JPS61180810A - Controller for number of pump - Google Patents
Controller for number of pumpInfo
- Publication number
- JPS61180810A JPS61180810A JP1657685A JP1657685A JPS61180810A JP S61180810 A JPS61180810 A JP S61180810A JP 1657685 A JP1657685 A JP 1657685A JP 1657685 A JP1657685 A JP 1657685A JP S61180810 A JPS61180810 A JP S61180810A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- condensate
- pumps
- boost
- boost pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Multiple Motors (AREA)
- Vehicle Body Suspensions (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、沸騰水型原子力発電プラントに於いて、復水
ポンプ、復水昇圧ポンプ及び給水ポンプで構成される、
給・復水系ポンプ相互間の台数制御に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a boiling water nuclear power generation plant comprising a condensate pump, a condensate boost pump, and a feed water pump.
Regarding control of the number of supply and condensate system pumps.
第5図は、沸騰水盛原子力発電プラントの、給・復水系
の概要とポンプ台数制御装置との関係を示す。FIG. 5 shows an overview of the feed/condensate system and the relationship with the pump number control device of the boiling water nuclear power plant.
復水器1内の復水は、復水ポンプ2に依って、汲み出さ
れ、グランド復水器5、復水ろ通値ff16、復水脱塩
装置7を通過させるに必要な圧力と流量が確保される。The condensate in the condenser 1 is pumped out by the condensate pump 2, and the pressure and flow rate necessary to pass it through the grand condenser 5, the condensate filtration value ff16, and the condensate desalination device 7 are maintained. is ensured.
復水昇圧ポンプ8は、上流側機器に依って減圧した復水
を昇圧し、低圧給水加熱器11を経て、給水ポンプ12
に供給している。さらに、給水ポンプ12に依って高圧
給水加熱器14を経て原子炉15に給水すべく必要な圧
力までの昇圧され、流量を出している。The condensate boost pump 8 boosts the pressure of condensate that has been depressurized by upstream equipment, passes through the low-pressure feed water heater 11, and then supplies the water to the feed water pump 12.
is supplied to. Furthermore, the pressure is increased by the feedwater pump 12 to the pressure necessary to feed water to the nuclear reactor 15 via the high-pressure feedwater heater 14, and a flow rate is produced.
この様な系統構成に対する各ポンプ間の相互インターロ
ックに関し、従来は、復水ポンプいずれか吐出圧力低検
出器4の動作、又は、トリップで、復水ポンプ予備機一
台の自動起動を行ない、同様に各復水昇圧ポンプいずれ
か吐出圧力低検出器10の動作、又は、トリップで、復
水昇圧ポンプ予備機一台の自動起動を行なわせると共に
、上流ポンプ) IJツブ時、下流の各ポンプ入口圧力
が必要圧力以下にならぬよう上流側ポンプ運転台数と下
流側運転台数を、各ポンプ駆動モータのしゃ断器3,9
.13の開閉状態で判断し、常に下流側ポンプ運転台数
が、上流側ポンプ運転台数と等しいか、又は、少なくな
るように、ポンプ台数を制限するポンプ運転台数制御装
#L16が設置されている。Regarding mutual interlock between pumps in such a system configuration, conventionally, one condensate pump standby unit is automatically started when the low discharge pressure detector 4 of one of the condensate pumps operates or trips. Similarly, when the discharge pressure low detector 10 of each condensate booster pump operates or trips, one condensate booster pump standby unit is automatically started, and when the upstream pump (IJ) is activated, each downstream pump To prevent the inlet pressure from falling below the required pressure, the number of upstream pumps and downstream pumps are controlled by circuit breakers 3 and 9 for each pump drive motor.
.. A pump operation number control device #L16 is installed which limits the number of pumps in operation so that the number of pumps in operation on the downstream side is always equal to or less than the number of pumps on the upstream side based on the open/closed state of pumps 13.
従来装置では、ポンプ吐出圧力検出器4.10が設置さ
れているポンプの故障時しか予備機が自動起動せず、ポ
ンプ上流側装置であるグランド復水器5、復水ろ過f7
c置6、復水脱塩装置7、又は、低圧給水加熱器11の
不具合から派生する差圧高、即ち下流側ポンプである復
水昇圧ポンプ入口側圧力の低下を復水昇圧ポンプ吐出圧
力検出器4゜10では検出できないので、復水昇圧ポン
プが入口圧力の低下で全台トリップする恐れがある。In the conventional device, the backup device is automatically started only when the pump in which the pump discharge pressure detector 4.10 is installed fails, and the gland condenser 5 and condensate filtration f7, which are the pump upstream devices, are activated automatically.
