JPH07294163A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH07294163A
JPH07294163A JP11231194A JP11231194A JPH07294163A JP H07294163 A JPH07294163 A JP H07294163A JP 11231194 A JP11231194 A JP 11231194A JP 11231194 A JP11231194 A JP 11231194A JP H07294163 A JPH07294163 A JP H07294163A
Authority
JP
Japan
Prior art keywords
pipe
heat
fluid
heat exchanger
porous sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231194A
Other languages
Japanese (ja)
Inventor
Keiichi Suzuki
啓一 鈴木
Tsukane Kudou
緯 工藤
Masayuki Hasebe
雅之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP11231194A priority Critical patent/JPH07294163A/en
Publication of JPH07294163A publication Critical patent/JPH07294163A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • F02G1/0445Engine plants with combined cycles, e.g. Vuilleumier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2250/00Special cycles or special engines
    • F02G2250/18Vuilleumier cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To increase a heat exchanging efficiency under a less number of component parts by a method wherein there are provided porous material filled in a first pipe passage through which fluid W flows, and fins set an outer circumferential surface of the first pipe passage in a second pipe passage arranged so as to outwardly enclose the first pipe passage in which second fluid to perform a heat exchanging operation through the pipe wall. CONSTITUTION:In a heat exchanger of an external combustion engine using a Starling cycle or a Vuilleumier cycle, gas is contacted with a porous sintered member 6 at its quite wide area when the gas passes through the porous sintered member 6 within inner pipes 2, so that heat is easily removed by the porous sintered member 6. Although heat transmitted to the porous sintered member 6 is radiated outside each of the inner pipes 2 and also inside an outer pipe 3, the heat is also radiated through each of helical fins 7. There are provided a plurality of inner pipes 2 and each of the inner pipes 2 is provided with some helical fins 7 to cause a contact area with cooling water flowing between each of the inner pipes 2 and the outer pipe 3 to become wide and then heat radiation can be easily carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器に関し、特
に、スターリングサイクルやヴィルミエサイクルを用い
る外燃機関に適用される熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly to a heat exchanger applied to an external combustion engine using a Stirling cycle or a Wilmier cycle.

【0002】[0002]

【従来の技術】従来、スターリングサイクルやヴィルミ
エサイクルを用いる外燃機関の熱交換器には、シェル・
アンド・チューブ式を用いているものがある。そのシェ
ル・アンド・チューブ式は、多数の細径パイプを太径パ
イプ内に並列に配設し、細径パイプ内に気体を通し、細
径パイプの外側に冷却水を流して両流体間で熱交換を行
うものである。
2. Description of the Related Art Conventionally, shell-type heat exchangers for external combustion engines that use the Stirling cycle and the Wilmier cycle
Some use the and-tube method. The shell-and-tube type has a large number of small-diameter pipes arranged in parallel in a large-diameter pipe, gas is passed through the small-diameter pipe, and cooling water is caused to flow outside the small-diameter pipe. The heat is exchanged.

【0003】上記構造の熱交換器に於いて、細径パイプ
の径を細くして本数を増やすことにより、両流体同士の
管壁を介して接触する比表面積が大きくなるため、熱交
換効率を高めることができる。しかしながら、上記方式
の熱交換器では、構成部品点数が多くて製造工程が複雑
になるばかりでなく、多数のパイプを用いることからろ
う付け箇所が多いため、ろう付け部から気体が漏れた場
合、再処理が困難になる虞があり、製造コストが高くな
るという問題があった。
In the heat exchanger having the above structure, by reducing the diameter of the small-diameter pipes and increasing the number of the pipes, the specific surface area of the two fluids in contact with each other via the pipe wall becomes large, so that the heat exchange efficiency is improved. Can be increased. However, in the heat exchanger of the above method, not only is the manufacturing process complicated due to the large number of component parts, but since there are many brazing points due to the use of a large number of pipes, if gas leaks from the brazing part, There is a problem that the reprocessing may become difficult and the manufacturing cost may increase.

