JPH02267403A - Control of feed water of condensate - Google Patents

Control of feed water of condensate

Info

Publication number
JPH02267403A
JPH02267403A JP8482289A JP8482289A JPH02267403A JP H02267403 A JPH02267403 A JP H02267403A JP 8482289 A JP8482289 A JP 8482289A JP 8482289 A JP8482289 A JP 8482289A JP H02267403 A JPH02267403 A JP H02267403A
Authority
JP
Japan
Prior art keywords
condensate
pump
water supply
drain
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8482289A
Other languages
Japanese (ja)
Inventor
Yukimasa Yoshinari
吉成 行正
Toyohiko Masuda
豊彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8482289A priority Critical patent/JPH02267403A/en
Publication of JPH02267403A publication Critical patent/JPH02267403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To secure suction pressure required for a condensate pump and a feed water pump and make it possible to provide stable and continuous water supply by detecting the state of operation of the system of heater draining system and judging whether or not automatic tripping motion of the condensate pump and feed water pump is required. CONSTITUTION:In a steam power plant is which condensate feed water mean are provided with two sets of condensate pumps 10, high pressure condensate pumps 12 and feed water pumps 15 arranged in parallel respectively and the heater drain system is provided with a high pressure drain pump 21 and low pressure drain pump 26 the condensate system and the feed water system are provided with a trip detection signal generator 40 for the condensate and the feed water pump, and the heater drain system is provided with a detector 43 for the state of operation of the heater drain system. And at the time of trip of the condensate pump and feed water pump it is judged whether or not trip is required for the condensate pump and feed water pump on the downstream side of the tripped pumps by the signal from the detector 43 for the state of operation of the heater drain system, and during the operation of the heater drain system only automatic starting of a spare machine is made and during it is stopped, the pumps for the condensate system and the feed system water on the downstream side are tripped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発電プラントの復水給水系統に係り、特に、蒸
気発生器に安定した給水を供給するための復水給水制御
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a condensate water supply system for a power plant, and particularly to a condensate water supply control method for supplying stable water supply to a steam generator.

〔従来の技術〕[Conventional technology]

従来の蒸気発生器への給水系統については特開昭61−
105495号があるが、従来の問題点について第6図
により説明する。
Regarding the water supply system to the conventional steam generator, see Japanese Patent Application Laid-open No. 1986-
No. 105495, and the problems of the conventional method will be explained with reference to FIG.

蒸気発生器1で発生した蒸気は、主蒸2流量計2、蒸気
発生器出口弁29を介し、高圧タービン5に入って仕事
を行ない、クロスアラウンド管6゜湿分分離器7を経て
、低圧タービン8に供給され、タービンを回転させる。
The steam generated in the steam generator 1 passes through the main steam 2 flow meter 2 and the steam generator outlet valve 29, enters the high pressure turbine 5 to perform work, passes through the cross-around pipe 6° moisture separator 7, and is transferred to the low pressure It is supplied to the turbine 8 and rotates the turbine.

タービンから排気された蒸気は復水器9で凝縮されて復
水となる。その復水は復水ポンプ10、復水浄化装置1
1、高圧復水ポンプ12、低圧給水加熱器13,14、
給水ポンプ15、高圧給水加熱器16を通って蒸気発生
器1に戻される。一方、タービンの途中から抽気された
蒸気は給水加熱器で給水と熱交換してドレンどなる。高
圧ドレンは高圧ドレンタンク21に集められ、高圧ドレ
ンポンプ22により昇圧し、高圧ドレンタンク水位調整
弁23を介し、給水ポンプ入口に、直接、回収される。
Steam exhausted from the turbine is condensed in a condenser 9 and becomes condensate. The condensate is transferred to a condensate pump 10, a condensate purification device 1
1, high pressure condensate pump 12, low pressure feed water heater 13, 14,
The water is returned to the steam generator 1 through a feedwater pump 15 and a high-pressure feedwater heater 16. On the other hand, the steam extracted from the middle of the turbine exchanges heat with the feed water in the feed water heater and becomes a drain. The high-pressure drain is collected in a high-pressure drain tank 21, increased in pressure by a high-pressure drain pump 22, and directly collected at the water supply pump inlet via a high-pressure drain tank water level adjustment valve 23.

