JPS6117966B2 - - Google Patents

Info

Publication number
JPS6117966B2
JPS6117966B2 JP11217977A JP11217977A JPS6117966B2 JP S6117966 B2 JPS6117966 B2 JP S6117966B2 JP 11217977 A JP11217977 A JP 11217977A JP 11217977 A JP11217977 A JP 11217977A JP S6117966 B2 JPS6117966 B2 JP S6117966B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
drainage
embossed
materials
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11217977A
Other languages
Japanese (ja)
Other versions
JPS5445914A (en
Inventor
Ikunosuke Yoshitake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP11217977A priority Critical patent/JPS5445914A/en
Publication of JPS5445914A publication Critical patent/JPS5445914A/en
Publication of JPS6117966B2 publication Critical patent/JPS6117966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、土中での変形に耐え、集水能力およ
び排水能力が大きい土木排水材用合成長繊維不織
布に関するものである。 土木工事において土中の水を如何に排水処理す
るかは、非常に重要な問題であり、従来より種々
の工夫がなされており、それらに使用する材料に
おいても砂、砂利、砕石などの天然材料、プラス
チツクパイプ、網状体、織物、不織布などの有機
高分子材料あるいは天然材料と有機高分子材料と
の組合せなど種々のものが実用に供されている
が、これらの材料のうち天然材料は資源不足で入
手が困難になりつつあり、また施工に多くの労力
を要するため、次第に人造の有機高分子材料が多
用されつつある。 代表的排水工法である垂直型排水工法に使用す
る代表的排水材には、ペーパードレンがあり、こ
のペーパードレンにはカードボードが透水具とし
て使用されているが、これは本質的に垂直透水係
数数、垂直透水面積が小さいという欠点を有する
のみならず、強度が弱く、土中で変形して排水能
力が低下するなどの欠点を有し、さらに施工する
に際してはサンドドレンに比べれば簡便ではある
が、ペーパードレンは硬く曲げにくく、取扱いに
くいなどの欠点を有する。さらに、ペーパードレ
ンに替わるものとして微孔を有するポリ塩化ビニ
ル板を加工したもの、あるいはプラスチツク板を
波状に折り曲げ、表面に透水具として不織布を貼
着したものが実用に供されているが、これらもペ
ーパードレンと同様な欠点を有する。 他の代表的な排水工法として水平排水工法があ
り、この工法に用いられる排水材にも従来、砂、
砂利、砕石などの天然材料が多く用いられている
が、さらにプラスチツクパイプ、網状体、織物、
不織布などの有機高分子材料や上記の天然材料と
有機高分子材料との組合せが用いられている。天
然材料は前述のように入手が難しくなつてきてお
り、有機高分子材料がしばしば用いられており、
例えば2枚の不織布の間にスプリング状のプラス
チツクブリツスルをはさんだもの、あるいは単な
る厚みの大きな不織布などが使用されている。し
かし、これらは垂直型排水材と同様に集水面積、
水平面内透水係数、水平面内透水面積および機械
的強度が小さいなどの欠点を有するものである。 本発明は、上記の現状に鑑み、曲げ剛度が150
g以上である合成長繊維不織布にエンボス加工を
施して、凸部の高さおよび隣接した凸部の最接近
部における基部の長さがそれぞれ0.5〜20mmの範
囲内で、かつ隣接した凸部の最接近部における基
部の長さが凸部の高さの1/3〜3倍の範囲内であ
る多数の凸部を形成せしめることにより集水面
積、排水面積が大きく、土中での変形に耐え、施
工性が良く、かつ安価な土木排水材用不織布を提
供するもので、以下本発明を図面に基づいて説明
することとする。 第1図において、1はエンボス加工により多数
の凸部を形成せしめた不織布であり、これは基部
2、立上り部3および頂部よりなる凸部4とで構
成されている。このようにエンボス加工不織布1
は多数の凸部を有するので、このエンボス加工不
織布1を他の平板状シートと組合せたり、複数の
エンボス加工不織布を凸部が接するように組合せ
ることなどにより生ずる布帛間の内部空間5を利
用して集水や排水をすることができ、その透水係
数および透水面積はエンボス加工を施さない不織
布の場合と比べて極めて大きい。 第2図においては、エンボス加工不織布1と平
板状シート6とを組合せた実施態様が示されてい
るが、この図において、土7の中に含有されてい
る水はエンボス加工不織布1の基部2および立上
り部3において不織布をその厚み方向に貫通し
て、エンボス加工布1と平板状シート6とで形成
する内部空間5に集水される。この集水のさい
に、水はエンボス加工不織布1の厚み方向にのみ
貫通すれば良いのであるから、エンボス加工不織
布1の透水係数は極めて大きく、しかもエンボス
加工不織布1の大半を占める基部2と立上り部3
において透水し得るのであるから、透水面積も大
きく、従つてこのエンボス加工不織布1の集水能
力はエンボス加工を施さない不織布に比べて非常
に大きいのである。そして、エンボス加工不織布
1は第1図に示す如く部分的にのみ凸部を有する
ものであるから、エンボス加工不織布1と平板状
シート6とが形成する内部空間5は全面にわたつ
て連通して排水路を形成しており、従つて前記の
ようにして内部空間5に集水された水は排水路に
沿つて容易に排水される。このように内部空間5
は全面にわたつて連通しているので、排水能力も
極めて大きいのである。 しかし、土木排水材用不織布として単にエンボ
ス加工不織布を使用すれば良いのではない。すな
わち、土木排水材用不織布として充分な集水およ
び排水の効果を得るためには、エンボス加工不織
布1の凹凸を大きくすることが必要であるが、こ
れを排水材として土中に埋設したときには、エン
ボス加工不織布1は土の圧力を受け、集水面であ
る基部2と立上り部3が押しつぶされて集水能力
および排水能力を失つてしまうのであり、このつ
ぶれに関係する要因には土から受ける圧力、エン
ボス加工不織布の硬さ、エンボスの形状、数など
が挙げられる。エンボス加工不織布1の硬さが充
分でなければ、土の圧力に負けて内部空間5はつ
ぶされるので、これを避けるためにエンボス加工
不織布1の凹凸の大きさを小さくすると、内部空
間5が小さくなると共に排水路がつぶされて、集
水能力および排水能力は小さくなつてしまうので
ある。エンボス加工不織布1の凹凸の大きさを大
きくして、しかも土中において内部空間5がつぶ
れないようにするためには、不織布がある程度以
上に剛性を有することを必要とし、種々検討の結
果、JIS L−1079、6.2.2.曲げ剛さ6.22.5E法(ハ
ンドルオメーター法、スロツト巾10mm)で測定し
た数値が150g以上の剛性を有する不織布が必要
であるとの結果を得た。 次に集水、排水能力に重要な関係を有するエン
ボス加工不織布1の凹凸のつぶれは、エンボスの
形状、数によつても相違する。隣接した凸部の最
接近部における基部の長さをaとし、凸部4の高
さをhとすれば、集水面の大きさはaとhとの和
と関係を有し、内部空間5の面積はaとhとの積
と関係を有する。aに比してhが大きい場合に
は、第2図における大矢印ロの方向の力により、
逆にaに比してhが小さい場合には、大矢印イの
方向の力により、内部空間5がつぶされてしま
う。またa,hが共に大きい場合も外力に対し不
安定で、つぶれやすく、逆にa、hが共に小さい
場合には排水路面積が小さくなり好ましくない。
aとhとの寸法について諸要素を考慮して検討し
た結果、0.5mm<a<20mm、0.5mm<h<20mm、
h/3<a<3hを満足するエンボス配置が存在
すれば、土中の圧力に対して充分に排水能力を保
持し得るとともに、集水能力も優れていることが
認められた。このa,hの満足すべき範囲を第3
図において斜線で示す。 以上のほかに、本発明のエンボス加工不織布は
深いエンボスの形成のためにエンボス加工時に大
きな応力を受けると共に、土中での使用時に排水
に伴なつて土の体積が変化したり、土の相互位置
の移動などのために大きな変形圧力を受けるの
