JPS6118026B2 - - Google Patents

Info

Publication number
JPS6118026B2
JPS6118026B2 JP53080210A JP8021078A JPS6118026B2 JP S6118026 B2 JPS6118026 B2 JP S6118026B2 JP 53080210 A JP53080210 A JP 53080210A JP 8021078 A JP8021078 A JP 8021078A JP S6118026 B2 JPS6118026 B2 JP S6118026B2
Authority
JP
Japan
Prior art keywords
swash plate
shoe
alloy
compressor
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53080210A
Other languages
Japanese (ja)
Other versions
JPS557945A (en
Inventor
Shozo Nakayama
Kimio Kato
Takamitsu Mukai
Tomoo Fujii
Hiroya Kono
Tatsuhiko Fukuoka
Kenichiro Futamura
Eiji Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyoda Jidoshokki Seisakusho KK filed Critical Taiho Kogyo Co Ltd
Priority to JP8021078A priority Critical patent/JPS557945A/en
Publication of JPS557945A publication Critical patent/JPS557945A/en
Publication of JPS6118026B2 publication Critical patent/JPS6118026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • F04B27/0886Piston shoes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コンプレツサに係り、特にカークー
ラー用として最近多く使用されるようになつた斜
板式コンプレツサに関するもので、その主たる目
的は従来のこの種コンプレツサよりもより高性能
で寿命の長いコンプレツサを提供することにあ
る。 斜板式コンプレツサは、一般に第1図に示され
る如く、斜板5にそれを跨ぐ状態で係留されたピ
ストン3を備え、斜板5の回転に伴うピストン3
の往復動によつて冷媒ガス等の被圧縮媒体を吸入
し、圧縮するものである。斜板5はシリンダブロ
ツク1によつて回転可能に支持されたシヤフト4
に固定され、ピストン3はシユー6およびボール
7を介して斜板5に係留される。シヤフト4およ
び斜板5が一体的に回転させられる際、シユー6
は斜板5の摺動面上を摺動しつつ斜板5の外周部
の軸方向における運動をボール7を介してピスト
ン3に伝達するのである。そして、このような基
本的な構造において、冷凍回路内を循環しコンプ
レツサに帰環してきた冷媒ガス等の被圧縮媒体を
ピストン3にてシリンダボア2内で高圧に圧縮し
てコンデンサ(図示しない)に送り出し、そこで
冷却して液化した後、エバポレータに送つて蒸発
させ周囲から蒸発潜熱を奪つて室内の空気を冷や
し、一方奪つた熱は前記コンデンサを通過中に空
気中(大気中)へ放出するサイクルを繰返し行な
わさせているのである。 しかして、このような斜板式コンプレツサがカ
ークーラー用とし用いられる時の作動条件は極め
て過酷である。つまり、駆動源がガソリンあるい
はジーゼル等の内燃機関であり、且つコンプレツ
サの小型化、軽量化の目的及びコンプレツサ能力
から内燃機関の回転数とほぼ同じ回転数を有する
構造になつているからである。それ故、斜板式コ
ンプレツサの回転は内燃機関のアイドリング時の
回転数である約500rpmから高速走行時或は急加
速時等の約6000rpmの条件にさらされるのであ
る。 また、斜板式コンプレツサのみに限られる問題
ではないが、近年車輛の軽量化等にともない、コ
ンプレツサ自体の小型・軽量化が希求されるに至
り、コンプレツサ内のオイルポンプが取り外さ
れ、これに加えてその高性能化を図るために潤滑
オイルが減少せしめられることなどによつてコン
プレツサ内の摺動部に摩擦磨耗が惹起され易くな
つている。 更に、近年エンジンルーム内に取りつけられた
各種装置類、例えば排気ガス対策装置、燃料消費
低減のための装置の設置にともなうエンジンルー
ムの高温化が、コンプレツサ内の潤滑オイルに与
える悪影響もみのがせなくなつている。 これらの条件下で使用される斜板式コンプレツ
サにおいて、最も上記条件の悪影響を受ける部分
は第1図の斜板5とシユー6との摺動部である。
けだし、摺動速度がエンジンのアイドリング状態
では約2〜3m/sec、最高回転時の約、
6000rpmでは20〜25m/secとなり、通常走行時
でも約7〜15m/secという極めて高速でそれら
が摺動することとなるからである。またこのよう
な高速の摺動作用に加えて、被圧縮媒体、例えば
冷媒を圧縮するためにシユーには荷重が作用し、
その大きさは60〜130Kg/cm2であり、摺動速度お
よび圧力が共に最大の組合せになることはまれで
あるが、PV値(圧力をPKg/cm2、速度をVm/
sec)が2000を越えることは往々にして有り得
る。しかも、これが回転数に関連してくり返し行
なわれる。この繰返しによるシユーの受ける荷重
は特に高回転になると衝撃的荷重になり、このよ
うな衝撃荷重を受けながら、しかも高速摺動する
という極めて過酷な条件が斜板とシユーとの摺動
部には生じるのである。 また斜板とシユーとの摺動状況を潤滑面から見
ると、前記した如きオイルポンプの除去にともな
い摺動部に供給される潤滑油は冷媒ガスと混合に
よりミスト状態となつて供給されるだけとなる。
というのは、オイルポンプを除去された斜板式コ
ンプレツサの潤滑は一般にオイルを含む冷媒ガス
等を、コンプレツサ内の各摺動部を巧に巡回させ
ることによつて潤滑する方法をとるが、この場合
オイル量と冷房能力とは反比例する関係にあるた
め、斜板式コンプレツサの冷房能力を高める有効
な手段としてオイル量を減らす方向がとられてい
るからである。このことは別の面からみれば斜板
とシユーの摺動部の寿命に最も影響を及ぼすのは
潤滑条件であり、特に潤滑オイル量が最も影響を
及ぼす。それ故、これら相反する関係の中で特に
斜板式コンプレツサの設計に当つて考慮されるの
は、最も過酷な摺動条件に適合できる斜板とシユ
ーのそれぞれの材質である。 さらに斜板とシユーとの摺動は、潤滑のための
オイルが充分に供給されたとしても充分な潤滑効
果の得られにくいスラスト摺動であるから、摺動
面は常に境界潤滑下におかれ、若しくはそこに固
体接触が生じているのであり、またカークーラー
用斜板式コンプレツサがその使用上必然的な非定
常的回転運動を行なうために生じる現象として、
斜板とシユーとの摺動面には始動から数十秒、長
い時には数分間、潤滑油が供給されない状態が生
じ、それ故この間は斜板とシユーとは全くの無潤
滑下におかれ、固体接触の状況で運転されること
となる。このような状態は冷媒が管路から洩れて
しまつて冷凍サイクル内に封じ込められている冷
媒が少なくなつた場合や、エバポレータに取り付
けられた蒸発圧力調整装置の作動によつてコンプ
レツサに戻される冷媒量が減少せしめられた場合
などにも同様に惹起されるのである。 従つて、これまでの斜板式コンプレツサにおけ
る各種トラブルの中で最も多いのは、上記した始
動時からの無潤滑下で生じる焼付きであり、また
この無潤滑下で生じた磨耗が致命的欠陥になつて
その後に焼付きを起こすことであつた。 従来より上記のような潤滑条件下でも耐える材
料として、かつ上記のような高面圧、衝撃荷重に
耐える材料として、先ず斜板としては機械的な剛
性、疲労強度、耐摩耗性を持つ構造用合金鋼のニ
ツケルクロム鋼、ニツケルモリブデン鋼、クロム
モリブデン鋼、球状黒鉛鋳鉄等が用いられ、かつ
表面層は焼入れをして用いられていた。また、ボ
ールとしては主に高荷重に耐えるためにやはり高
炭素クロム鋼のようなものが用いられていた。そ
して、シユー材としては、アルジル合金、リン青
銅、銅−鉛−錫合金、黄銅、高力黄銅合金、青銅
合金、アルミニウム青銅合金、バビツトメタル、
含油軸受合金等が考えられていた。 しかし、カークーラー用斜板式コンプレツサ特
有の前述の如き極めて過酷な運転条件に対し、こ
れま知られている材料ではどれも充分満足し得る
ものではなかつたのであり、またこのような材料
の中にあつて、先に本出願人らは銅−鉛−錫系合
金粉末を鋼板上に焼結したバイメタル材が唯一の
長寿命化可能な材料であることを見出し、特願昭
49−109856号として出願したが、この出願に係る
材料であつても、より小型化、高性能化の要求さ
れる斜板式コンプレツサには必ずしも充分とは言
えず、更に厳格な条件下にあつてはシユーの焼付
が少なからず生じていたのであり、それ故更に焼
付の生じ難い耐磨耗性に優れる等の従来よりもよ
り以上に向上せしめられた特性を有する寿命の長
い材料の開発が望まれているのである。 ここにおいて、上記の如き事情に鑑みて、本発
明者らは種々の研究開発を行つた結果、摺速2〜
25m/secのくり返し運転並びに面圧130〜140
Kl/cm2のくり返し衝撃荷重に耐え、また潤滑オイ
ルの供給が極めて微少で、冷媒ガスと共にミスト
状で供給され、かつ始動から数秒ないし数分間は
無潤滑の条件で摺動しても充分耐え得る優れた合
金材料を見出し、これを斜板式コンプレツサ、特
にカークーラー用のシユー材料に適用することに
より本発明を完了するに至つたものである。 すなわち、本発明は特に熱伝導度をあまり低下
させない範囲で強化され、且つ特に高温下での硬
度の低下が少なく、しかも良好な摺動特性を有す
る銅合金からなる、前述した従来の問題をことご
とく解消せしめたシユーを提供するものであつ
て、その要旨とするところは、前述の如き斜板式
コンプレツサにおいて、シユー材料として、銅
(Cu)を主体とし、これに周期律表第a族元素
及び第a族元素からなる群から選ばれた1種ま
たは2種以上の元素を合計量で3%(重量基準、
以下同じ)を越えない割合にて含有せしめ、更に
5%未満(零を含まない)の錫(Sn)を含有せ
しめたCu合金を用いることにある。 かゝる本発明において用いられる第a族、第
a族元素は、主として晶出、析出現象による析
出物をCu母材(マトリツクス)中に分散せしめ
てマトリツクスの強化を図るものであつて、これ
ら元素の少なくとも1種が含有せしめられること
によつてCuの有効な強化が行なわれ、しかも200
℃以上の高温下でも硬さが低下しない耐熱性が付
与されると共に、その耐摩耗性も改善されるので
ある。特に、かゝる第a族及び第a族元素の
なかでも最も好適に使用さるのはクロム(Cr)、
チタン(Ti)、ジルコニウム(Zr)の1種または
2種以上の組合せであり、その中でCrは添加に
よつて析出硬化を惹起して合金の強度を大にする
ことができる。しかしながら、Crの過剰の添加
は合金全体を脆くするところから、この析出硬化
の際の強度向上のために必要とされるCrの適切