また、低圧ドレンは、低圧ドレンタンク25に集められ
、低位ドレンポンプ26により昇圧し、低圧ドレンタン
ク水位調整弁27を介し、高圧復水ポンプ12の入口に
、直接、回収される。
Further, the low-pressure drain is collected in the low-pressure drain tank 25, raised in pressure by the low-level drain pump 26, and directly collected at the inlet of the high-pressure condensate pump 12 via the low-pressure drain tank water level adjustment valve 27.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ここで蒸気発生器1への給水流量は、蒸気発生器1内の
給水水位が一定となる様に、蒸気発生器水位検出器18
と主蒸気流量計2と給水流量計17の測定値に基づき給
水制御装置28により制御される一6給水流量自体の変
化は、給水ポンプ15の回転数を給水制御装置28から
の要求信号によって調節することによって行う。上記従
来技術の復水給水系統では、第2図に示すように、復水
給水系ポンプ(低圧復水ポンプ、高圧復水ポンプ)のト
リップ時、低圧復水ポンプ、又は、高圧復水ポンプが一
台運転となるため、給水ポンプ吸込圧力が低下し、給水
ポンプが全台停止するのを防止するため下流側の復水給
水系ポンプを自動トリップさせ、再び、起動するインタ
ーロックを設けている。しかし、下流側の復水給水系ポ
ンプを自動トリップさせ、再び、起動するためプラント
の信頼性が低下する。(再起動失敗の可能性がある)ま
た、給水ポンプ予備機を一台(25%)とした発電プラ
ントでは、予備機が正常に自動起動した場合にも、発電
機出力を約75%相当に下げる必要がある。
Here, the water supply flow rate to the steam generator 1 is determined by the steam generator water level detector 18 so that the water supply water level in the steam generator 1 is constant.
The feed water flow rate itself is controlled by the feed water control device 28 based on the measured values of the main steam flow meter 2 and the feed water flow meter 17. Changes in the feed water flow rate itself are controlled by adjusting the rotation speed of the feed water pump 15 by a request signal from the feed water control device 28. Do by doing. In the condensate water supply system of the above conventional technology, as shown in Fig. 2, when the condensate water supply system pump (low pressure condensate pump, high pressure condensate pump) trips, the low pressure condensate pump or high pressure condensate pump is activated. Since only one unit is operated, the suction pressure of the water supply pump decreases, and in order to prevent all the water pumps from stopping, an interlock is installed to automatically trip the downstream condensate water supply system pump and start it again. . However, the reliability of the plant decreases because the downstream condensate water supply pump is automatically tripped and restarted. (There is a possibility of restart failure) In addition, in a power generation plant with one water pump backup machine (25%), even if the backup machine automatically starts normally, the generator output will be reduced to about 75%. need to be lowered.

本発明の目的は、復水給水系ポンプ(低圧復水ポンプ、
高圧復水ポンプ、給水ポンプ)のトリップ時に、ヒータ
ドレン系の運転状態、又は、ヒータドレン系からの回収
量を制御することにより、復水給水系ポンプの必要吸込
圧力を確保し、安定した連続給水を図ることにある。
The purpose of the present invention is to provide a condensate water supply system pump (low pressure condensate pump,
By controlling the operation status of the heater drain system or the amount recovered from the heater drain system when the high-pressure condensate pump, water supply pump) trips, the required suction pressure of the condensate water supply system pump is ensured and a stable continuous water supply is achieved. It's about trying.

〔aMを解決するための手段〕[Means to solve aM]

本発明の特徴は、ヒータドレン系の運転状態を検出し、
復水給水系ポンプの自動トリップ作動の要否を判定する
ことにある。
The feature of the present invention is to detect the operating state of the heater drain system,
The objective is to determine whether automatic trip operation of the condensate water supply system pump is necessary.