で、エンボス加工不織布はこれらの変形応力に対
して充分に耐え得るものでなければならない。も
し、不織布の強度および伸度が小さい場合、たと
えば短繊維を原料として湿式法または乾式法によ
つて製造された不織布の場合には、エンボス加工
の大きい変形応力によつて加工時にすでに不織布
が局部的に切断してしまい、排水材の役割を果さ
なくなるのである。本発明のエンボス加工不織布
においては、合成長繊維が使用されているため、
強度、伸度ともに大きく、加工時に大きなエンボ
ス加工を施しても、あるいは使用時に大きな変形
応力が加わつても、部分的な破断を生ずることも
なければ、土の変形応力にも充分に耐え得るもの
である。 本発明のエンボス加工不織布は、土木用排水材
として使用するにさいし、エンボス加工不織布と
フイルム、不織布、織物などの平板状シートとを
所望の枚数だけ重ね合せるか、エンボス加工不織
布を2枚以上所望の枚数だけ互に凸部が接するよ
うに重ね合せるか、平板状シートを中間にして互
に内側に凸部が向い合うように2枚以上のエンボ
ス加工不織布を重ね合せるなどの種々の複合体を
形成し、巾を所望の長さに設定して複合体の長さ
方向に沿つて両端部を接着、縫着などによつて固
着して使用に供せられる。 以上、詳述したように剛性を有する長繊維不織
布に適当な深いエンボス加工を施した土木用排水
材は、安価で施工性が容易で、集水能力、排水能
力が大きく、効果の安定性が良いなどの多くの長
所を兼備した排水材であつて、多様な応用が可能
であり、あらゆる土木工事における優れた排水材
として有益である。 以下に本発明を実施例を挙げて説明する。 実施例 1 エンボス加工を施すべき長繊維不織布の構成お
よびその物性を表1に示す。
The present invention relates to a synthetic fiber nonwoven fabric for civil engineering drainage materials that is resistant to deformation in soil and has high water collection and drainage capabilities. How to dispose of underground water in civil engineering works is a very important issue, and various methods have been used to date, including natural materials such as sand, gravel, and crushed stone. , plastic pipes, nets, woven fabrics, non-woven fabrics, and other organic polymer materials, as well as combinations of natural materials and organic polymer materials, are in practical use.However, among these materials, natural materials are in short supply. As these materials are becoming increasingly difficult to obtain and require a lot of labor to construct, man-made organic polymer materials are increasingly being used. The typical drainage material used in the vertical drainage construction method, which is a typical drainage construction method, is a paper drain. Cardboard is used as a permeability device for this paper drain, but this essentially depends on the vertical hydraulic conductivity. Not only do they have the disadvantage of having a small vertical permeable area, but they are also weak in strength and deform in the soil, resulting in a decrease in drainage capacity.Furthermore, they are easier to construct than sand drains. However, paper drains have drawbacks such as being hard, difficult to bend, and difficult to handle. Furthermore, as an alternative to paper drains, products made from polyvinyl chloride plates with micropores, or products made by bending a plastic plate into a wave shape and pasting nonwoven fabric on the surface as a water-permeable device are in practical use. Also has the same drawbacks as paper drains. Another typical drainage method is the horizontal drainage method, and the drainage materials used in this method have traditionally been sand,
Natural materials such as gravel and crushed stone are often used, but also plastic pipes, mesh, textiles,
Organic polymeric materials such as nonwoven fabrics and combinations of the above-mentioned natural materials and organic polymeric materials are used. As mentioned above, natural materials are becoming difficult to obtain, and organic polymer materials are often used.
For example, a spring-like plastic bristle sandwiched between two sheets of non-woven fabric, or simply a thick non-woven fabric is used. However, like vertical drainage materials, these
It has drawbacks such as low hydraulic permeability coefficient in the horizontal plane, low hydraulic permeability area in the horizontal plane, and low mechanical strength. In view of the above-mentioned current situation, the present invention has a bending stiffness of 150.