【0004】[0004]

【発明が解決しようとする課題】このような従来技術の
問題点に鑑み、本発明の主な目的は、少ない部品点数で
熱交換効率を高め得る熱交換器を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, a main object of the present invention is to provide a heat exchanger capable of enhancing heat exchange efficiency with a small number of parts.

【0005】[0005]

【課題を解決するための手段】このような目的は、本発
明によれば、第1の流体を通すための第1の管路と、前
記第1の管路の管壁を介して前記第1の流体との間で熱
交換を行う第2の流体を通すべく前記第1の管路を外囲
するように設けられた第2の管路とを有する熱交換器で
あって、前記第1の管路中に充填された多孔質体と、前
記第2の管路中であって前記第1の管路の管壁の外周面
に設けられたフィン状体とを有することを特徴とする熱
交換器を提供することにより達成される。特に、前記フ
ィン状体が、半径方向外向きの外向フランジ状のフィン
からなり、または、前記第2の流体を前記第1の管路の
管壁の回りをらせん状に流すように前記第1の管路の管
壁の外周面にらせん状に形成されていると良い。あるい
は、第1の流体を通すための第1の管路と、前記第1の
管路の管壁を介して前記第1の流体との間で熱交換を行
う第2の流体を通すべく前記第1の管路を外囲するよう
に設けられた第2の管路とを有する熱交換器であって、
前記第1の管路中に充填された多孔質体と、前記第2の
管路中であって前記第1の管路の管壁の外周面に設けら
れた円筒状の多孔質体とを有することを特徴とする熱交
換器であると良い。
According to the present invention, it is an object of the present invention to provide a first conduit for passing a first fluid and the first wall through a wall of the first conduit. A second conduit provided so as to surround the first conduit for passing a second fluid that exchanges heat with a first fluid, the heat exchanger comprising: A porous body filled in the first conduit, and a fin-shaped body provided in the outer peripheral surface of the pipe wall of the first conduit in the second conduit. This is achieved by providing a heat exchanger that In particular, the fins consist of radially outward facing flange-shaped fins, or the first fluid is arranged to spirally flow the second fluid around the tube wall of the first conduit. It is preferable that the outer peripheral surface of the pipe wall of the pipe is formed in a spiral shape. Alternatively, the first fluid passage for passing the first fluid and the second fluid for exchanging heat between the first fluid through the tube wall of the first fluid passage may be passed. A heat exchanger having a second conduit provided so as to surround the first conduit,
A porous body filled in the first pipeline, and a cylindrical porous body provided in the second pipeline and on the outer peripheral surface of the pipe wall of the first pipeline. A heat exchanger characterized by having.

【0006】[0006]

【作用】このようにすれば、第1の管路内を第1の流体
が通過する際に多孔質体内を通過することから、接触面
積の広い多孔質体との接触により、気体と多孔質体との
間の熱交換が容易に行われる。その多孔質体に伝わった
熱は、第1の管路の管壁に伝導し、その外周面に設けら
れたフィン状体や多孔質体を介することにより、第2の
流体との大きな接触面積を確保しつつ第2の管路内に放
熱される。
According to this structure, since the first fluid passes through the porous body when passing through the first conduit, the gas and the porous body are contacted with the porous body having a large contact area. Heat exchange with the body is facilitated. The heat transmitted to the porous body is conducted to the tube wall of the first pipeline, and through the fin-shaped body or the porous body provided on the outer peripheral surface thereof, a large contact area with the second fluid is obtained. The heat is radiated into the second conduit while ensuring the heat dissipation.