〔作用〕[Effect]

ヒータドレンを復水系へ回収する発電プラントでは、第
5図に示すように、給水流量に対して約45%相当のヒ
ータドレンを復水系に回収するため復水給水系ポンプト
リップに対するポンプの必要吸込圧力の影響が少ない。
In a power generation plant that recovers heater drain to the condensate system, as shown in Figure 5, in order to recover heater drain equivalent to approximately 45% of the feed water flow rate into the condensate system, the required suction pressure of the pump for the condensate water supply system pump trip is Less impact.

また、復水給水系ポンプトリップ時には、ドレン回収点
の圧力が低下するためヒータドレンポンプがランアウト
し復水系への回収量が増加する。このようにして、復水
給水系ポンプトリップ時に、復水給水系ポンプの必要吸
込圧力が緩和される。さらに、復水給水系ポンプトリッ
プ信号により、ヒータドレン系のドレンタンク水位調節
弁を制御することにより、復水系への・回収量を増加さ
せることができるため、復水給水系ポンプに安定した吸
込圧力を確保することが出来る。また、ヒータドレンポ
ンプをランアウトさせた場合、ヒータドレンタンクの水
位が低下し、ドレンポンプがトリップすることが考えら
れるが、ヒータドレンタンクに設けたドレンタンク水位
検出器からの信号(通常、タンク水位とドレンポンプト
リップ水位の間にドレン系制御を通常制御に戻すための
水位を設定する)または、タイマ(復水給水系ポンプト
リップから数秒後にドレン系制御を通常制御に戻すため
のタイマを設ける)等を用いることにより短時間(数秒
)のランアウトは、特に、問題無く制御(運転)可能で
ある。
Furthermore, when the condensate water supply system pump trips, the pressure at the drain recovery point decreases, so the heater drain pump runs out and the amount of recovered water to the condensate system increases. In this way, the necessary suction pressure of the condensate water supply system pump is relieved when the condensate water supply system pump trips. Furthermore, by controlling the drain tank water level control valve of the heater drain system using the condensate water supply system pump trip signal, it is possible to increase the amount of collected water to the condensate system, thereby providing stable suction pressure to the condensate water supply system pump. can be ensured. Additionally, if the heater drain pump runs out, the water level in the heater drain tank may drop and the drain pump may trip, but the signal from the drain tank water level detector installed in the heater drain tank (usually Set the water level to return the drain system control to normal control between the water level and the drain pump trip water level) or a timer (set a timer to return the drain system control to normal control a few seconds after the condensate water supply system pump trip) By using the above, short-term (several seconds) run-outs can be controlled (operated) without any problems.

〔実施例〕〔Example〕

本発明は、給水加熱器ドレンを、直接、復水系に回収す
る装置には、一般的に応用可能である。
The present invention is generally applicable to devices that recover feedwater heater drain directly into a condensate system.

第1図と第2図にその実施例を示す。蒸気発生器1より
発生した蒸気は、主蒸気流量計2.蒸気発生器出口弁2
9を介し、高圧タービン5に入って仕事を行ない、クロ
スアラウンド管6.湿分分離器7を介し、低圧タービン
8に供給されタービンを回転させる。タービンから排気
された蒸気は復水器9で凝縮されて復水となる。その復
水は復水ポンプ10、復水浄化装置11、高圧復水ポン
プ12、低圧給水加熱器13,14、給水ポンプ15、
高圧給水加熱器16を通って蒸気発生器1に戻される。
An example thereof is shown in FIGS. 1 and 2. The steam generated from the steam generator 1 is passed through the main steam flow meter 2. Steam generator outlet valve 2
9, enters the high pressure turbine 5 to perform work, and passes through the cross-around pipe 6. The water is supplied to a low pressure turbine 8 through a moisture separator 7 and rotates the turbine. Steam exhausted from the turbine is condensed in a condenser 9 and becomes condensate. The condensate is supplied by a condensate pump 10, a condensate purifier 11, a high pressure condensate pump 12, a low pressure feed water heater 13, 14, a feed water pump 15,
It is returned to the steam generator 1 through a high pressure feedwater heater 16.

