JPS61180512A - Construction of directly cooled type power cable line - Google Patents

Construction of directly cooled type power cable line

Info

Publication number
JPS61180512A
JPS61180512A JP61010809A JP1080986A JPS61180512A JP S61180512 A JPS61180512 A JP S61180512A JP 61010809 A JP61010809 A JP 61010809A JP 1080986 A JP1080986 A JP 1080986A JP S61180512 A JPS61180512 A JP S61180512A
Authority
JP
Japan
Prior art keywords
cable
refrigerant
inner tube
power cable
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61010809A
Other languages
Japanese (ja)
Other versions
JPS6364130B2 (en
Inventor
緑川 宮文
伸孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP61010809A priority Critical patent/JPS61180512A/en
Publication of JPS61180512A publication Critical patent/JPS61180512A/en
Publication of JPS6364130B2 publication Critical patent/JPS6364130B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、直接冷却型電力ケーブル線路の構成方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for constructing a directly cooled power cable line.

従来この種線路は、第1図に示すように、ケーブル1を
直冷m管路3内に布蛤し、この管路3内に冷却媒体(水
)を充填し、ケーブルを直接冷却する方法が採用されて
おり、この方法において冷却効果を上げるためには、一
つの方法として水の量を多くし、即ち管径を大きくする
ことが一般的である。
Conventionally, as shown in Fig. 1, this type of line was constructed by placing the cable 1 in a direct cooling pipe 3, filling the pipe 3 with a cooling medium (water), and directly cooling the cable. In order to increase the cooling effect in this method, it is common to increase the amount of water, that is, increase the diameter of the pipe.

しかしそのように管径を太き(して大口径の管径でケー
ブル1の熱伸縮を吸収しようとすると、直冷用管路3内
でケーブル1がスネークし、局部的に曲げが小さくなる
とか、歪みが大きくなる等の障害が予想される。
However, if you try to absorb the thermal expansion and contraction of the cable 1 by making the pipe diameter thicker (by making the pipe diameter larger), the cable 1 will snake inside the direct cooling pipe 3, and the bending will become smaller locally. Problems such as increased distortion are expected.

本発明は上記した実情に鑑み、冷却効率を向上し且つ冷
媒給排区間を長(し、さらにスネーク幅を規制しケーブ
ルに局部的な曲げ径を生じることや歪みの増大が生じる
ことを防止できる、直接冷却電力ケーブル線路の構成方
法の提供を目的とする。
In view of the above-mentioned circumstances, the present invention improves cooling efficiency, lengthens the refrigerant supply/discharge section, and also regulates the snake width to prevent local bending diameters and increases in distortion in the cable. , aims to provide a method for configuring a directly cooled power cable line.

即ち本発明の方法は、管路を、ケーブルに対して直接的
に覆い且つ径方向への貫通穴を長手方向及び円周方向に
複数形成した内管と、この内管を覆うような外管とで構
成し、内管と外管との間及び内管とケーブルとの間それ
ぞれに冷媒を流しそれら内外の冷媒を当該内管の貫通穴
を通して自由に入れ換り流通するように構成したもので
ある。
That is, the method of the present invention includes an inner tube that directly covers the cable and has a plurality of radial through holes formed in the longitudinal and circumferential directions, and an outer tube that covers the inner tube. and is configured to flow refrigerant between the inner tube and the outer tube and between the inner tube and the cable so that the refrigerant inside and outside can freely exchange and circulate through the through hole of the inner tube. It is.

以下本発明の方法の一実施例を第2図及び第3図により
説明する。
An embodiment of the method of the present invention will be described below with reference to FIGS. 2 and 3.

ケーブル1を収容する管路は、大口径の外管4と、この
外管4ないに収容した内管3とにより構成し、内管5内
にケーブル1を引き込み収容するものである。
The conduit for accommodating the cable 1 is composed of a large-diameter outer tube 4 and an inner tube 3 housed in the outer tube 4, and the cable 1 is drawn into the inner tube 5 and housed therein.