Embossed synthetic fiber non-woven fabric with a diameter of at least By forming a large number of convex parts whose base length at the closest point is within the range of 1/3 to 3 times the height of the convex parts, the water collection area and drainage area are large, and the deformation in the soil is prevented. The purpose is to provide a nonwoven fabric for civil engineering drainage materials that is durable, has good workability, and is inexpensive.The present invention will be explained below based on the drawings. In FIG. 1, reference numeral 1 denotes a nonwoven fabric having a large number of convex portions formed by embossing, and is composed of a base portion 2, a rising portion 3, and a convex portion 4 consisting of a top portion. Embossed nonwoven fabric 1 like this
has a large number of convex parts, so the internal space 5 between the fabrics created by combining this embossed nonwoven fabric 1 with another flat sheet or combining a plurality of embossed nonwoven fabrics so that the convex parts are in contact with each other is utilized. It can collect and drain water, and its water permeability coefficient and water permeable area are extremely large compared to non-woven fabrics that are not embossed. In FIG. 2, an embodiment is shown in which the embossed nonwoven fabric 1 and the flat sheet 6 are combined. The water passes through the nonwoven fabric in the thickness direction at the rising portion 3 and is collected in the internal space 5 formed by the embossed fabric 1 and the flat sheet 6. At the time of water collection, the water only needs to penetrate the embossed nonwoven fabric 1 in the thickness direction, so the water permeability coefficient of the embossed nonwoven fabric 1 is extremely large, and moreover, the water permeability coefficient of the embossed nonwoven fabric 1 is extremely large, and moreover, Part 3
Since the embossed non-woven fabric 1 has a large water-permeable surface area, the embossed non-woven fabric 1 has a much larger water-collecting ability than a non-embossed non-woven fabric. Since the embossed nonwoven fabric 1 has convex portions only partially as shown in FIG. 1, the internal space 5 formed by the embossed nonwoven fabric 1 and the flat sheet 6 communicates over the entire surface. A drainage channel is formed, so that the water collected in the interior space 5 as described above is easily drained along the drainage channel. Inner space 5 like this
Since the water is connected throughout the area, its drainage capacity is extremely large. However, it is not sufficient to simply use embossed nonwoven fabrics as nonwoven fabrics for civil engineering drainage materials. That is, in order to obtain sufficient water collection and drainage effects as a nonwoven fabric for civil engineering drainage materials, it is necessary to increase the unevenness of the embossed nonwoven fabric 1, but when it is buried in the soil as a drainage material, The embossed nonwoven fabric 1 is subjected to pressure from the soil, and the base 2 and rising portion 3, which are the water collection surfaces, are crushed and lose their water collection and drainage abilities.The factors related to this crushing include the pressure from the soil. , the hardness of the embossed nonwoven fabric, the shape and number of embossments, etc. If the hardness of the embossed nonwoven fabric 1 is not sufficient, the internal space 5 will be crushed by the pressure of the soil.In order to avoid this, if the size of the unevenness of the embossed nonwoven fabric 1 is reduced, the internal space 5 will become smaller. At the same time, the drainage channels are crushed, and the water collection and drainage capacity becomes smaller. In order to increase the size of the unevenness of the embossed nonwoven fabric 1 and to prevent the internal space 5 from collapsing in the soil, it is necessary for the nonwoven fabric to have a certain level of rigidity, and as a result of various studies, JIS L-1079, 6.2.2. Bending Stiffness 6.22.5E method (handle-o-meter method, slot width 10 mm) It was found that a nonwoven fabric having a stiffness of 150 g or more was required. Next, the collapse of the unevenness of the embossed nonwoven fabric 1, which has an important relationship with water collection and drainage ability, also differs depending on the shape and number of embossing. If the length of the base of adjacent convex parts at the closest point is a, and the height of the convex part 4 is h, then the size of the water collection surface has a relationship with the sum of a and h, and the internal space 5 The area of is related to the product of a and h. If h is larger than a, the force in the direction of the large arrow B in Figure 2 will cause