一方、タービンの途中から抽気された蒸気は給水加熱器
で給水と熱交換してドレンとなる。高圧ドレンは高圧ド
レンタンク21に集められ、高圧ドレンポンプ21によ
って昇圧し、高圧ドレンタンク水位調整弁23を介して
給水ポンプ入口に、直接、回収される。また、低圧ドレ
ンは、低圧ドレンタンク25に集められ低圧ドレンポン
プ26により昇圧し、低圧ドレンタンク水位調整弁27
を介し、高圧復水ポンプ12の入口に、直接、回収され
る。
On the other hand, the steam extracted from the middle of the turbine exchanges heat with the feed water in the feed water heater and becomes drain. The high-pressure drain is collected in a high-pressure drain tank 21, increased in pressure by the high-pressure drain pump 21, and directly collected at the water supply pump inlet via the high-pressure drain tank water level adjustment valve 23. Further, the low pressure drain is collected in a low pressure drain tank 25, and the pressure is increased by a low pressure drain pump 26, and a low pressure drain tank water level adjustment valve 27 is used.
directly to the inlet of the high-pressure condensate pump 12.

ここで蒸気発生器1への給水流量は、蒸気発生器1内の
給水の水位が一定となる様に、蒸気発生器水位検出器1
8と主蒸気流量計2と給水流量計17の測・定値に基づ
き、給水制御装置28により制御される。給水流量自体
の変化は、給水ポンプ15の回転数を給水制御装置28
からの要求信号によって調節することによって行う。
Here, the flow rate of the water supply to the steam generator 1 is determined by the steam generator water level detector 1 so that the water level of the water supply in the steam generator 1 is constant.
8, the main steam flowmeter 2, and the feedwater flowmeter 17, the water supply control device 28 controls the flow rate. Changes in the water supply flow rate itself can be made by changing the rotation speed of the water supply pump 15 to the water supply control device 28.
This is done by adjusting according to the request signal from.

この復水給水系統で、復水給水ポンプのトリップ検出信
吟発生器40とヒータドレン系゛運転状態検出装置43
を設置し、第4図に示すように、ヒータドレン系運転状
態検出装置43からの信号により、下流側復水給水系ポ
ンプのトリップの要否を判定し、ヒータドレン系運転中
は、予備機の自動起動のみとし、また、ヒータドレン系
の停止時には、下流側復水給水系ポンプをトリップさせ
る。
In this condensate water supply system, a trip detection signal generator 40 of the condensate water supply pump and a heater drain system operating state detection device 43 are used.
As shown in Fig. 4, the necessity of tripping the downstream condensate water supply system pump is determined based on the signal from the heater drain system operating state detection device 43, and while the heater drain system is operating, the standby equipment is automatically activated. It only starts up, and when the heater drain system is stopped, the downstream condensate water supply system pump is tripped.

一般に、ヒータドレンポンプは50%負荷以上で運転さ
れるため、復水給水系ポンプトリップ前の電気出力が確
保される。また、ヒータドレン量は、定格給水流量の3
0%程度であるが、ドレンポンプで過大流量を送水する
ことで約40%(ランアウト流量はポンプ仕様点流量の
125%)のドレンを復水系へ回収することができる。
Generally, the heater drain pump is operated at a load of 50% or more, so the electrical output is ensured before the condensate water supply system pump trips. In addition, the heater drain amount is 3 of the rated water supply flow rate.
However, by sending an excessive flow rate with the drain pump, approximately 40% of the drain (runout flow rate is 125% of the pump specification point flow rate) can be recovered to the condensate system.

