性
B、B’は、特性E、E’に対して油圧サーボレベルの
変化量に対する蒸気量の変化量が大きくなっていること
をあられしている。これは、本体の特性であるため、(
b)図に示す関数特性を加えることによシ線形の関係と
する。つまシ、従来、蒸気圧制御信号に対する油圧サー
ボレベルの変化量が一定であったものを、油圧サーボレ
ベka%〜100%の範囲で特性A/ 、 B/ 、c
/とゲインを落すことで、油圧サーボレベルの変化量を
下げ、蒸気の変化量が油圧サーボレベルa%〜100%
で急に大きくならない様にする。特性A/ 、B/ 、
 C/は、低圧蒸気圧力61により調整セットすること
にし、この特性を関数発生器63に持たせる。
The characteristics of the function generator 63 will be explained using FIGS. 3(a) to 3(b). Figure (a) is a rewrite of the characteristics E and B in Figure 2 and represents the total amount of steam flowing into the feedwater pump turbine.Characteristics E, B and characteristics E/, B / indicates that there is a state. Furthermore, characteristics B and B' indicate that the amount of change in steam amount relative to the amount of change in the hydraulic servo level is larger than that in characteristics E and E'. This is a property of the body, so (
b) A linear relationship is established by adding the functional characteristics shown in the figure. In the past, the amount of change in the hydraulic servo level with respect to the steam pressure control signal was constant, but the characteristics A/, B/, c in the range of the hydraulic servo level from ka% to 100%.
/ By lowering the gain, the amount of change in the hydraulic servo level is lowered, and the amount of change in steam is reduced to a level between a% and 100% of the hydraulic servo level.
Make sure it doesn't suddenly grow large. Characteristics A/ , B/ ,
C/ is adjusted and set by the low pressure steam pressure 61, and the function generator 63 is made to have this characteristic.

このことにより、PCB運転時や、起動運転時、特に、
給水ポンプタービン二台起動運転時に、加減弁開度(油
圧サーボレベル相等)に対する給水ボ/ブタ−ビン流入
蒸気量の変化量が急変し、給給水流量を確保することが
できる。
Due to this, especially during PCB operation and start-up operation,
When the two water supply pump turbines are started up, the amount of change in the amount of steam flowing into the water supply cylinder/butter bin with respect to the opening degree of the regulating valve (hydraulic servo level phase, etc.) changes suddenly, and the water supply flow rate can be ensured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発電所の起動運転時、及び、発電所の
発電出力急落時の給水ポンプタービンへの駆動蒸気源が
抽気から主蒸気に切替った時でも、本体加減弁開度に対
する蒸気量の非線形な関係を加減弁制御信号調整のため
の関数発生器を追加することにより、リニアな関係にで
き、給水流量の要求値に即応した給水流量の制御が行な
える。
According to the present invention, even when the driving steam source for the feedwater pump turbine is switched from extraction air to main steam during start-up operation of a power plant and when the power generation output of the power plant suddenly drops, the steam for the main body control valve opening is By adding a function generator for adjusting the regulating valve control signal, the non-linear relationship between the amounts can be made linear, and the water supply flow rate can be controlled in immediate response to the requested value of the water supply flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のシステム構成図、第2図は
油圧サーボレベルと蒸気量との関係図、第3図(a) 
、 (b)は蒸気圧制御信号、油圧サーボレベル、給水
ポンプタービン流入蒸気の関係を示す図である。 12・・・給水ポンプタービン、46・・・低圧加減弁
、光3図 手続補正書c方式)
Figure 1 is a system configuration diagram of an embodiment of the present invention, Figure 2 is a diagram of the relationship between hydraulic servo level and steam amount, and Figure 3 (a).
, (b) is a diagram showing the relationship among the steam pressure control signal, the hydraulic servo level, and the steam flowing into the water supply pump turbine. 12...Water supply pump turbine, 46...Low pressure regulator valve, light 3 diagram procedure amendment c method)

Claims (1)