な配合割合は3%以下である。また、Tiは熱処
理によつて合金を強化しうる作用を為し、またそ
の析出によつて合金の硬度を大にすることが出来
る。そしてこの析出硬化の際の強度向上のために
必要とされるTiの適切な配合割合は3%以下で
ある。さらに、Zrは他の合金元素と共に金属間化
合物を生成して合金を強化することができ、且つ
かかる金属間化合物による強化は金属間化合物の
組成中に入る元素を等量で別々に導入する場合よ
りも一層有効である。しかし、Zrの添加量が3%
を越えると急激な熱伝導性の低下を惹起するの
で、本発明にあつては3%を越えない範囲でZrの
添加量は適宜決定されることとなる。なお、かゝ
る例示によつて本発明に係る第a族並びに第
a族元素が上記3種のもののみに限定されるもの
ではなく、その他モルブデン、タングステンなど
も同様に使用出来、またかかる第a族、第a
族の元素が2種以上使用される場合には合計量で
も3%以内となるようにされる。合計量で3%を
越える割合の添加は、合金全体を脆化せしめる等
の問題を惹起することとなるからである。また、
添加量の下限は、これらの第a族、第a族の
元素の僅かの添加でも或程度の効果が認められる
ところから、一義的に限定することは困難である
が、一般的には単独で添加さる場合であつても2
種以上の元素が添加さる場合にあつても約0.1%
であり(合計量)、これによつて機械的強度の充
分な向上が達成される。さらに、これら第a族
及び第a族元素の1つまたは2つ以上が合計量
で0.3〜2%の範囲で添加せしめられることが、
本発明では最も好ましいのである。 また、上記第a族、a族の元素と共に、
Cuに添加されるSnは、Cuに固溶することによつ
てマトリツクスを強化することはもちろん、摺動
特性上は摩擦係数を低くし、かつこの摩擦係数は
高温になつても安定した低摩擦係数であつて、そ
の結果特に高温条況下での耐焼付性にすぐれた効
果を発揮するのである。しかし、かゝる添加され
るSnは上記の如くCuに固溶してしまうため、合
金の熱伝導性を低下させやすく、それ故その添加
範囲は限定される。この意味において、その添加
上限として5%が採用され、それ故Snは5%未
満の範囲で(勿論零は含まれない)適宜その添加
量が決定されるのであるり、またその好適な添加
量としては1〜3%が最も好ましいのである。な
お、Snの添加はまた鋳造性の改良にも有効であ
る。 従つて、本発明に従う、Cuを母材とし、これ
に前記第a族、第a族の元素並びにSnをそ
れぞれ添加した合金は、シユー素材として優れた
特性を持つ合金組成となつているのである。けだ
し、潤滑オイル量の少ない場合のカークーラー用
斜板式コンプレツサシユーとして最も問題になる
のはシユーの熱伝導度であり、そしてその熱伝導
度に最も影響を及ぼすのは添加元素であり、さら
に摩擦係数の大上が発熱の直接原因となるのであ
つて、それ故いかに少ない添加元素でマトリツク
スを強化し且つ摺動特性を向上させるかが高性能
カークーラー用斜板式コンプレツサシユーとして
更に良好に適応出来る否かのポイントとなつてい
るからである。そして、いわゆる通常運転時は比
較的少ないながらもある程度の潤滑オイルは供給
されるため、特にシユー材においては熱導性伝を
よくし、効果的に熱を放散させること及び高温下
で硬度の低下を少なくして組織変化を少なくする
ことがシユーの摺動特性を左右することとなる。
この意味において、第a族、第a族の元素と
共にSnをCuに添加することは、重要な意義を持
つものである。 また、高性能カークーラー用斜板式コンプレツ
サにおいて始動時の無潤滑状況が改善されること
により、それが短時間にて解消されるように設計
されることになつても、完全に解消させることは
難しく、またオイル量の減少、冷媒ガスの減少等
は通常運転時にもたまに起り、このような種々の
条件に対しても対応出来るシユーの材質としては
種々の性能が要求されるのである。 それ故、本発明に従う添加元素の選択と量と、
それによる強化度合、熱伝導性は充分に考慮され
る必要があり、最も適切と思われる組合せはCu
に第a族及び第a族から選ばれた少なくとも
1種の元素並びにSnをともに添加することが望
ましいのである。 特に、固溶元素を多くしすぎることによる害で
ある金属間化合物のための組織不均一と熱伝導性
の低下、マトリツクスの硬化しすぎによるもろさ
をなくすために、上記ような害をあまりともなわ
ないで強化出来る、本発明に従う析出による添加
元素を用いれば、焼付きにくく、且つ析出物によ
る耐摩耗性も期待でき、そして熱伝導性はあまり
低下させない範囲で可能となるのである。なお、
通常摺動材の選択には相手材の選択も重要であ
り、特に条件がきびしい場合は、相手材よりも限
定される。そのような中にあつて従来の摺動材は
相手材がCr鋼、Mn鋼等であれば比較的良好であ
るが、これが球状黒鉛鋳鉄となる摺動特性が悪く
相手材としては不適当となる。しかしながら、本
発明に係るCu合金からなるシユー材は相手材が
球状黒鉛鋳鉄であつても耐えることが確認されて
いる。 また、本発明者らの検討によれば、高性能カー
クーラー用斜板式コンプレツサに使用できるシユ
ー材として要求される熱伝導度は0.2cal/cm3
sec・℃以上であることが望ましく、更に
0.4cal/cm2・sec・℃以上であることがより好ま
しいものであり、且つその硬度にあつても300℃
の高温度下においてビツカース硬さ(Hv)80以
上の値を有することが望ましいことが明らかとな
つたが、本発明に係るCu合金はいずれもかゝる
望ましい熱伝導度並びに硬度を有するものであ
り、以て優れた効果を奏しているのである。 この結果、かくの如き本発明に係るCu合金に
は次のような効果を認めることが出来るのであ
る。すなわち、従来のシユー材料に比べ添加元素
の量が著しく少ないため、熱伝導性がよく、無潤
滑に近い状態が長くつづいても生じた摩擦熱を放
散しやすく、かつ高温になつてもシユー材の軟化
がなく、そのため焼付きに至りにくいのである。
また、本発明にあつては強化のための添加元素が
従来に比べて少ないことから、従来材料に比べて
充分な強化は一見果たされていないように考えら
れるが、従来材にあつては添加元素が20〜40%も
の多量であるための熱の放散が悪いことから生じ
る焼付きやすさを、多量のPbの添加によるなじ
み性、すべり性で解決しようとしていたため、本
発明での銅合金よりは常温下では多少優れている
が、全体としての強度は低下していたのであり、
これに対し本発明は添加元素量が少ないので、結
果的にさほど従来材と比して強度に差がないので
ある。しかも、特に高温下では、本発明での銅合
金は従来材よりも優れた値を示す。さらに、本発
明にあつては、高温下でも硬さの低下が少ない
Sn(固溶元素)の添加により、シユーが摩擦熱
等により高温になつてもマトリツクスの強度、硬
度は低下せず、極めて安定な状態になつているの
である。 なお、本発明のCu合金には、その他添加元素
としてニツケル(Ni)、鉄(Fe)、テルル(Te)、
リン(P)、アンチモン(Sb)、ヒ素(As)等を
小割合にて添加することが出来、それによつて主
に強度向上あるいはマトリツクスの微細化等の効
果があるが、いずれも添加効果に一長一短があ
り、Cr、Zr、Ti、Snに比べてやゝ性能が落ちる
ことが確かめられている。しかしある条件下では
使用に耐えることも確かめられている。 以下に、本発明の理解を更に容易にするため
に、本発明の具体例を示す。 まず、第1表に示す組成割合で鋳造法により試
料1〜5を得た。鋳造法としては、約1250℃で
Cu、合金元素(Cr、Zr、Ti、Sn)の順に添加す
る方法を採用し、そして得られた材料を偏析防止
のため約700℃、2Hrsの熱処理を行つてCu合金材
料を得た。 そして、得られたこれらの材料による実機試験
を行うために、それぞれ直径18mm、厚さ4.5mmに
加工を施してシユーを得た。また、このシユーに
は中心に直径約14mmのボールの一部が内接するよ
うに深さ約3mmの球状凹面が施してある。なお、
比較材として上記と同様の方法により、第2表に
示す合金組成の試料10〜17を作り、本発明に係る
Cu合金からシユーとの比較を行つた。 また、試料1〜5の常温時での最終加工時の硬
さはすべてHv100以上を有するものであつた。 さらに、得られた各試料の熱伝導度を測定し第
3表に示すが、試表より明らかなように、本発明
のCu合金からなる各試料は、いずれも優れた熱
伝導度を有している。
The present invention relates to a compressor, and in particular to a swash plate type compressor that has recently become widely used for car coolers.The main purpose of the present invention is to provide a compressor with higher performance and a longer lifespan than conventional compressors of this type. It's about doing. As shown in FIG. 1, the swash plate type compressor generally includes a piston 3 moored to a swash plate 5 in a state spanning the swash plate 5, and the piston 3 moves as the swash plate 5 rotates.
The reciprocating motion of the compressor draws in and compresses a medium to be compressed, such as refrigerant gas. The swash plate 5 is rotatably supported by a shaft 4 by a cylinder block 1.
The piston 3 is moored to the swash plate 5 via a shoe 6 and a ball 7. When the shaft 4 and the swash plate 5 are rotated together, the swash plate 5