つまり、ヒータドレン流量検出器30.31及びドレン
タンク水位検出器24.34等から成るドレン流量制御
装[41,42により、ポンプ保護上の最大流量として
、ポンプ仕様点流量の125%流量にランアウト流量を
制限することができる。また、ドレンポンプがランアウ
トした場合、ドレンタンクの水位が低下するがドレンタ
ンク水位検出器24゜34(通常、タンク水位とドレン
ポンプトリップ水位の間にドレン系制御を通常制御に戻
すための水位を設定する)からの信号及びタイマ(復水
給水系ポンプトリップから数秒後にドレン系制御を通常
制御に戻すためのタイマを設ける)等によりドレン系を
通常制御に回復させることにより、ドレンポンプトリッ
プレベルまでドレンタンク水位が低下することはない。
In other words, the drain flow rate control device [41, 42] consisting of the heater drain flow rate detector 30, 31, drain tank water level detector 24, 34, etc. sets the runout flow rate to 125% of the pump specification point flow rate as the maximum flow rate for pump protection. can be restricted. In addition, if the drain pump runs out, the water level in the drain tank will drop, but the drain tank water level detector 24° 34 (usually detects the water level between the tank water level and the drain pump trip level to return the drain system control to normal control) By restoring the drain system to normal control using a signal from the condensate water supply system (setting) and a timer (a timer is provided to return the drain system control to normal control a few seconds after the condensate water supply system pump trips), the drain pump trip level is reached. The drain tank water level will not drop.

ゆえに、復水給水系ポンプのランアウトを低減できるた
め復水給水ポンプトリップ時、下流側復水給水系ポンプ
をトリップさせる事はなく、復水給水系ポンプの必要吸
込圧力も確保する事が出来る。
Therefore, runout of the condensate water supply system pump can be reduced, so when the condensate water supply system pump trips, the downstream condensate water supply system pump will not be tripped, and the required suction pressure of the condensate water supply system pump can be secured.

第3図に本発明の他の実施例を示す。復水給水系統にお
いて、復水給水系のトリップ信号発生器40、ドレンタ
ンク水位調節弁バイパス弁32゜33を設置し、復水給
水系ポンプのトリップが発生した場合には、復水給水系
のトリップ信号発生器40からの信号、及び、ドレンタ
ンク水位検出器24,34によりドレンタンク水位調節
弁バイパス弁32,33を制御し、ドレンポンプをラン
アウトさせる。これによりドレンポンプの能力を最大限
に発揮することができ、復水給水系ポンプのランアウト
を最小限にすることが可能となる。
FIG. 3 shows another embodiment of the invention. In the condensate water supply system, a condensate water supply system trip signal generator 40 and drain tank water level control valve bypass valves 32 and 33 are installed, and when the condensate water supply system pump trips, the condensate water supply system The signal from the trip signal generator 40 and the drain tank water level detectors 24, 34 control the drain tank water level control valve bypass valves 32, 33 to cause the drain pump to run out. This makes it possible to maximize the performance of the drain pump and minimize run-out of the condensate water supply system pump.