【0007】[0007]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0008】図1は、本発明が適用されたスターリング
サイクルやヴィルミエサイクルを用いる外燃機関の熱交
換器1の縦断面図であり、図2は図1の矢印II線から見
た要部破断断面図である。図1及び図2に示されるよう
に、本熱交換器1は、第1の管路を形成する内側パイプ
2を互いに並列に複数本(図では5本)設け、それら内
側パイプ2の管壁の外側に第2の管路を形成するべくそ
れら内側パイプ2をまとめて外囲する外側パイプ3とを
有している。なお、各パイプ2・3の軸線方向長さは同
一にされている。
FIG. 1 is a vertical cross-sectional view of a heat exchanger 1 of an external combustion engine using a Stirling cycle or a Vilmier cycle to which the present invention is applied, and FIG. 2 is a main part viewed from an arrow II line in FIG. FIG. As shown in FIGS. 1 and 2, the present heat exchanger 1 is provided with a plurality of inner pipes 2 (five in the figure) that form a first pipe line in parallel with each other, and the pipe walls of the inner pipes 2 are arranged. And an outer pipe 3 which collectively surrounds the inner pipes 2 so as to form a second conduit on the outer side. The axial lengths of the pipes 2 and 3 are the same.

【0009】外側パイプ3の軸線方向両開口端面には、
各内側パイプ2を除いて閉塞するように形成された板状
の蓋体4がそれぞれ固着されている。また、外側パイプ
3の管壁の図1に於ける上端部に冷却水入口パイプ5a
が固着され、外側パイプ3の管壁の図1に於ける下端部
に冷却水出口パイプ5bが固着されている。
On both end faces of the outer pipe 3 in the axial direction,
Plate-shaped lid bodies 4 formed so as to be closed except for the inner pipes 2 are fixed. Further, the cooling water inlet pipe 5a is provided at the upper end portion of the pipe wall of the outer pipe 3 in FIG.
The cooling water outlet pipe 5b is fixed to the lower end portion of the pipe wall of the outer pipe 3 in FIG.

【0010】内側パイプ2内には多孔質体としての円柱
状の多孔質焼結体6が挿入されて充填状態にて固定され
ている。この多孔質焼結体6は、例えば銅などの金属の
切り粉や粉体などのコア材を拡散接合またはろう付けな
どにより一体的に接合して固形化して形成したものであ
って良く、また、SUSや銅などの線材を編み込んだも
のをプレス成形などにより押し固めたものであって良
い。また材質は、金属に限ることなく例えばセラミック
スであっても良い。そして、内側パイプ2の管壁の外周
面には、らせん状に巻回されて固着されたフィン状体と
してのらせん状フィン7が設けられている。なお、冷却
水の流れを促進する方向にらせんを巻くように形成する
と、冷却水が滞留せずに円滑に流れ得る。
A cylindrical porous sintered body 6 as a porous body is inserted into the inner pipe 2 and fixed in a filled state. The porous sintered body 6 may be formed by solidifying core materials such as cutting powder or powder of metal such as copper integrally bonded by diffusion bonding or brazing. It is also possible to use a material in which a wire material such as SUS or copper is woven and then press-solidified. Further, the material is not limited to metal and may be ceramics, for example. Then, on the outer peripheral surface of the tube wall of the inner pipe 2, a spiral fin 7 is provided as a fin-shaped body that is spirally wound and fixed. In addition, when the spiral water is formed so as to be wound in a direction that promotes the flow of the cooling water, the cooling water can smoothly flow without staying.

【0011】このようにして構成された熱交換器1にあ
っては、図示されない高温室側から流れてくる第1の流
体としてのガスが、各内側パイプ2内を図1に於ける上
方から下方に向けて通り抜けるようにされている。その
ガスと熱交換を行う第2の流体としての冷却水が、冷却
水入口パイプ5aから内側パイプ2と外側パイプ3との
間に流入し、冷却水出口パイプ5bから流出するように
なっている。
In the heat exchanger 1 thus constructed, the gas as the first fluid flowing from the high temperature chamber side (not shown) flows through the inside pipes 2 from above in FIG. It is designed to pass through downward. Cooling water as a second fluid that exchanges heat with the gas flows in from the cooling water inlet pipe 5a between the inner pipe 2 and the outer pipe 3 and flows out from the cooling water outlet pipe 5b. .