While sliding on the sliding surface of the swash plate 5, the movement of the outer peripheral portion of the swash plate 5 in the axial direction is transmitted to the piston 3 via the balls 7. In this basic structure, the medium to be compressed, such as refrigerant gas, which has circulated within the refrigeration circuit and returned to the compressor, is compressed to high pressure within the cylinder bore 2 by the piston 3 and then transferred to the condenser (not shown). A cycle in which the air is sent out, cooled and liquefied there, and then sent to an evaporator where it evaporates and removes the latent heat of vaporization from the surroundings to cool the indoor air, while the removed heat is released into the air (atmosphere) while passing through the condenser. It is made to repeat. However, when such a swash plate type compressor is used for a car cooler, the operating conditions are extremely severe. That is, the driving source is an internal combustion engine such as gasoline or diesel, and the compressor is designed to have a rotational speed almost the same as that of the internal combustion engine for the purpose of reducing the size and weight of the compressor and the compressor capacity. Therefore, the rotation speed of the swash plate compressor is subject to conditions ranging from approximately 500 rpm, which is the rotational speed of the internal combustion engine when it is idling, to approximately 6000 rpm, such as when driving at high speeds or accelerating suddenly. Additionally, although this problem is not limited to swash plate type compressors, as vehicles have become lighter in recent years, compressors themselves have been required to be smaller and lighter. As the amount of lubricating oil is reduced in order to improve the performance of the compressor, friction and wear are becoming more likely to occur in the sliding parts within the compressor. Furthermore, the increase in temperature in the engine room due to the installation of various devices in the engine room in recent years, such as exhaust gas control devices and devices to reduce fuel consumption, has an adverse effect on the lubricating oil in the compressor. It's disappearing. In a swash plate type compressor used under these conditions, the part most adversely affected by the above conditions is the sliding portion between the swash plate 5 and the shoe 6 shown in FIG.
The sliding speed is approximately 2 to 3 m/sec when the engine is idling, and approximately at maximum rotation.
This is because at 6000 rpm, it is 20 to 25 m/sec, and even during normal running, they slide at extremely high speeds of about 7 to 15 m/sec. In addition to such high-speed sliding motion, a load acts on the shoe to compress the medium to be compressed, such as refrigerant.
Its size is 60 to 130 Kg/cm 2 , and although it is rare that both the sliding speed and pressure have the maximum combination, the PV value (pressure is PKg/cm 2 and speed is Vm/
sec) can often exceed 2000. Moreover, this is repeated in relation to the rotational speed. The load that the shoe receives from this repetition becomes an impact load, especially at high speeds, and the extremely harsh conditions of sliding at high speed while receiving such impact load are necessary for the sliding part between the swash plate and the shoe. It happens. Furthermore, when looking at the sliding condition between the swash plate and shoe from the lubrication perspective, with the removal of the oil pump as mentioned above, the lubricating oil supplied to the sliding parts is only supplied in the form of a mist by mixing with the refrigerant gas. becomes.
This is because a swash plate type compressor without an oil pump is generally lubricated by carefully circulating refrigerant gas containing oil around each sliding part within the compressor, but in this case. This is because the amount of oil and the cooling capacity are inversely proportional to each other, so reducing the amount of oil is an effective means of increasing the cooling capacity of the swash plate compressor. From another perspective, it is the lubrication conditions that have the most influence on the life of the sliding parts of the swash plate and the shoe, and in particular, the amount of lubricating oil has the most influence. Therefore, in the midst of these contradictory relationships, what is particularly considered when designing a swash plate type compressor is the material of each of the swash plate and shoe that can meet the harshest sliding conditions. Furthermore, the sliding motion between the swash plate and shoe is a thrust sliding motion in which it is difficult to obtain a sufficient lubrication effect even if a sufficient amount of oil is supplied, so the sliding surfaces must always be under boundary lubrication. , or there is solid contact there, and this is a phenomenon that occurs because the swash plate compressor for a car cooler performs unsteady rotational movement that is inevitable in its use.