The discharge pressure of the condensate boost pump is detected to detect a high differential pressure derived from a malfunction in the condensate desalination device 7 or the low-pressure feed water heater 11, that is, a decrease in the pressure at the inlet side of the condensate boost pump, which is the downstream pump. Since the condensate booster pumps cannot be detected by the unit 4.10, there is a risk that all the condensate boost pumps will trip due to the drop in inlet pressure.
本発明の目的は、より優れたポンプ運転台数制御装置を
提供する事にある。An object of the present invention is to provide a more excellent device for controlling the number of pumps in operation.
ポンプ上流側装置の不具合に依る、ポンプ入口圧力の低
下は、ポンプ吐出圧力では検印できない事、又、その対
処方法としては、ポンプの予備機を自動起動させるので
はなく、ポンプ入口圧力を高める上流側ポンプの予備機
を自動起動させた方が合理的、かつ、効果的である事、
さらには、ボング入ロ圧力検出は、ポンプ吐出圧力に比
べて脈動が少なく、検出し易い等の理由から、ポンプ入
口圧力低下で、上流側ポンプ予備機を自動起動させて、
この目的を達成する。A drop in pump inlet pressure due to a malfunction in the upstream device of the pump cannot be verified by checking the pump discharge pressure, and the best way to deal with this is to increase the upstream pressure at the pump inlet, rather than automatically starting the pump's backup device. It is more rational and effective to automatically start the standby side pump.
Furthermore, since bong inlet pressure detection has less pulsation than pump discharge pressure and is easier to detect, the upstream pump backup device is automatically activated when the pump inlet pressure decreases.
achieve this purpose.
第1図ないし第4図は本発明の一実施例を示す。 1 to 4 show an embodiment of the present invention.
第1図は、本発明の給・復水系の概要とポンプ台数制御
装置との関係を示す。FIG. 1 shows an overview of the feed/condensate system of the present invention and its relationship with a pump number control device.
第5図と比べ、復水昇圧ポンプ入口圧力検出器17及び
、給水ポンプ入口圧力検出器18が追加されている。Compared to FIG. 5, a condensate boost pump inlet pressure detector 17 and a water supply pump inlet pressure detector 18 are added.
本発明′t−t−復水ポン復水昇圧ポンプ及び給水ポン
プに適用した制御ロジックを第2図、第3図および第5
図に示す。The control logic applied to the present invention't-t-condensate pump condensate boost pump and water supply pump is shown in FIGS. 2, 3 and 5.
As shown in the figure.
各ポンプの制御ロジックはポンプのスイッチ19と、給
e復水系プロセス条件24〜42と、OR回路21とA
ND回路22、NOT回路23とポンプモータしゃ断器
20に依シ構成されている。The control logic of each pump is based on the pump switch 19, the supply and condensate system process conditions 24 to 42, the OR circuit 21, and the
The configuration is dependent on an ND circuit 22, a NOT circuit 23, and a pump motor breaker 20.
これらの制御ロジックの中で、ポンプ台数制御装置16
に含まれるのは一点鎖線の部分である。Among these control logics, the pump number control device 16
Includes the part indicated by the dashed-dotted line.
次に、第2図の復水ポンプの制御ロジックについて説明
する。Next, the control logic of the condensate pump shown in FIG. 2 will be explained.
例えば、復水ポンプ(A)スイッチ19が自動位置、即
ち、予備機として待機していれば下流側ポンプである゛
復水昇圧ポンプ(A)〜(C)いずれかの入ロ圧力低“
信号32、又は、他の運転中の同種ポンプである。“復
水ポンプ(B)(C)いずれかの吐出圧力低検出器27
、又は゛復水ポンプ(B)(C)いずれかのトリップ”
信号26又は、”復水ポンプ運転台数と復水昇圧ポンプ
運転台数が等しい°信号39が発生しており、且つ、“
給水ポンプ(A)〜(C)いずれかの入ロ圧力低“信号
38が発生した場合に、自動起動する。For example, if the condensate pump (A) switch 19 is in the automatic position, that is, if it is on standby as a standby device, the downstream pump is ``low input pressure of any of the condensate boost pumps (A) to (C)''.