【0012】ガスは、多孔質焼結体6を通過する際に、
極めて広い面積にて多孔質焼結体6と接触することか
ら、多孔質焼結体6により熱を容易に奪われる。多孔質
焼結体6に伝わった熱は、各内側パイプ2の管壁を介し
て、各内側パイプ2の外部であって外側パイプ3の内側
に放熱されるが、本実施例では各らせん状フィン7を介
しても放熱されることになる。実施例のように内側パイ
プ2を複数本設け、かつそれぞれにらせん状フィン7を
設けることにより、各内側パイプ2と外側パイプ3との
間を通る冷却水との接触面積が広く、放熱が容易に行わ
れる。
When the gas passes through the porous sintered body 6,
Since it comes into contact with the porous sintered body 6 in an extremely wide area, the porous sintered body 6 easily removes heat. The heat transmitted to the porous sintered body 6 is radiated to the outside of each inner pipe 2 and the inside of the outer pipe 3 via the tube wall of each inner pipe 2, but in this embodiment, each spiral Heat is also dissipated through the fins 7. By providing a plurality of inner pipes 2 and providing spiral fins 7 on each of them as in the embodiment, the contact area with the cooling water passing between each inner pipe 2 and the outer pipe 3 is wide, and heat dissipation is easy. To be done.

【0013】このように、ガスを多孔質焼結体6に通す
ことから、従来例で示したシェル・アンド・チューブ式
に於ける細径パイプに対応する内側パイプ2の径を大き
くすることができ、パイプ数も減少することができると
共に、ガスの流入口と流出口との温度差が大きくなり、
熱交換率を向上できた。また、軸線方向について複数枚
のフィンを形成するらせん状フィン7を設けていること
により、冷却水との接触面積が広く、より一層熱交換効
率を向上し得る。なお、本実施例では、らせん状フィン
7を各内側パイプ2の外周面にらせん状に巻き付けるよ
うにして設けたが、内側パイプ2の外周面に設けるフィ
ンは、図示のらせん状のものに限るものではなく、外向
フランジ状フィンを軸線方向について互いに間隔をおい
て複数並設したものであっても良い。さらに、内側パイ
プ2の本数も、図示の5本に限るものではなく、1本で
あっても良く、また2本以上の任意の数であって良い。
Since the gas is passed through the porous sintered body 6 in this manner, the diameter of the inner pipe 2 corresponding to the small diameter pipe in the shell-and-tube type shown in the conventional example can be increased. Yes, the number of pipes can be reduced, and the temperature difference between the gas inlet and outlet becomes large,
The heat exchange rate could be improved. Further, by providing the spiral fins 7 that form a plurality of fins in the axial direction, the contact area with the cooling water is wide and the heat exchange efficiency can be further improved. In this embodiment, the spiral fins 7 are provided so as to be spirally wound around the outer peripheral surface of each inner pipe 2, but the fins provided on the outer peripheral surface of the inner pipe 2 are not limited to the illustrated spiral ones. Alternatively, a plurality of outward flange-shaped fins may be arranged side by side in the axial direction at intervals. Further, the number of the inner pipes 2 is not limited to five as shown in the figure, and may be one or any number of two or more.

【0014】図3は、第2の実施例を示す図1に対応す
る図であり、図4は図3の矢印IV線から見た要部破断断
面図であり、前記実施例と同様の部分については同一の
符号を付してその詳しい説明を省略する。この第2の実
施例では、前記実施例のらせん状フィン7の替わりに、
円筒状の多孔質焼結体8が各内側パイプ2の外周面に固
着されている。この多孔質焼結体8も前記実施例の多孔
質焼結体6と同様の材質からなるものであって良い。
FIG. 3 is a view corresponding to FIG. 1 showing a second embodiment, and FIG. 4 is a fragmentary sectional view taken along the line IV in FIG. 3, showing a portion similar to the above embodiment. Are denoted by the same reference numerals, and detailed description thereof will be omitted. In this second embodiment, instead of the spiral fin 7 of the previous embodiment,
A cylindrical porous sintered body 8 is fixed to the outer peripheral surface of each inner pipe 2. This porous sintered body 8 may also be made of the same material as the porous sintered body 6 of the above embodiment.