Lubricating oil is not supplied to the sliding surfaces between the swash plate and the shoe for several tens of seconds or even several minutes after startup, so during this period, the swash plate and shoe are completely unlubricated. It will be operated under conditions of solid contact. This situation can occur when refrigerant leaks from the pipes and the amount of refrigerant confined in the refrigeration cycle decreases, or when the amount of refrigerant returned to the compressor is caused by the operation of the evaporation pressure regulating device attached to the evaporator. It is also caused when the Therefore, among the various troubles that have occurred in swash plate type compressors to date, the most common problem is the seizure that occurs without lubrication from the time of startup, and the wear that occurs without lubrication can become a fatal defect. This caused burn-in to occur over time. Traditionally, swash plates have been made of structural materials that have mechanical rigidity, fatigue strength, and wear resistance, as materials that can withstand the above-mentioned lubrication conditions, as well as materials that can withstand the high surface pressure and impact loads mentioned above. Alloy steels such as nickel chrome steel, nickel molybdenum steel, chrome molybdenum steel, and spheroidal graphite cast iron were used, and the surface layer was hardened. In addition, the ball was mainly made of high carbon chromium steel in order to withstand high loads. The shoe materials include Algyl alloy, phosphor bronze, copper-lead-tin alloy, brass, high-strength brass alloy, bronze alloy, aluminum bronze alloy, Babitt metal,
Oil-impregnated bearing alloys were considered. However, none of the materials known to date have been able to fully satisfy the aforementioned extremely harsh operating conditions unique to swash plate compressors for car coolers. The applicants previously discovered that a bimetallic material made by sintering copper-lead-tin alloy powder on a steel plate is the only material that can extend the lifespan, and filed a patent application.
No. 49-109856, but even the material related to this application is not necessarily sufficient for swash plate type compressors, which require smaller size and higher performance, and cannot be said to be sufficient for swash plate compressors that require smaller size and higher performance. Therefore, it is desired to develop a material with a long life that has properties that are even more improved than conventional ones, such as excellent wear resistance that prevents seizure from occurring. -ing In view of the above circumstances, the inventors of the present invention have conducted various research and development and have found that the sliding speed is 2 to 2.
25m/sec repeated operation and surface pressure 130~140
It can withstand repeated shock loads of Kl/cm 2 , and the supply of lubricating oil is extremely small, it is supplied in the form of a mist along with refrigerant gas, and it can withstand sliding without lubrication for several seconds to several minutes after startup. The present invention was completed by discovering an excellent alloy material and applying it to a sew material for swash plate type compressors, particularly car coolers. In other words, the present invention solves all of the problems of the conventional methods described above, by using a copper alloy that is strengthened to the extent that the thermal conductivity does not decrease too much, has little decrease in hardness especially at high temperatures, and has good sliding properties. The purpose of the present invention is to provide a swash plate compressor as described above, in which copper (Cu) is used as the main sew material, and elements from Group A of the periodic table and elements from Group A of the periodic table are used. The total amount of one or more elements selected from the group consisting of group A elements is 3% (by weight,
The purpose is to use a Cu alloy containing tin (Sn) in an amount not exceeding 5% (not including zero) and further containing less than 5% (not including zero) of tin (Sn). The Group A and Group A elements used in the present invention are mainly used to disperse precipitates caused by crystallization and precipitation phenomena in the Cu base material (matrix) to strengthen the matrix. By containing at least one kind of element, Cu is effectively strengthened, and moreover, 200
It not only provides heat resistance that does not reduce hardness even at high temperatures of 0.degree. C. or higher, but also improves its wear resistance. In particular, among the Group A and Group A elements, chromium (Cr) is most preferably used.
It is one or a combination of two or more of titanium (Ti) and zirconium (Zr), and the addition of Cr can increase the strength of the alloy by causing precipitation hardening. However, since excessive addition of Cr makes the entire alloy brittle, the appropriate blending ratio of Cr required to improve the strength during precipitation hardening is 3% or less. Furthermore, Ti has the effect of strengthening the alloy through heat treatment, and its precipitation can increase the hardness of the alloy. The appropriate proportion of Ti required to improve the strength during precipitation hardening is 3% or less. Furthermore, Zr can form intermetallic compounds with other alloying elements to strengthen the alloy, and such strengthening by intermetallic compounds can be achieved by introducing the elements separately in equal amounts into the composition of the intermetallic compound. It is even more effective than However, the amount of Zr added is 3%