Conversely, if h is smaller than a, the internal space 5 will be crushed by the force in the direction of the large arrow A. Furthermore, if a and h are both large, the structure is unstable against external forces and is likely to be crushed. Conversely, if a and h are both small, the area of the drainage channel becomes small, which is not preferable.
As a result of considering various factors regarding the dimensions of a and h, we found that 0.5mm<a<20mm, 0.5mm<h<20mm,
It has been found that if an emboss arrangement exists that satisfies h/3<a<3h, sufficient drainage capacity can be maintained against the pressure in the soil, and the water collection capacity is also excellent. The satisfying range of a and h is the third
Indicated by diagonal lines in the figure. In addition to the above, the embossed nonwoven fabric of the present invention is subjected to large stress during embossing due to the formation of deep embossments, and when used in soil, the volume of the soil changes due to drainage, and the soil Since the embossed nonwoven fabric is subjected to large deformation pressures due to positional movement, etc., the embossed nonwoven fabric must be able to sufficiently withstand these deformation stresses. If the strength and elongation of the nonwoven fabric is low, for example, in the case of a nonwoven fabric manufactured from short fibers by a wet method or a dry method, the nonwoven fabric may already be partially damaged during processing due to the large deformation stress of embossing. This results in the water being cut off, making it unable to function as a drainage material. Since synthetic fibers are used in the embossed nonwoven fabric of the present invention,
It has high strength and elongation, and even if large embossing is applied during processing or large deformation stress is applied during use, it will not cause partial breakage and can sufficiently withstand the deformation stress of soil. It is. When the embossed nonwoven fabric of the present invention is used as a drainage material for civil engineering, the embossed nonwoven fabric and a desired number of flat sheets such as films, nonwoven fabrics, and woven fabrics are superimposed, or two or more embossed nonwoven fabrics are stacked together as desired. Various types of composite materials can be used, such as stacking two or more sheets of embossed nonwoven fabric so that their protrusions are in contact with each other, or stacking two or more embossed nonwoven fabrics with a flat sheet in the middle so that their protrusions face each other. After forming the composite, the width is set to a desired length, and both ends are fixed by gluing, sewing, etc. along the length of the composite, and the composite is ready for use. As detailed above, the drainage material for civil engineering, which is made of rigid long-fiber nonwoven fabric with appropriate deep embossing, is inexpensive, easy to construct, has large water collection and drainage capacities, and has stable effects. It is a drainage material that has many advantages such as good drainage, can be applied in a variety of ways, and is useful as an excellent drainage material in all kinds of civil engineering works. The present invention will be explained below by giving examples. Example 1 Table 1 shows the composition and physical properties of a long fiber nonwoven fabric to be embossed.