Signal 32 or other similar pumps in operation. “Low discharge pressure detector 27 of either condensate pump (B) or (C)
, or ``Trip of either condensate pump (B) or (C)''
Signal 26 or signal 39 "The number of operating condensate pumps and the number of operating condensate booster pumps are equal" is generated, and "
When the input pressure low signal 38 of any one of the water supply pumps (A) to (C) is generated, the water supply pumps (A) to (C) are automatically activated.
一方、トリップ条件は、復水器ホットウェル水位低逼″
信号24と、“復水ボ・プ(A)!気故障−信号25が
あシ、これらの信号が発生すると、運転中のポンプは、
自動起動条件が発生していてもNOT回路23に依9強
制停止させられる。On the other hand, the trip condition is that the condenser hotwell water level is low.
Signal 24 and signal 25 are present when the pump is in operation.
Even if an automatic start condition occurs, the NOT circuit 23 forces the system to stop.
次に、第3図の復水昇圧ポンプ制御ロジックについて説
明する。Next, the condensate boost pump control logic shown in FIG. 3 will be explained.
例えば、復水昇圧ポンプ(A)のスイッチ19が自動位
置、即ち、予備機として待機の状態で、”復水ポンプ運
転台数が復水昇圧ポンプ運転台数より多い°信号40が
発生してJ’ D 、且つ、”給水ポンプ(A)〜(C
)いずれかの人ロ圧力低。For example, when the switch 19 of the condensate boost pump (A) is in the automatic position, that is, in the standby state as a standby machine, the signal 40 "The number of condensate pumps in operation is greater than the number of condensate boost pumps in operation" is generated. D, and “water supply pumps (A) to (C
) Any person with low pressure.
信号38、又は池の運転中の同種ポンプが“復水昇圧ポ
ンプ(B)(C1いずれかの吐出圧力低“信号33が発
生すると自動起動する。When the signal 38 or the similar pump in operation in the pond generates the "low discharge pressure of any condensate boost pump (B) (C1)" signal 33, it is automatically started.
復水ポンプ運転台数と復水昇圧ポンプ運転台数の犬少比
較を、自動起動条件の一構成要素としているのは、復水
昇圧ポンプ自動停止条件に上流側と下流側ポンプ間の台
数アンバランス条件”復水ポンプ運転台数が復水昇圧ポ
ンプ運転台数より少い“信号41が、復水ポンプの過負
荷運転防止策であジ、給水ポンプ、又は、池の復水昇圧
ポンプ入口圧力が低下した場合、無条件に、復水昇圧ポ
ンプの予備機を起動させた場合、再び復水昇圧ポンプ自
動停止条件に依り停止するからである。The comparison of the number of condensate pumps in operation and the number of condensate booster pumps in operation is a component of the automatic start condition, as well as the condition for automatic stop of the condensate booster pump and the unbalanced number of pumps between upstream and downstream pumps. ``The number of condensate pumps in operation is less than the number of condensate booster pumps in operation'' signal 41 is a measure to prevent overload operation of the condensate pump, and the inlet pressure of the water supply pump or the condensate booster pump in the pond has decreased. In this case, if the standby unit of the condensate boost pump is started unconditionally, it will be stopped again depending on the condensate boost pump automatic stop condition.
その他、復水昇圧ポンプ自動起動条件としては、池の運
転中の同種ポンプがトリップ復水ポンプ(B)(C)い
ずれかのトリップ″信号26がある。この条件に、復水
ポンプと復水昇圧ポンプの台数比較の条件を加味しない
のは、復水昇圧ポンプがトリップすると、必ず、復水ポ
ンプ運転台数が多くなるからである。In addition, as a condition for automatically starting the condensate booster pump, there is a trip'' signal 26 for either the condensate pump (B) or (C) when the same type of pump is tripping while the pond is in operation. The reason why the condition for comparing the number of boost pumps is not taken into consideration is that when a condensate boost pump trips, the number of condensate pumps in operation always increases.