If the amount exceeds 3%, the thermal conductivity will drop sharply, so in the present invention, the amount of Zr added is appropriately determined within a range not exceeding 3%. By the way, these examples do not mean that the group a and group a elements according to the present invention are limited to the above three types, and other elements such as molybdenum and tungsten can be used as well, and such elements can also be used. group a, group a
When two or more elements of the same group are used, the total amount should be within 3%. This is because addition of more than 3% in total may cause problems such as embrittlement of the entire alloy. Also,
Although it is difficult to unambiguously determine the lower limit of the amount of these Group A and Group A elements, since even a small amount of these elements can have some effect, it is generally Even if added, 2
Approximately 0.1% even if more than one element is added
(total amount), thereby achieving a sufficient improvement in mechanical strength. Furthermore, one or more of these Group A and Group A elements may be added in a total amount of 0.3 to 2%.
This is most preferred in the present invention. In addition, along with the elements of group a and group a,
Sn added to Cu not only strengthens the matrix by dissolving in Cu, but also lowers the friction coefficient in terms of sliding properties, and this friction coefficient maintains a stable low friction even at high temperatures. As a result, it exhibits an excellent effect on seizure resistance, especially under high-temperature conditions. However, since such added Sn dissolves in Cu as described above, it tends to reduce the thermal conductivity of the alloy, and therefore the range of its addition is limited. In this sense, 5% is adopted as the upper limit of Sn addition, and therefore the addition amount of Sn is determined as appropriate within the range of less than 5% (of course, zero is not included), and the appropriate addition amount. The most preferable content is 1 to 3%. Note that the addition of Sn is also effective in improving castability. Therefore, the alloy according to the present invention, in which Cu is used as a base material and the above-mentioned Group A and Group A elements and Sn are added thereto, has an alloy composition that has excellent properties as a shoe material. . However, when using a swash plate compressor sash for a car cooler when the amount of lubricating oil is small, the most important issue is the thermal conductivity of the sew, and the elements that have the greatest effect on that thermal conductivity are the added elements. Furthermore, a large increase in the coefficient of friction is a direct cause of heat generation, so it is important to strengthen the matrix and improve the sliding characteristics with as few additive elements as possible for swash plate compressor sashes for high-performance car coolers. This is because it is the key to whether or not you can adapt well. Since a certain amount of lubricating oil is supplied during so-called normal operation, although it is relatively small, it is important to improve thermal conductivity and effectively dissipate heat, especially for shoe materials, and to reduce hardness at high temperatures. Reducing the change in structure by reducing the amount of stress will affect the sliding characteristics of the shoe.
In this sense, it is important to add Sn to Cu together with group a and group a elements. Furthermore, even if the swash plate type compressor for high-performance car coolers is designed to eliminate the problem in a short time by improving the no-lubrication situation at startup, it will not be possible to eliminate it completely. Moreover, reductions in the amount of oil and refrigerant gas occur occasionally even during normal operation, and the material of the shoe is required to have various performances to be able to cope with these various conditions. Therefore, the selection and amount of additive elements according to the invention,
The degree of reinforcement and thermal conductivity resulting from this must be fully considered, and the most appropriate combination is Cu.
It is desirable to add at least one element selected from group a and group a and Sn together. In particular, in order to eliminate the harmful effects of having too many solid-solution elements, such as structural heterogeneity and decreased thermal conductivity due to intermetallic compounds, and brittleness caused by over-hardening of the matrix, we have developed a method that does not cause the above-mentioned harmful effects. By using the additive element by precipitation according to the present invention, which can be strengthened by precipitation, it is possible to expect resistance to seizure and wear resistance due to the precipitates, and it is possible to achieve this without significantly lowering the thermal conductivity. In addition,