【0015】第2の実施例では、ガス及び冷却水の流れ
方向は前記実施例と同様であるが、冷却水の一部が多孔
質焼結体8内を通過することになる。従って、内側パイ
プ2の管壁から放熱される熱が多孔質焼結体8を介して
放熱されるため、冷却水との接触面積が広くなり、前記
実施例と同様の熱交換効果に加えて、放熱部を小さくし
得る効果がある。なお、この第2の実施例に於ける内側
パイプ2の本数も前記実施例と同様であって良い。
In the second embodiment, the flow directions of the gas and the cooling water are the same as those in the above embodiments, but part of the cooling water passes through the porous sintered body 8. Therefore, the heat radiated from the tube wall of the inner pipe 2 is radiated through the porous sintered body 8, so that the contact area with the cooling water is widened and, in addition to the heat exchange effect similar to that of the above-described embodiment, There is an effect that the heat dissipation portion can be made small. The number of the inner pipes 2 in the second embodiment may be the same as that in the above embodiment.

【0016】図5は、第3の実施例を示す図1に対応す
る図であり、図6は図5の矢印VI線から見た要部破断断
面図であり、前記実施例と同様の部分については同一の
符号を付してその詳しい説明を省略する。この第3の実
施例では、外側パイプ3の内部に内側パイプ9が1本の
み設けられている。この内側パイプ9の管壁の外周面に
らせん状フィン10が設けられている。このらせん状フ
ィン10は、内側パイプ2の外周面から外側パイプ3の
内周面に至るまで半径方向外向きに延出しており、内側
パイプ9の外周を回りながら冷却水入口パイプ5a近傍
から冷却水出口パイプ5b近傍に至るらせん状の流路を
形成している。なお、そのらせんの巻き方向は、冷却水
を冷却水入口パイプ5aから冷却水出口パイプ5bに向
けて流す向きである。
FIG. 5 is a view corresponding to FIG. 1 showing a third embodiment, and FIG. 6 is a fragmentary sectional view taken along the line VI in FIG. 5, showing a portion similar to the above embodiment. Are denoted by the same reference numerals, and detailed description thereof will be omitted. In the third embodiment, only one inner pipe 9 is provided inside the outer pipe 3. A spiral fin 10 is provided on the outer peripheral surface of the pipe wall of the inner pipe 9. The spiral fin 10 extends outward in the radial direction from the outer peripheral surface of the inner pipe 2 to the inner peripheral surface of the outer pipe 3, and cools from the vicinity of the cooling water inlet pipe 5 a while rotating around the outer periphery of the inner pipe 9. A spiral flow path reaching the vicinity of the water outlet pipe 5b is formed. The spiral winding direction is the direction in which the cooling water flows from the cooling water inlet pipe 5a toward the cooling water outlet pipe 5b.

【0017】この第3の実施例でもガス及び冷却水の流
れ方向は前記実施例と同様であるが、らせん状フィン1
0により内側パイプ9の外周をらせん状に冷却水が流れ
るようになり、内側パイプ9の管壁及びらせん状フィン
10との接触時間が長くなるように、冷却水を効率良く
流すことができる。従って、前記第1の実施例と同様の
熱交換効果に加えて、冷却水の熱交換に寄与しない部分
を減少し得る。
The flow direction of gas and cooling water in this third embodiment is the same as that in the previous embodiment, but the spiral fin 1 is used.
When 0, the cooling water flows spirally around the inner pipe 9, and the cooling water can efficiently flow so that the contact time with the wall of the inner pipe 9 and the spiral fin 10 becomes long. Therefore, in addition to the heat exchange effect similar to that of the first embodiment, the portion that does not contribute to the heat exchange of the cooling water can be reduced.