【表】 5mm×5mmの正方形の高さ2mmの凸部を2mmの
間隔で有する金属ロールとペーパーロールとより
成るエンボスロールで表1に示した長繊維不織布
を140℃で処理した。エンボス加工不織布のエン
ボス深さは1.5mmであつた。従つてエンボス加工
不織布のaおよびhは、それぞれ a=2mm、h=1.5mm であり、従つて 0.5mm<a(2mm)<20mm 0.5mm<h(1.5mm)<20mm であり、かつ h(1.5mm)<a(2mm)<3h(1.5mm) を満足している。 上記のエンボス加工不織布2枚で未エンボス加
工不織布1枚をはさむ形で、かつ外側の2枚が内
側において凸部が向い合うように重ね合せて不織
布の長さ方向の両端部を縫い合せた。このように
して作られた不織布排水材を軟弱地盤の圧密に際
し、盛土の下に敷込むことによつて地盤の安定化
を著しく促進した。 実施例 2 エンボス加工を施すべき長繊維不織布の構成お
よびその物性を表2に示す。
[Table] The long fiber nonwoven fabrics shown in Table 1 were treated at 140°C with an embossing roll consisting of a metal roll and a paper roll having 5 mm x 5 mm square protrusions of 2 mm height at 2 mm intervals. The embossing depth of the embossed nonwoven fabric was 1.5 mm. Therefore, a and h of the embossed nonwoven fabric are a = 2 mm and h = 1.5 mm, respectively, so 0.5 mm < a (2 mm) < 20 mm, 0.5 mm < h (1.5 mm) < 20 mm, and h ( 1.5mm) < a (2mm) < 3h (1.5mm). One unembossed nonwoven fabric was sandwiched between the two embossed nonwoven fabrics described above, and the two outer fabrics were stacked one on top of the other so that the convex portions faced each other on the inside, and both ends of the nonwoven fabric in the length direction were sewn together. When the non-woven fabric drainage material made in this way was placed under embankment during consolidation of soft ground, the stabilization of the ground was significantly promoted. Example 2 Table 2 shows the composition and physical properties of the long fiber nonwoven fabric to be embossed.