Normally, when selecting a sliding material, the selection of the mating material is also important, and especially when the conditions are severe, the selection is more limited than the mating material. Under such circumstances, conventional sliding materials are relatively good if the mating material is Cr steel, Mn steel, etc., but this material is made of spheroidal graphite cast iron, which has poor sliding properties and is unsuitable as a mating material. Become. However, it has been confirmed that the shew material made of the Cu alloy according to the present invention can withstand even when the mating material is spheroidal graphite cast iron. In addition, according to the studies of the present inventors, the thermal conductivity required for a shoe material that can be used in a swash plate type compressor for a high-performance car cooler is 0.2 cal/cm 3 .
It is desirable that the temperature is sec・℃ or higher, and
It is more preferable that the hardness is 0.4 cal/cm 2・sec・℃ or more, and even if the hardness is 300℃
It has become clear that it is desirable to have a Vickers hardness (Hv) of 80 or more at high temperatures, but none of the Cu alloys according to the present invention have such desirable thermal conductivity and hardness. Therefore, it has an excellent effect. As a result, the following effects can be recognized in the Cu alloy according to the present invention. In other words, since the amount of added elements is significantly smaller than conventional shoe materials, it has good thermal conductivity and can easily dissipate the frictional heat generated even in long periods without lubrication. There is no softening of the material, which makes it less likely to cause seizure.
In addition, in the case of the present invention, there are fewer additive elements for strengthening than in the past, so it seems that sufficient strengthening is not achieved compared to the conventional material, but in the case of the conventional material, The copper alloy in this invention Although it was slightly better at room temperature, the overall strength was lower.
On the other hand, since the amount of added elements in the present invention is small, as a result, there is not much difference in strength compared to conventional materials. Furthermore, especially at high temperatures, the copper alloy of the present invention exhibits better values than conventional materials. Furthermore, in the case of the present invention, there is little decrease in hardness even under high temperatures.
By adding Sn (a solid solution element), the strength and hardness of the matrix do not decrease even when the shoe becomes high temperature due to frictional heat, etc., and it is in an extremely stable state. The Cu alloy of the present invention also contains nickel (Ni), iron (Fe), tellurium (Te),
Phosphorus (P), antimony (Sb), arsenic (As), etc. can be added in small proportions, and this mainly has the effect of improving strength or making the matrix finer, but these do not affect the effect of addition. It has its advantages and disadvantages, and it has been confirmed that its performance is considerably lower than that of Cr, Zr, Ti, and Sn. However, it has been confirmed that it can withstand use under certain conditions. Below, specific examples of the present invention will be shown in order to further facilitate understanding of the present invention. First, samples 1 to 5 were obtained by a casting method using the composition ratios shown in Table 1. The casting method is approximately 1250℃.
A method was adopted in which Cu was added, followed by alloying elements (Cr, Zr, Ti, and Sn), and the resulting material was heat treated at approximately 700°C for 2 hours to prevent segregation to obtain a Cu alloy material. In order to conduct actual machine tests using these obtained materials, each was processed to a diameter of 18 mm and a thickness of 4.5 mm to obtain a shoe. Further, this shoe has a spherical concave surface with a depth of about 3 mm so that a part of a ball with a diameter of about 14 mm is inscribed in the center. In addition,
Samples 10 to 17 having the alloy compositions shown in Table 2 were made as comparative materials by the same method as above, and samples 10 to 17 according to the present invention were prepared as comparative materials.
A comparison was made between Cu alloy and Shu. In addition, the hardness of Samples 1 to 5 at the time of final processing at room temperature was all Hv100 or higher. Furthermore, the thermal conductivity of each of the obtained samples was measured and shown in Table 3. As is clear from the sample table, each sample made of the Cu alloy of the present invention had excellent thermal conductivity. ing.