【0018】[0018]

【発明の効果】このように本発明によれば、第1の流体
を接触面積の広い多孔質体内を通過させて気体と多孔質
体との熱交換を行わせると共に、第1の管路の管壁の外
周面にフィン状体や多孔質体を設けて第2の流体との熱
交換を行うことから、第2の流体に対して大きな接触面
積を確保でき、熱交換効率を向上し得る。また、従来の
シェル・アンド・チューブ式に比して、多数の細径パイ
プを必要とせずに熱交換効率を向上し得ることから、構
成部品点数を減少できるばかりでなく、ろう付け箇所の
リーク検査が簡便になり、製造工程を簡略化して製造コ
ストを低廉化し得る。
As described above, according to the present invention, the first fluid is allowed to pass through the porous body having a large contact area to cause heat exchange between the gas and the porous body, and the first conduit Since a fin-shaped body or a porous body is provided on the outer peripheral surface of the pipe wall to perform heat exchange with the second fluid, a large contact area with the second fluid can be secured and heat exchange efficiency can be improved. . In addition, compared to the conventional shell-and-tube type, heat exchange efficiency can be improved without the need for a large number of small-diameter pipes, so not only can the number of constituent parts be reduced, but leakage at brazing points The inspection can be simplified, the manufacturing process can be simplified, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された外燃機関の熱交換器の縦断
面図。
FIG. 1 is a vertical sectional view of a heat exchanger of an external combustion engine to which the present invention is applied.

【図2】図1の矢印II線から見た要部破断断面図。FIG. 2 is a fragmentary sectional view taken along the line II in FIG.

【図3】第2の実施例を示す図1と同様の図。FIG. 3 is a view similar to FIG. 1 showing a second embodiment.

【図4】図3の矢印IV線から見た要部破断断面図。FIG. 4 is a fragmentary sectional view taken along the line IV in FIG.

【図5】第3の実施例を示す図1と同様の図。FIG. 5 is a view similar to FIG. 1 showing a third embodiment.

【図6】図5の矢印VI線から見た要部破断断面図。6 is a fragmentary sectional view taken along the line VI in FIG.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 内側パイプ 3 外側パイプ 4 蓋体 5a 冷却水入口パイプ 5b 冷却水出口パイプ 6 多孔質焼結体 7 環状フィン 8 多孔質焼結体 9 内側パイプ 10 らせん状フィン 1 Heat Exchanger 2 Inner Pipe 3 Outer Pipe 4 Lid 5a Cooling Water Inlet Pipe 5b Cooling Water Outlet Pipe 6 Porous Sintered Body 7 Annular Fin 8 Porous Sintered Body 9 Inner Pipe 10 Spiral Fin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の流体を通すための第1の管路と、
前記第1の管路の管壁を介して前記第1の流体との間で
熱交換を行う第2の流体を通すべく前記第1の管路を外
囲するように設けられた第2の管路とを有する熱交換器
であって、 前記第1の管路中に充填された多孔質体と、前記第2の
管路中であって前記第1の管路の管壁の外周面に設けら
れたフィン状体とを有することを特徴とする熱交換器。
1. A first conduit for passing a first fluid;
A second pipe provided so as to surround the first pipe line so as to pass a second fluid that exchanges heat with the first fluid via the pipe wall of the first pipe line. A heat exchanger having a pipe line, wherein a porous body filled in the first pipe line and an outer peripheral surface of a pipe wall of the first pipe line in the second pipe line. And a fin-shaped body provided on the heat exchanger.
【請求項2】 前記フィン状体が、半径方向外向きの外
向フランジ状のフィンからなることを特徴とする請求項
1に記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the fin-shaped body is formed of an outward flange-shaped fin that is outward in the radial direction.
【請求項3】 前記フィン状体が、前記第2の流体を前
記第1の管路の管壁の回りをらせん状に流すように前記
第1の管路の管壁の外周面にらせん状に形成されている
ことを特徴とする請求項1に記載の熱交換器。
3. The fin-shaped body has a spiral shape on the outer peripheral surface of the pipe wall of the first conduit so that the second fluid flows in a spiral shape around the pipe wall of the first conduit. The heat exchanger according to claim 1, wherein the heat exchanger is formed in
【請求項4】 第1の流体を通すための第1の管路と、
前記第1の管路の管壁を介して前記第1の流体との間で
熱交換を行う第2の流体を通すべく前記第1の管路を外
囲するように設けられた第2の管路とを有する熱交換器
であって、 前記第1の管路中に充填された多孔質体と、前記第2の
管路中であって前記第1の管路の管壁の外周面に設けら
れた円筒状の多孔質体とを有することを特徴とする熱交
換器。
4. A first conduit for passing a first fluid,
A second pipe provided so as to surround the first pipe line so as to pass a second fluid that exchanges heat with the first fluid via the pipe wall of the first pipe line. A heat exchanger having a pipe line, wherein a porous body filled in the first pipe line and an outer peripheral surface of a pipe wall of the first pipe line in the second pipe line. And a cylindrical porous body provided in the heat exchanger.
JP11231194A 1994-04-26 1994-04-26 Heat exchanger Pending JPH07294163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231194A JPH07294163A (en) 1994-04-26 1994-04-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231194A JPH07294163A (en) 1994-04-26 1994-04-26 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH07294163A true JPH07294163A (en) 1995-11-10