又、”復水昇圧ポンプ(A)の入ロ圧力低″信号28、
“復水昇圧ポンプ(A)の電気故障″信号29、及び゛
復水昇圧ポンプ(A))l)ツブ条件′信号30が発生
すると、復水昇圧ポンプは、強制停止するつ
尚、自動停止とは、ポンプ運転中に自動停止信号が発生
すると、そのポンプは停止するが、その後自動停止信号
が消滅しポンプの自動起動信号が発生すると、再度、ポ
ンプは自動起動することを意味する。一方、強制停止と
は、ポンプが停止し、故障修理するまで起動出来ない事
を意味する。In addition, “condensate boost pump (A) input pressure low” signal 28,
When the “condensate boost pump (A) electrical failure” signal 29 and the “condensate boost pump (A) l) lubricant condition” signal 30 occur, the condensate boost pump will be forced to stop and then automatically stopped. This means that if an automatic stop signal is generated during pump operation, the pump will stop, but when the automatic stop signal disappears and an automatic pump start signal is generated, the pump will automatically start again. On the other hand, forced stop means that the pump has stopped and cannot be started until the failure is repaired.
次に、第4図で給水ポンプ制御ロジックについて説明す
る。Next, the water pump control logic will be explained with reference to FIG.
例えば、給水ポンプ(A)スイッチ19が自動位置、即
ち、予備機として待機状態で、池の運転中の同種ポンプ
が“給水ポンプ(B)(C)いずれかのトリップ″の信
号を発生すると自動起動する。For example, when the water supply pump (A) switch 19 is in the automatic position, that is, in the standby state as a standby unit, if a similar type of pump in operation in the pond generates a signal indicating "trip of either water supply pump (B) or (C)", the automatic to start.
一方、給水ポンプと、復水昇圧ポンプが同数で運転中に
、復水昇圧ポンプがトリップすると復水昇圧ポンプは過
負荷運転になるため、“給水ポンプ運転台数が復水昇圧
ポンプ運転台数より多い“信号42が発生すれば、給水
ポンプ(A)を自動停止させる。On the other hand, when the same number of feed water pumps and condensate boost pumps are operating, if the condensate boost pump trips, the condensate boost pump becomes overloaded. “If the signal 42 is generated, the water supply pump (A) is automatically stopped.
さらに、“給水ポンプ(A)の入ロ圧力低“信号34、
又は、”給水ポンプ(A)電気故障″信号35、又は“
給水ポンプ(人)その他のトリップ条件”信号36が発
生すると、給水ポンプ(A)は強制停止する。Furthermore, the “water supply pump (A) input pressure low” signal 34;
Or, "Water pump (A) electrical failure" signal 35, or "
When the water supply pump (person) and other trip conditions signal 36 occurs, the water supply pump (A) is forcibly stopped.
本発明によれば、復水ポンプ) IJツブ後の復水ポン
プ自動起動、復水昇圧ポンプ、給水ポンプ台数アンバラ
ンス停止後の、復水昇圧ポンプ自動起動及び給水ポンプ
自動起動の複雑な挙動を阻止できる。According to the present invention, the complicated behavior of the condensate pump automatic start after IJ tube (condensate pump), the condensate boost pump, and the water feed pump automatic start after the unbalanced number of condensate boost pumps and water supply pumps has stopped. It can be prevented.
第1図は、本発明の一実施例の給・復水系の概要と、ポ
ンプ台数制御装置との関係を示す図、第2図は、復水ポ
ンプの制御ロジックを示す図、第3図は、復水昇圧ポン
プの制御ロジックを示す図、第4図は、給水ポンプの制
御ロジックを示す図、第5図は、沸騰水型原子力発電プ
ラントの給・復水系の概要とポンプ台数制御装置との関
係を示す図である。Fig. 1 is a diagram showing an overview of the supply/condensate system of an embodiment of the present invention and its relationship with the pump number control device, Fig. 2 is a diagram showing the control logic of the condensate pump, and Fig. 3 is a diagram showing the relationship with the pump number control device. , Fig. 4 is a diagram showing the control logic of the condensate boost pump, Fig. 4 is a diagram showing the control logic of the feed water pump, and Fig. 5 is an overview of the feed/condensate system of a boiling water nuclear power plant and a pump number control device. FIG.