外管4は外部に対し閉鎖的なつまり冷媒を封鎖する管路
外壁を形成し、これに対し内管5は外管4より口径を充
分に小さくしてケーブル1より少しく大きい径とし、そ
して径方向に貫通する六6を長手方向及び円周方向に複
数個穿設してなるものである。
The outer pipe 4 forms a pipe outer wall that is closed to the outside, that is, seals off the refrigerant, while the inner pipe 5 has a diameter sufficiently smaller than that of the outer pipe 4 and slightly larger than that of the cable 1, and has a diameter slightly larger than that of the cable 1. A plurality of 66 penetrating holes are bored in the longitudinal direction and the circumferential direction.

冷媒2は外管4の中へ充填され、従って外管4と内管5
との間並びに内管5内のケーブルlとの間それぞれの空
隙に充填される。
The refrigerant 2 is filled into the outer pipe 4, and therefore the outer pipe 4 and the inner pipe 5
and the cable l in the inner tube 5.

内管5の貫通穴6はその貫通状態を妨げないように、ケ
ーブル1を収容する内部及び外管4にて囲まれた外部空
間に対して開口する状態を保持しており、従って冷媒2
はその貫通穴6を通じて内管5内及び外管4内に自由に
流通可能としている。
The through hole 6 of the inner tube 5 maintains an open state to the inner space accommodating the cable 1 and the external space surrounded by the outer tube 4 so as not to impede the penetration state, and therefore, the refrigerant 2
can freely flow into the inner tube 5 and the outer tube 4 through the through hole 6.

このように本発明は、冷却効率を上げるために冷媒(水
)の量を多くさせるのに単に管路径を大きくするものと
は異なり、管路を内外二重の管構造とし、内管に径方向
に貫通する穴を穿って内管内の冷媒と外管内の冷媒とを
自由に流通するように構成したものであり、ケーブル1
の通電による発熱で内管5内で加熱された冷媒が当該貫
通穴6を通じて内管5外部の外管4内に流れるとともに
その外管4内の冷媒が貫通穴を通じて内管5内に流れ、
このようにして内管4内外の冷媒を自由に入れ替わり、
即ち冷却管路内で冷媒が実質的攪拌されることとなるの
で、水量を増加する以外にさらに冷却効率の向上を図る
ことができ、電流容量のさらなる増加に貢献する。
In this way, the present invention differs from simply increasing the diameter of the pipe to increase the amount of refrigerant (water) in order to increase cooling efficiency. The cable is constructed with holes penetrating in the direction so that the refrigerant in the inner tube and the refrigerant in the outer tube can freely flow.
The refrigerant heated in the inner tube 5 by the heat generated by the energization flows into the outer tube 4 outside the inner tube 5 through the through hole 6, and the refrigerant in the outer tube 4 flows into the inner tube 5 through the through hole.
In this way, the refrigerant inside and outside the inner tube 4 can be exchanged freely,
That is, since the refrigerant is substantially stirred within the cooling pipe, it is possible to further improve the cooling efficiency in addition to increasing the amount of water, contributing to a further increase in current capacity.

また、内管内の冷媒と外管内の冷媒とは内管における貫
通穴により通じているので、それらの冷媒圧はバランス
し、内管に過大な外圧が加わる心配は全くない。即ち菅
は一般に内圧には強い反面外圧に対しては座屈を起こし
易いがその恐れもない。
Furthermore, since the refrigerant in the inner tube and the refrigerant in the outer tube communicate through the through hole in the inner tube, their refrigerant pressures are balanced, and there is no concern that excessive external pressure will be applied to the inner tube. That is, although tubes are generally strong against internal pressure, they tend to buckle against external pressure, but there is no risk of buckling.