Family

ID=14583505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231194A Pending JPH07294163A (en) 1994-04-26 1994-04-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH07294163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111773A2 (en) * 2005-04-21 2006-10-26 Thermal Energy Systems Ltd Heat pump
JP2010230211A (en) * 2009-03-26 2010-10-14 Earth Technica:Kk Heating/cooling device
CN114136133A (en) * 2021-12-29 2022-03-04 思安新能源股份有限公司 Multi-channel heat storage device and using method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111773A2 (en) * 2005-04-21 2006-10-26 Thermal Energy Systems Ltd Heat pump
WO2006111773A3 (en) * 2005-04-21 2007-01-18 Thermal Energy Systems Ltd Heat pump
JP2010230211A (en) * 2009-03-26 2010-10-14 Earth Technica:Kk Heating/cooling device
CN114136133A (en) * 2021-12-29 2022-03-04 思安新能源股份有限公司 Multi-channel heat storage device and using method thereof
CN114136133B (en) * 2021-12-29 2024-05-17 思安新能源股份有限公司 Multi-channel heat storage device and application method thereof

Similar Documents

Publication Publication Date Title
JP4878287B2 (en) Heat exchanger
JP2000051180A (en) Coil system of mr device
EP2913616A1 (en) Heat exchanger
US4108241A (en) Heat exchanger and method of making
US2707096A (en) Heat exchanger
JP2008501099A (en) Method and apparatus for forming a heat exchanger
JPH07294163A (en) Heat exchanger
US2502675A (en) Cleanable type heat exchanger
US4245469A (en) Heat exchanger and method of making
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP4813208B2 (en) Stirling engine
JP2000346569A (en) Heat exchanger
JPS5825556A (en) Starring engine with bayonet heater
JP2007271194A (en) Heat exchanger
US4199937A (en) Heat exchanger and method of making
JPH0926281A (en) Heat exchanger
JPS5855335Y2 (en) Double pipe heat exchanger for liquids
EP0084701A1 (en) Heat exchange element
JPH0587754B2 (en)
JPH09229579A (en) Heat transfer pipe and multitubular heat exchanger with the heat transfer pipe
JPH11118370A (en) Double tube type heat exchanger
JPH064222Y2 (en) Heat exchanger
JPH1096598A (en) Aluminum double tube type oil cooler
JP2005299940A (en) Heat exchanger
JPH0238233Y2 (en)