Claims (1)
復水ポンプ、復水昇圧ポンプ及び給水ポンプで構成され
る給・復水系ポンプ相互間の運転に際し、前記復水昇圧
ポンプの入口圧力低下で、前記復水ポンプの予備機を一
台自動起動させ、又、前記給水ポンプの入口圧力低下で
、前記復水昇圧ポンプの予備機を立ち上げても、前記復
水昇圧ポンプの入口圧力がさらに低下しないと予想され
る場合は、前記復水昇圧ポンプの予備機を一台自動起動
させ、又、前記給水ポンプの入口圧力低下で、前記復水
昇圧ポンプの予備機を立ち上げると、前記復水昇圧ポン
プの入口圧力がさらに低下すると予想される場合は、前
記復水ポンプの予備機を一台自動起動させた後、前記復
水昇圧ポンプの予備機を一台、自動起動させることを特
徴とするポンプ台数制御装置。 2、特許請求の範囲第1項に於いて、 前記各復水昇圧ポンプ予備機起動に依る。前記復水昇圧
ポンプの入口圧力の低下予想は、前記復水ポンプと、前
記復水昇圧ポンプの運転台数から自動的に判断すること
を特徴とするポンプ台数制御装置。[Scope of Claims] 1. In a boiling water nuclear power plant, when operating between feed and condensate system pumps that are composed of a condensate pump, a condensate boost pump, and a feed water pump from the upstream side, the condensate Even if one of the condensate pump standby units is automatically started due to a drop in the inlet pressure of the boost pump, and even if the condensate boost pump standby unit is started up due to a drop in the inlet pressure of the water supply pump, the condensate If it is predicted that the inlet pressure of the boost pump will not further decrease, one of the backup units of the condensate boost pump is automatically started, and the backup unit of the condensate boost pump is automatically activated due to the decrease in the inlet pressure of the feed water pump. If it is expected that the inlet pressure of the condensate boost pump will further decrease when the condensate boost pump is started up, one backup unit of the condensate pump will be automatically started, and then one backup unit of the condensate boost pump will be activated. , a pump number control device characterized by automatic startup. 2. In claim 1, it depends on activation of each of the condensate booster pump standby machines. A device for controlling the number of pumps, wherein a predicted decrease in the inlet pressure of the condensate boost pump is automatically determined based on the number of operating condensate pumps and the condensate boost pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1657685A JPS61180810A (en) | 1985-02-01 | 1985-02-01 | Controller for number of pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1657685A JPS61180810A (en) | 1985-02-01 | 1985-02-01 | Controller for number of pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61180810A true JPS61180810A (en) | 1986-08-13 |
Family
ID=11920116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1657685A Pending JPS61180810A (en) | 1985-02-01 | 1985-02-01 | Controller for number of pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61180810A (en) |
-
1985
- 1985-02-01 JP JP1657685A patent/JPS61180810A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018031328A (en) | Pump system, its operational method and power-generating plant | |
JPS61180810A (en) | Controller for number of pump | |
JP2685204B2 (en) | Water supply pump control method and apparatus | |
JP2614279B2 (en) | Water supply and return control device | |
JPH063491A (en) | Equipment for water feeding for nuclear power plant | |
JP2509631B2 (en) | Pump controller | |
JPS6314001A (en) | Steam-generator output controller | |
JPS5815641B2 (en) | Oil level control device for pressure storage tank | |
JPH0331962B2 (en) | ||
JPS63150483A (en) | Control method for pump operation | |
JPS62255704A (en) | Drain controller for feedwater heater | |
JPH02267403A (en) | Control of feed water of condensate | |
JPS62189385A (en) | Control device for number of driving pumps | |
JPH0346721B2 (en) | ||
JPH102506A (en) | Feed water pump control device | |
JPH02293697A (en) | Pump tripping circuit for feed water and condensate system | |
JPS62116805A (en) | Feedwater controller for nuclear reactor | |
JPH11248106A (en) | Power plant and its restarting method | |
JP2004020069A (en) | Control method of deaerator water level control valve and power generation plant | |
JPS631704A (en) | Control method for turbine condensing system | |
JPH04132996A (en) | Feed water controlling method of nuclear power plant and device thereof | |
JPS5960102A (en) | Condensation feedwater system | |
JPH06341607A (en) | Water supply control device | |
JPS63169408A (en) | Controller for feedwater drain pump-up system | |
JPH0236847B2 (en) |