【表】【table】

【表】【table】

【表】 −実験1− 第1表、第2表の各試料を用いて摩察係数とそ
の時の発熱温度を測定する実験を行つた。 測定方法としては円板を回転させ、これにシユ
ーを押圧し、その押圧荷重を漸増させながら、そ
の時の摩擦係数およびシユーの発熱温度を測定し
た。
[Table] -Experiment 1- Using each sample in Tables 1 and 2, an experiment was conducted to measure the friction coefficient and the exothermic temperature at that time. The measurement method was to rotate a disc, press a shoe against it, and gradually increase the pressing load while measuring the coefficient of friction and the heat generation temperature of the shoe.

【表】 得られた結果を第2図、第3図に示す。なお、
第2図、第3図は実験結果の一部である。他の試
料1,3,5も2,4に比べて多少性能は落ちる
が同様の結果が得られている。第2図より明らか
なように、本発明にもとづく試料は比較材に比し
て、すべての領域で摩擦係数が低く、かつ荷重を
増加させても安定している。 また、第3図からシユーの発熱温度をみると、
本発明に係る試料にあつては比較試料に比して、
すべての領域で低くなつているのである。さら
に、これらの結果と第3表の各試料の熱伝導度と
を対応させてみると、熱伝導度がある程度以上あ
る本発明試料はすべて良好である。 これらのことから、荷重を増加させれば、当然
摩擦抵抗は高くなつて、発熱が生じ、この発熱に
よつて材料の組織が変化し、摩擦係数の増加によ
つて焼付くという傾向が熱伝導性の悪い比較試料
には生じているが、本発明試料には発熱があつて
もその放熱性にすぐれているため、シユー全体の
温度、あるいは摺動面近くの温度があまり高くな
らず、それがため組織変化、摩擦係数の増加等の
現象がなく、すべての領域で安定しているのであ
る。 こゝで特に注目すべきはオイル潤滑が充分でな
い条件でありながら、本発明試料は良好であるこ
とであり、そこに大きな意義があるのである。 −実験2− 次に潤滑油の供給において最も厳しい条件下で
の実機試験を行ない、得られた結果を第4表に示
した。尚、試験条件は以下の通りである。 (1) コンプレツサー 斜板式コンプレツサー (総排気量150c.c.) (2) 回転数 4000r.p.m (3) 吐出側ガス圧 Pd=4〜5Kg/cm2 (4) 吸入側ガス圧 Ps=約−50mmHg (5) 作動時間 20Hrs (6) 潤滑オイル 冷凍機オイル150c.c. (7) 相手材 球状黒鉛鋳鉄 (8) ガス量 100g(正規の約10%)
[Table] The results obtained are shown in Figures 2 and 3. In addition,
Figures 2 and 3 are part of the experimental results. Similar results were obtained for other samples 1, 3, and 5, although the performance was somewhat lower than that of samples 2 and 4. As is clear from FIG. 2, the sample based on the present invention has a lower coefficient of friction in all regions than the comparative material, and is stable even when the load is increased. Also, looking at the heat generation temperature of the shoe from Figure 3,
In the case of the sample according to the present invention, compared to the comparative sample,
It is declining in all areas. Furthermore, when these results are compared with the thermal conductivity of each sample in Table 3, all the samples of the present invention having a thermal conductivity above a certain level are good. Based on these facts, if the load is increased, the frictional resistance will naturally increase and heat will be generated.This heat generation will change the structure of the material, and the increase in the coefficient of friction will cause seizures.Thermal conduction Although this occurs in comparison samples with poor performance, even if heat is generated in the samples of the present invention, it has excellent heat dissipation properties, so the temperature of the entire shoe or the temperature near the sliding surface does not rise too much. Therefore, there are no phenomena such as structural changes or increases in the coefficient of friction, and it is stable in all areas. What is particularly noteworthy here is that even though the oil lubrication was not sufficient, the samples of the present invention performed well, which is of great significance. -Experiment 2- Next, an actual machine test was conducted under the most severe conditions for supplying lubricating oil, and the obtained results are shown in Table 4. The test conditions are as follows. (1) Compressor Swash plate type compressor (total displacement 150c.c.) (2) Rotation speed 4000r.pm (3) Discharge side gas pressure Pd = 4 to 5Kg/cm 2 (4) Suction side gas pressure Ps = approx. 50mmHg (5) Operating time 20Hrs (6) Lubricating oil Refrigerator oil 150c.c. (7) Compatible material Spheroidal graphite cast iron (8) Gas amount 100g (approx. 10% of regular)

【表】【table】

【表】 第4表より明らかなように、本発明に係る試料
はいずれも焼付が全く発生せず、すべて良好であ
る。特に、この実験は通常運転状況で起る中で最
も潤滑の厳しい条件であることから、このような
条件下でも満足出来たことは、まさしく本発明に
係るCu合金試料の優秀さを証明するものであ
る。 −実験3− 次に、負荷寿命実験として、特に潤滑不良を起
こしやすい条件下での実験試験を行ない、その結
果を第5表に示した。なお、試験条件は以下の通
りである。 (1) コンプレツサー 斜板式コンプレツサー (総排気量150c.c.) (2) 回転数 5500r.p.m (3) 吐出側ガス圧 Pd=20Kg/cm2 (4) 吸入側ガス圧 Ps=3Kg/cm2 (5) 作動時間 400Hrs (6) 潤滑オイルと量 冷凍機オイル150c.c. (7) 継続運転 25秒運転、5秒休止 (8) 相手材 球状黒鉛鋳鉄 (9) ガス量 1Kg
[Table] As is clear from Table 4, all of the samples according to the present invention showed no seizure at all and were all in good condition. In particular, since this experiment was performed under the most severe lubrication conditions that occur under normal operating conditions, the fact that it was satisfactory even under such conditions is proof of the superiority of the Cu alloy sample according to the present invention. It is. -Experiment 3- Next, as a load life experiment, an experimental test was conducted under conditions where poor lubrication is particularly likely to occur, and the results are shown in Table 5. The test conditions are as follows. (1) Compressor Swash plate compressor (total displacement 150c.c.) (2) Rotation speed 5500r.pm (3) Discharge side gas pressure Pd=20Kg/cm 2 (4) Suction side gas pressure Ps=3Kg/cm 2 (5) Operating time 400Hrs (6) Lubricating oil and amount Refrigerator oil 150c.c. (7) Continuous operation 25 seconds operation, 5 seconds rest (8) Compatible material Spheroidal graphite cast iron (9) Gas amount 1Kg