【表】 直径7mmの円形で頂点の高さが5mmの半回転楕
円体状の凸部を2mmの間隔で有する金属ロールと
ペーパーロールとより成るエンボスロールで表2
に示した長繊維不織布を150℃で処理した。エン
ボス加工不織布のエンボス深さは4.5mmであつ
た。従つてエンボス加工不織布のaおよびhは、
それぞれ a=2mm、h=4.5mm であり、従つて 0.5mm<a(2mm)<20mm 0.5mm<h(4.5mm)<20mm であり、かつ h(4.5mm)/3<a(2mm)<3h(4.5mm) を満足している。 上記のエンボス加工不織布2枚で未エンボス不
織布1枚をはさむ形で、かつ外側の2枚が互に凸
部が向い合うように重ね合せて、不織布の縦方向
に21条のホツトメルト接着加工を行ない、不織布
3枚を相互に部分的に接着し、接着部分を縦方向
に細断することにより、巾10cmの細長い帯状排水
材を得た。このようにして得られた不織布排水材
を軟弱地盤安定化に際し、地盤中に打設してお
き、通常の工法により圧密を行なうと、著しく圧
密が促進された。
[Table] Table 2 shows an embossing roll consisting of a metal roll and a paper roll having semi-spheroidal protrusions with a circular diameter of 7 mm and a peak height of 5 mm at intervals of 2 mm.
The long fiber nonwoven fabric shown in 1 was treated at 150°C. The embossing depth of the embossed nonwoven fabric was 4.5 mm. Therefore, a and h of the embossed nonwoven fabric are
a=2mm and h=4.5mm, respectively, so 0.5mm<a(2mm)<20mm 0.5mm<h(4.5mm)<20mm and h(4.5mm)/3<a(2mm)< 3h (4.5mm). One non-embossed nonwoven fabric is sandwiched between the two embossed nonwoven fabrics mentioned above, and the outer two fabrics are stacked so that the convex portions face each other, and 21 strips of hot melt adhesive are applied in the longitudinal direction of the nonwoven fabric. By partially adhering three pieces of nonwoven fabric to each other and cutting the bonded portion into pieces in the longitudinal direction, a long and narrow strip-shaped drainage material with a width of 10 cm was obtained. When the nonwoven fabric drainage material thus obtained was placed in the ground to stabilize soft ground and consolidation was performed using a normal method, consolidation was significantly accelerated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の土木排水材用不織布の斜面
図、第2図は土木排水材用不織布と平板状シート
との複合体の断面図、第3図はaとhの満足すべ
き範囲を示すグラフである。 1……エンボス加工不織布、2……基部、3…
…立上り部、4……凸部、5……内部空間、6…
…平板状シート、7……土。
Fig. 1 is a slope view of the nonwoven fabric for civil engineering drainage materials of the present invention, Fig. 2 is a sectional view of a composite of the nonwoven fabric for civil engineering drainage materials and a flat sheet, and Fig. 3 shows the satisfactory ranges of a and h. This is a graph showing. 1... Embossed nonwoven fabric, 2... Base, 3...
...Rising portion, 4... Convex portion, 5... Internal space, 6...
...Tabular sheet, 7...Soil.