ヒータドレン系からの回収量が増加することにより低圧
復水ポンプ、および、高圧復水ポンプから送水する復水
量が減少するため低圧復水ポンプおよび高圧復水ポンプ
の揚程が上昇し、復水給水系ポンプの吸込圧力が上昇す
る。また、ドレンタンク水位調節弁バイパス弁32,3
3が開いた場合、ドレンタンクの水位が低下するがドレ
ンタンク水位検出器24.34 (通常、タンク水位と
ドレンポンプトリップ水位の間にドレン系制御を通常制
御に戻すための水位を設定する)又は、復水給水系ポン
プトリップから数秒後にドレン系制御を通常制御に戻す
ためのタイマを設けるため、ドレンポンプトリップレベ
ルまで水位が低下することはなる。
As the amount recovered from the heater drain system increases, the amount of condensate sent from the low-pressure condensate pump and high-pressure condensate pump decreases, so the pumping height of the low-pressure condensate pump and high-pressure condensate pump increases, and the condensate water supply system Pump suction pressure increases. In addition, the drain tank water level control valve bypass valve 32, 3
3 opens, the water level in the drain tank will drop, but the drain tank water level detector 24.34 (usually sets the water level between the tank water level and the drain pump trip level to return the drain system control to normal control) Alternatively, since a timer is provided to return the drain system control to normal control several seconds after a condensate water supply system pump trip, the water level will not drop to the drain pump trip level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例の系統図、第3図は
本発明の他の実施例の系統図、第4図は本発明の判定フ
ローチャート、第5図は復水給水系−ドレン系流量バラ
ンスの説明図、第6図は従来の復水給水系の系統図、第
7図は従来の判定フローチャートを示す。 1・・・蒸気発生器、2・・・主蒸気流量計、3・・・
主蒸気管、5・・・高圧タービン、7・・・湿分分離器
、8・・・低圧タービン、9・・・復水器。 代理人 弁理士 小川勝男fTx ない。 〔発明の効果〕 本発明によれば、復水給水系ポンプトリップ時等に、給
水ポンプの必要人口圧力を確保することができ、蒸気発
生器に安定した給水を供給可能と高牛口 1’1−RFP−−−9111馬Emla水不°〉フ。
Figures 1 and 2 are system diagrams of one embodiment of the present invention, Figure 3 is a system diagram of another embodiment of the present invention, Figure 4 is a determination flowchart of the present invention, and Figure 5 is a condensate water supply. An explanatory diagram of system-drain system flow balance, FIG. 6 is a system diagram of a conventional condensate water supply system, and FIG. 7 is a conventional determination flowchart. 1...Steam generator, 2...Main steam flow meter, 3...
Main steam pipe, 5... High pressure turbine, 7... Moisture separator, 8... Low pressure turbine, 9... Condenser. Agent: Patent attorney Katsuo Ogawa fTx No. [Effects of the Invention] According to the present invention, the necessary population pressure of the water supply pump can be ensured when the condensate water supply system pump trips, etc., and a stable water supply can be supplied to the steam generator. 1-RFP---9111 Horse Emla Mizufu〉fu.

Claims (1)

【特許請求の範囲】 1、発電プラントの復水器から蒸気発生器へ給水する複
数台の復水ポンプと、前記復水ポンプの下流に設置する
複数台の給水ポンプと、給水を加熱する給水加熱器と、
前記給水加熱器のドレンを給水系に、直接、回収するド
レンポンプと、それらを接続する配管で構成される復水
給水系、及び、ヒータドレン系統において、 前記復水ポンプまたは前記給水ポンプのトリップ時、前
記ドレンポンプの運転状態を判定条件としてトリップし
た前記復水ポンプまたは前記給水ポンプの下流側のポン
プの運転継続、又は、自動停止を判定することを特徴と
する復水給水制御方法。 2、発電プラントの復水器から蒸気発生器へ給水する複
数台の復水ポンプと、前記復水ポンプの下流に設置する
複数台の給水ポンプと、給水を加熱する給水加熱器と、
前記給水加熱器のドレンを給水系に、直接、回収するド
レンポンプと、それらを接続する配管で構成される復水
給水系、及び、ヒータドレン系統において、 前記復水ポンプまたは前記給水ポンプのトリップ時に、
ヒータドレン系からの回収量を制御することを特徴とす
る復水給水制御方法。 3、請求項2において、 前記復水ポンプまたは前記給水ポンプのトリップ検出信
号発生器からの信号によりドレンタンクの水位調節弁を
制御し、前記ドレンポンプで過大流量を送水することを
特徴とする復水給水制御方法。 4、請求項2において、 前記トリップ検出信号発生器、及び、前記ドレンタンク
水位調節弁にバイパス弁を設け、前記トリップ検出信号
発生器からの信号、及び、ドレンタンク水位検出器から
の信号により前記ドレンタンク水位調節弁の前記バイパ
ス弁を制御することを特徴とする復水給水制御方法。
[Claims] 1. A plurality of condensate pumps that supply water from a condenser of a power generation plant to a steam generator, a plurality of water supply pumps that are installed downstream of the condensation pumps, and a water supply that heats the feed water. a heater,
In a condensate water supply system and a heater drain system that are comprised of a drain pump that directly collects drain from the feedwater heater into the water supply system and piping that connects them, when the condensate pump or the water supply pump trips. A condensate water supply control method, characterized in that it is determined whether to continue operating or automatically stop the tripped condensate pump or a pump downstream of the water supply pump, using the operating state of the drain pump as a determination condition. 2. A plurality of condensate pumps that supply water from a condenser to a steam generator in a power generation plant, a plurality of water supply pumps that are installed downstream of the condensate pumps, and a feed water heater that heats the feed water;
In a condensate water supply system and a heater drain system, which are comprised of a drain pump that directly collects drain from the feedwater heater into the water supply system and piping that connects them, when the condensate pump or the water supply pump trips; ,
A condensate water supply control method characterized by controlling the amount of water recovered from a heater drain system. 3. The condenser according to claim 2, wherein a water level control valve of a drain tank is controlled by a signal from a trip detection signal generator of the condensate pump or the water supply pump, and the drain pump supplies water at an excessive flow rate. Water supply control method. 4. In claim 2, a bypass valve is provided in the trip detection signal generator and the drain tank water level control valve, and the signal from the trip detection signal generator and the drain tank water level detector is used to A condensate water supply control method comprising controlling the bypass valve of a drain tank water level control valve.
JP8482289A 1989-04-05 1989-04-05 Control of feed water of condensate Pending JPH02267403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8482289A JPH02267403A (en) 1989-04-05 1989-04-05 Control of feed water of condensate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8482289A JPH02267403A (en) 1989-04-05 1989-04-05 Control of feed water of condensate