さらに、冷媒が内外二重の管路内で攪拌状態とされてケ
ーブルを冷却するので、冷媒の給排区間を長くすること
ができる。
Furthermore, since the refrigerant is kept in an agitated state within the double internal and external conduits to cool the cable, the refrigerant supply and discharge section can be lengthened.

そして、ケーブルの熱伸縮による伸び出しで曲げ径、歪
みが起ころうとする場合、ケーブルを直接的に覆う内管
5がこれらケーブル曲げ径、ケーブル歪みに対し有効に
作用させることができる。
When the bending diameter and distortion are about to occur due to expansion and contraction of the cable due to thermal expansion and contraction, the inner tube 5 that directly covers the cable can effectively act on the cable bending diameter and cable distortion.

上記実施例では、冷媒が水の場合について述べであるが
、POF (パイプ型油入)ケーブルの指手冷却する方
式においては、水と油を置換するだけで、全く変わりな
く構成し、また外管の外側にさらに外側外管を設け、外
管とその外側外管との間に水を循環させることも可能で
ある。
In the above example, the case where the refrigerant is water is described, but in the method of cooling the fingers and hands of a POF (pipe type oil-filled) cable, the structure is completely unchanged by simply replacing water and oil, and the external It is also possible to further provide an outer outer tube on the outside of the tube and to circulate water between the outer tube and the outer outer tube.

以上説明した通り、本発明の直接冷却型電力ケーブル線
路の構成方法によれば、冷却効率の向上を図って冷媒給
排区間を長くすることができ、且つまたスネーク幅を規
制してケーブルに局部的な曲げ径や歪みの増大が生ずる
のを防止できる効果があり、実益は大きい。
As explained above, according to the method for configuring a directly cooled power cable line of the present invention, it is possible to improve the cooling efficiency and lengthen the refrigerant supply/discharge section, and also to restrict the snake width so that the cable can be locally cooled. This has the effect of preventing the bending diameter and distortion from increasing, and the practical benefits are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来一般の直接冷却型電力ケーブル線路の概況
を示す断面図、@2図及び第3図は本発明の直接冷却型
電力ケーブル線路の構成方法による線路構造の一実施例
を示す断面図及び側面的説明図である。 にケーブル 2:冷媒 4:外管 5:内管 6:貫通穴
Figure 1 is a sectional view showing an overview of a conventional direct cooling type power cable line, and Figures 2 and 3 are cross sections showing an example of a line structure according to the method of configuring a direct cooling type power cable line of the present invention. It is a figure and a side explanatory view. Cable 2: Refrigerant 4: Outer pipe 5: Inner pipe 6: Through hole

Claims (1)

【特許請求の範囲】[Claims] 1、ケーブルを管路内に布設しこの管路内に冷媒を流し
てケーブルを直接冷却する電力ケーブル線路において、
管路を、ケーブルに対して直接的に覆い且つ径方向への
貫通穴を長手方向及び円周方向に複数形成した内管と、
この内管を覆うような外管とで構成し、内管と外管との
間及び内管とケーブルとの間それぞれに冷媒を流しそれ
ら内外の冷媒を当該内管の貫通穴を通じて自由に入れ替
り流通するように構成することを特徴とする直接冷却型
電力ケーブル線路の構成方法。
1. In a power cable line where the cable is installed in a conduit and a refrigerant is flowed through the conduit to directly cool the cable,
an inner pipe that directly covers the cable and has a plurality of radial through holes formed in the longitudinal direction and the circumferential direction;
It consists of an outer tube that covers this inner tube, and refrigerant is flowed between the inner tube and the outer tube and between the inner tube and the cable, and the refrigerant inside and outside can be exchanged freely through the through hole of the inner tube. A method of configuring a directly cooled power cable line, the method comprising configuring it so as to allow it to flow.
JP61010809A 1986-01-21 1986-01-21 Construction of directly cooled type power cable line Granted JPS61180512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010809A JPS61180512A (en) 1986-01-21 1986-01-21 Construction of directly cooled type power cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010809A JPS61180512A (en) 1986-01-21 1986-01-21 Construction of directly cooled type power cable line