【特許請求の範囲】 1、発電機を駆動する主蒸気タービンの駆動源となる蒸
気が蒸気発生装置から供給され、この蒸気圧に応じて給
水ポンプを作動する給水ポンプタービンの回転速度を検
出し、この検出値と前記蒸気発生装置に対する給水流量
の要求値に対応づけられた前記給水ポンプタービンの回
転速度についての設定値とを比較してその偏差を求め、
この偏差を抑制する蒸気圧制御信号を出力する制御部と
、前記給水ポンプタービンに供給される蒸気の圧力を、
前記蒸気圧制御信号により変える蒸気圧調整部とを備え
、前記給水ポンプの作動に応じた流量の水を前記蒸気発
生装置に給水する発電所の給水ポンプ制御システムにお
いて、 前記発電所の起動運転時、及び、前記発電所の発電出力
急落時の前記給水ポンプタービンへの前記駆動蒸気源の
切替における本体加減弁開度に対する蒸気量の非線形関
係を、加減弁制御信号の調整のための関数発生器を追加
することにより、リニアな関係にしたことを特徴とする
発電所の給水ポンプ制御システム。
[Claims] 1. Steam, which serves as a driving source for a main steam turbine that drives a generator, is supplied from a steam generator, and the rotational speed of a water pump turbine that operates a water pump is detected in accordance with the steam pressure. , comparing this detected value with a set value for the rotational speed of the water supply pump turbine that is associated with the requested value of the water supply flow rate for the steam generator, and determining a deviation therebetween;
a control unit that outputs a steam pressure control signal to suppress this deviation; and a control unit that controls the pressure of steam supplied to the feed water pump turbine.
A water supply pump control system for a power plant that supplies water to the steam generator at a flow rate according to the operation of the water supply pump, the system comprising: a steam pressure adjustment unit that changes the pressure according to the steam pressure control signal; , and a function generator for adjusting a moderation valve control signal to determine the nonlinear relationship of the steam amount to the main body moderation valve opening in switching the drive steam source to the feed water pump turbine when the power generation output of the power plant suddenly drops. A power plant water pump control system characterized by a linear relationship by adding .
JP1658285A 1985-02-01 1985-02-01 Control system of feedwater pump for power station Pending JPS61180811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1658285A JPS61180811A (en) 1985-02-01 1985-02-01 Control system of feedwater pump for power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1658285A JPS61180811A (en) 1985-02-01 1985-02-01 Control system of feedwater pump for power station

Publications (1)

Publication Number Publication Date
JPS61180811A true JPS61180811A (en) 1986-08-13

Family

ID=11920271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1658285A Pending JPS61180811A (en) 1985-02-01 1985-02-01 Control system of feedwater pump for power station

Country Status (1)

Country Link
JP (1) JPS61180811A (en)

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
JPS6123364B2 (en)
JPS61180811A (en) Control system of feedwater pump for power station
JP2000297608A (en) Control device for feed water pump of power station
JP3469685B2 (en) Control method and control device for feed water pump turbine
JPH0256481B2 (en)
JPS61108810A (en) Control system for water supply pump in power plant
JPS61180812A (en) Control system of feedwater pump for power station
JP2984097B2 (en) Steam control method and apparatus for steam-using plant
JPS6149519B2 (en)
JPS61108811A (en) Control system for water supply pump in power plant
JPH0339202B2 (en)
GB2176248A (en) Turbine control
EP3739199A1 (en) Controlling wind turbine rotor speed by regulating rotor yaw angle
JPS6294702A (en) Feed pump control system of power plant
JPH0329963B2 (en)
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPH0122521B2 (en)
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JPS61272506A (en) Steam turbine controller
JPH0223684B2 (en)
JPS5941003B2 (en) Turbine control device for driving water pump
JPH03179108A (en) Load limiter follow-up mechanism and control method therefor
JPH10159705A (en) Water level regulating device for water tank in run-off-river hydraulic power plant
JPH0241720B2 (en)