Publications (1)

Publication Number Publication Date
JPH02267403A true JPH02267403A (en) 1990-11-01

Family

ID=13841446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8482289A Pending JPH02267403A (en) 1989-04-05 1989-04-05 Control of feed water of condensate

Country Status (1)

Country Link
JP (1) JPH02267403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613464A (en) * 2015-02-02 2015-05-13 华北电力科学研究院有限责任公司 Gas thermal power plant one-dragging-one set condensate system and start and stop method thereof
CN104613463A (en) * 2015-02-02 2015-05-13 华北电力科学研究院有限责任公司 Gas thermal power plant two-dragging-one set condensate system and start and stop method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613464A (en) * 2015-02-02 2015-05-13 华北电力科学研究院有限责任公司 Gas thermal power plant one-dragging-one set condensate system and start and stop method thereof
CN104613463A (en) * 2015-02-02 2015-05-13 华北电力科学研究院有限责任公司 Gas thermal power plant two-dragging-one set condensate system and start and stop method thereof

Similar Documents

Publication Publication Date Title
JPH02267403A (en) Control of feed water of condensate
JPS63294407A (en) Method and device for controlling feedwater of steam generator
JP2614279B2 (en) Water supply and return control device
JP2523511B2 (en) Steam generator output controller
JPH044481B2 (en)
JP3547458B2 (en) High pressure drain pump shaft sealing equipment
JPS63294408A (en) Feedwater controller for steam generator
JPH01222101A (en) Method and apparatus for controlling feed water pump
JPH0236847B2 (en)
JP3604566B2 (en) Water supply control device for boiling water nuclear power plant
JPH102506A (en) Feed water pump control device
JP2685472B2 (en) Condensate system control method and device
JPH03206379A (en) Control method for recirculating flow of pump
JPS61180810A (en) Controller for number of pump
JPH06341607A (en) Water supply control device
JPS6246107A (en) Water-level controller
JPH063491A (en) Equipment for water feeding for nuclear power plant
JP2726697B2 (en) Water supply equipment and water supply control method thereof
JPH0331962B2 (en)
JPS62116805A (en) Feedwater controller for nuclear reactor
JPH09145893A (en) Condensate and feed device
JPS6226648Y2 (en)
JPH04132996A (en) Feed water controlling method of nuclear power plant and device thereof
JPS63150483A (en) Control method for pump operation
JP2685948B2 (en) Water supply and condensate pump controller