Publications (2)

Publication Number Publication Date
JPS61180512A true JPS61180512A (en) 1986-08-13
JPS6364130B2 JPS6364130B2 (en) 1988-12-09

Family

ID=11760671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010809A Granted JPS61180512A (en) 1986-01-21 1986-01-21 Construction of directly cooled type power cable line

Country Status (1)

Country Link
JP (1) JPS61180512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131827B2 (en) * 2003-11-17 2006-11-07 Artemis Kautschuk-Und Kunststoff-Technik Gmbh Stator for an eccentric screw pump or an eccentric worm motor operating on the moineau principle
US7316548B2 (en) * 2003-11-17 2008-01-08 Artemis Kautschuk-Und Kunststoff-Technik Gmbh Stator for an eccentric screw pump or an eccentric worm motor operating on the Moineau principle
US7407372B2 (en) * 2004-05-14 2008-08-05 Robbins & Myers Energy Systems L.P. Progressing cavity pump or motor
US8523545B2 (en) 2009-12-21 2013-09-03 Baker Hughes Incorporated Stator to housing lock in a progressing cavity pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4122665Y1 (en) * 1964-08-03 1966-11-14
JPS5054884A (en) * 1973-09-14 1975-05-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4122665Y1 (en) * 1964-08-03 1966-11-14
JPS5054884A (en) * 1973-09-14 1975-05-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131827B2 (en) * 2003-11-17 2006-11-07 Artemis Kautschuk-Und Kunststoff-Technik Gmbh Stator for an eccentric screw pump or an eccentric worm motor operating on the moineau principle
US7316548B2 (en) * 2003-11-17 2008-01-08 Artemis Kautschuk-Und Kunststoff-Technik Gmbh Stator for an eccentric screw pump or an eccentric worm motor operating on the Moineau principle
US7407372B2 (en) * 2004-05-14 2008-08-05 Robbins & Myers Energy Systems L.P. Progressing cavity pump or motor
US8523545B2 (en) 2009-12-21 2013-09-03 Baker Hughes Incorporated Stator to housing lock in a progressing cavity pump

Also Published As

Publication number Publication date
JPS6364130B2 (en) 1988-12-09

Similar Documents

Publication Publication Date Title
CN208075642U (en) Compact antigravity return circuit heat pipe
JPS61180512A (en) Construction of directly cooled type power cable line
JPH07280469A (en) Water-cooled oil cooler
JP3227876B2 (en) Heat exchanger
JPH01174897A (en) Heat pipe
KR100720818B1 (en) Cooling structure for screw device of extruder
CA2203913C (en) Cooling system for a generator in a tank surrounded by running water
CN110725934A (en) High stability planetary gear speed reducer
JPS60232496A (en) Heat exchanger
CN113847832B (en) Cooler for cooling liquid metal medium and design method thereof
KR100332300B1 (en) Oil cooler
EP0680594B1 (en) Heat exchanger device and method of transferring heat
RU2179693C2 (en) Modular bimetallic radiator for domestic heating systems
KR200327795Y1 (en) a transformer cooler
JPS63225196A (en) Nuclear power plant
JP3334325B2 (en) Oil cooler mounting structure
SU1502919A1 (en) Heat exchanger
JPH04260788A (en) Double cylinder inner coil type heat exchanger
JPS6122457Y2 (en)
JPH1073013A (en) Oil temperature control structure
KR200367631Y1 (en) Radiator embedded oil cooling pipe assembly
KR20040075213A (en) Radiator with built-in oil cooler
JPH07294163A (en) Heat exchanger
CN117119758A (en) Logging instrument thermal management framework with embedded pipeline
KR970001840Y1 (en) Oil-filled welding machine