Claims (1)

【特許請求の範囲】[Claims] 1 曲げ剛度が150g以上である合成長繊維不織
布にエンボス加工を施して、凸部の高さおよび隣
接した凸部の最接近部における基部の長さがそれ
ぞれ0.5〜20mmの範囲内で、かつ隣接した凸部の
最接近部における基部の長さが凸部の高さの1/3
〜3倍の範囲内である多数の凸部を形成せしめて
なる土木排水材用不織布。
1 Embossed synthetic fiber nonwoven fabric with a bending stiffness of 150 g or more, so that the height of the convex portion and the length of the base at the closest point of the adjacent convex portions are each within the range of 0.5 to 20 mm, and The length of the base at the closest point of the convex part is 1/3 of the height of the convex part.
A nonwoven fabric for civil engineering drainage material formed with a large number of convex portions within the range of ~3 times.
JP11217977A 1977-09-20 1977-09-20 Nonwoven fabric for civil drainage material Granted JPS5445914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11217977A JPS5445914A (en) 1977-09-20 1977-09-20 Nonwoven fabric for civil drainage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11217977A JPS5445914A (en) 1977-09-20 1977-09-20 Nonwoven fabric for civil drainage material

Publications (2)

Publication Number Publication Date
JPS5445914A JPS5445914A (en) 1979-04-11
JPS6117966B2 true JPS6117966B2 (en) 1986-05-10

Family

ID=14580219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11217977A Granted JPS5445914A (en) 1977-09-20 1977-09-20 Nonwoven fabric for civil drainage material

Country Status (1)

Country Link
JP (1) JPS5445914A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161916U (en) * 1980-04-30 1981-12-02
JPS6242978Y2 (en) * 1980-07-08 1987-11-06

Also Published As

Publication number Publication date
JPS5445914A (en) 1979-04-11

Similar Documents

Publication Publication Date Title
US3965686A (en) Drain sheet material
JPS59500102A (en) Method of manufacturing drainage equipment
CA2464621A1 (en) Method for embossed and colourless decoration and bonding of a fabric web and device therefor
US5780144A (en) Planar drainage and impact protection material
JPS6117966B2 (en)
JPS5948525A (en) Reinforcement and structure for vertical banking
JPS5952024A (en) Structure for vertical banking
JP2578632B2 (en) Plane drainage for civil engineering
KR100712257B1 (en) The double drain board for removing water out of the damp ground
KR200437256Y1 (en) The natural fiber drain member for removing water out of the damp ground
CN210341882U (en) Novel degradable plastic drainage board
JPH0236726B2 (en) TOSUISEISHIITO
KR100227815B1 (en) Reinforcing plastic construction manufacturing method
JPS6282112A (en) Plane drain material
JP2001246682A (en) Network body and manufacturing method thereof
KR101602156B1 (en) Functional sheet for ground stabilization
GB1578045A (en) Drainage plate
JP2674028B2 (en) Tarpaulin
JPS61134416A (en) Water collecting plate
JPH0357245B2 (en)
JP2517176Y2 (en) Drain material
CA1111780A (en) Prefabricated subsurface drains
JP2765327B2 (en) Ground surface drainage method
JPS6220502Y2 (en)
JPS6220499Y2 (en)