【表】【table】

【表】 第5表より明らかなように本発明に係る試料1
〜5はいずれも比較試料10〜17に比して、焼付現
象はなく、また摩耗量も少なく、充分使用に耐え
ることが判明した。 この実験は潤滑オイルがほとんど存在しない状
況が生じやすい場合の実験であることから、これ
に対し良好であつたことは焼付にくいことを示す
ものである。 以上詳述した如く、本発明はコンプレツサー、
特にカークーラー用斜板式コンプレツサーにおい
て潤滑オイルが極めて少なく、斜板とシユーの摺
動部にオイルが充分供給されなくとも、また数分
間の無潤滑状態が生じても、更に相手材として摺
動特性の悪い球状黒鉛鋳鉄であつても、損耗が少
なく且つ熱伝導性に優れた特定のCu合金からな
るシユー材を用いたことによつて、極めて長時間
の使用に耐え得る。寿命の長い斜板式コンプレツ
サーを提供したものであつて、特にカークーラー
用のコンプレツサーの高性能化に大きく寄与し得
たところに、大きな意義を有するものである。
[Table] As is clear from Table 5, sample 1 according to the present invention
It was found that Samples No. 5 to No. 5 had no seizure phenomenon and had less wear than Comparative Samples Nos. 10 to 17, and were sufficiently usable. Since this experiment was conducted in a situation where almost no lubricating oil was present, the fact that it performed well indicates that seizure is unlikely. As detailed above, the present invention provides a compressor,
Particularly in swash plate type compressors for car coolers, lubricating oil is extremely low, and even if sufficient oil is not supplied to the sliding parts of the swash plate and shoe, or even if there is no lubrication for several minutes, the sliding properties of the mating material will improve. Even if it is made of spheroidal graphite cast iron, which has poor wear and tear, it can withstand use for an extremely long time by using a shew material made of a specific Cu alloy that has little wear and tear and excellent thermal conductivity. This invention has great significance in that it provides a swash plate type compressor with a long life, and it has contributed greatly to improving the performance of compressors for car coolers in particular.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は斜板式コンプレツサーを説明するため
の縦断面図であり、第2図及第3図は実験1にお
いて得られた摩擦係数及び発熱温度結果をそれぞ
れ示すグラフである。 1:シリンダブロツク、2:シリンダボア、
3:ピストン、4:シヤフト、5:斜板、6:シ
ユー、7:ボール。
FIG. 1 is a longitudinal sectional view for explaining the swash plate type compressor, and FIGS. 2 and 3 are graphs showing the friction coefficient and heat generation temperature results obtained in Experiment 1, respectively. 1: Cylinder block, 2: Cylinder bore,
3: Piston, 4: Shaft, 5: Swash plate, 6: Shoe, 7: Ball.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダブロツク内において回転軸により回
転せしめられる斜板と、該斜板にシユーを介して
係留されたピストンとを有し、該斜板の回転に応
じて前記ピストンがシリンダボア内を往復動する
ようにされた斜板式コンプレツクサにおいて、前
記シユーが、銅を主体とし、これに周期律表第
a族元素及び第a族元素からなる群から選ばれ
た1種または2種以上の元素を合計量で3%を越
えない割合にて含有せしめ、更に5%未満の錫を
含有せしめた銅合金から成ることを特徴とする斜
板式コンプレツサ。
1 A swash plate that is rotated by a rotating shaft within a cylinder block, and a piston that is moored to the swash plate via a shoe, so that the piston reciprocates within the cylinder bore in accordance with the rotation of the swash plate. In the swash plate type compressor made of A swash plate type compressor comprising a copper alloy containing not more than 3% of tin, and further containing less than 5% of tin.
JP8021078A 1978-07-01 1978-07-01 Swash plate compressor Granted JPS557945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8021078A JPS557945A (en) 1978-07-01 1978-07-01 Swash plate compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8021078A JPS557945A (en) 1978-07-01 1978-07-01 Swash plate compressor

Publications (2)

Publication Number Publication Date
JPS557945A JPS557945A (en) 1980-01-21
JPS6118026B2 true JPS6118026B2 (en) 1986-05-10

Family

ID=13712016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8021078A Granted JPS557945A (en) 1978-07-01 1978-07-01 Swash plate compressor

Country Status (1)

Country Link
JP (1) JPS557945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492563U (en) * 1990-12-28 1992-08-12

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719903A (en) * 1980-07-11 1982-02-02 Alps Electric Co Ltd Conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492563U (en) * 1990-12-28 1992-08-12

Also Published As

Publication number Publication date
JPS557945A (en) 1980-01-21

Similar Documents

Publication Publication Date Title
JPH0697033B2 (en) Swash plate type compressor
JPS6145075B2 (en)
JP3039762B2 (en) Reciprocating compressor
US4307998A (en) Swash-plate-type compressor for air-conditioning vehicles
JPS63241131A (en) Copper alloy for sliding material
US4435482A (en) Sliding member and process for producing the same
US5246509A (en) Copper base alloy superior in resistances to seizure, wear and corrosion suitable for use as material of sliding member
JP2004137512A (en) Copper based alloy for sliding
JP4590784B2 (en) Sliding member and valve opening / closing timing control device
JPS6016513B2 (en) Swash plate type compressor
JPS6118026B2 (en)
JPH03215642A (en) Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JPS6118024B2 (en)
JP3042539B2 (en) Sliding material
CN101294557A (en) Swash plate of swash plate compressor
JPS6213418B2 (en)
JPS6118025B2 (en)
JPS6053197B2 (en) Swash plate type compressor
US4623595A (en) Sliding member and process for producing the same
JPS6229501B2 (en)
JPH01224481A (en) Shoe for compressor with swash plate
JPS601384A (en) Swash plate type compressor
JPS6053196B2 (en) Swash plate type compressor
JPH0362782B2 (en)
JPH066943B2 (en) Heat pump room air conditioner