JPS61179319A - Production of high performance carbon yarn - Google Patents

Production of high performance carbon yarn

Info

Publication number
JPS61179319A
JPS61179319A JP1858685A JP1858685A JPS61179319A JP S61179319 A JPS61179319 A JP S61179319A JP 1858685 A JP1858685 A JP 1858685A JP 1858685 A JP1858685 A JP 1858685A JP S61179319 A JPS61179319 A JP S61179319A
Authority
JP
Japan
Prior art keywords
pitch
yarn
fibers
infusibility
insoluble content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1858685A
Other languages
Japanese (ja)
Inventor
Yasuji Matsumoto
松本 泰次
Mamoru Kamishita
神下 護
Fumihiro Miyoshi
史洋 三好
Mitsuo Saga
嵯峨 三男
Hiroaki Shono
庄野 弘晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Kawasaki Steel Corp filed Critical Nitto Boseki Co Ltd
Priority to JP1858685A priority Critical patent/JPS61179319A/en
Publication of JPS61179319A publication Critical patent/JPS61179319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:In making pitch yarn infusible by oxidation, to obtain the titled yarn having uniform characteristics of product, showing the characteristics of precursor pitch at its maximum, by controlling the reaction using a novel infusibility degree evaluation index and as elemental analysis values of oxidized yarn, etc. CONSTITUTION:Firstly, pertroleum or coal pitch showing optical anisotropy is subjected to melt spinning to give pitch yarn, which is heat-treated in an oxidizing atmosphere such as air, etc. at 300-400 deg.C, made infusible, anc converted into oxidized yarn having elemental analysis values in 0.025<=0/C<=0.05 and H/C<=0.45, quinoline insoluble content of QI value in 75<=QI(%)<=05. Then, the oxidized yarn is carbonized graphitized in an inert atmosphere such as argon, etc., to give the aimed yarn.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石油系および石炭系ピッチを原料とするピッチ
系炭素繊維の製造方法において、特に新規な不融化度判
定指標を用いることにより高強度、高弾性および高品質
を有する炭素繊維の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for producing pitch-based carbon fibers using petroleum-based and coal-based pitches as raw materials. , relates to a method for producing carbon fibers with high elasticity and high quality.

(従来の技術) 一般に、石油系または石炭系ピッチを原料とする炭素繊
維の製造方法としては、原料ピッチを溶融紡糸して得ら
れたピッチ繊維を250〜400℃の空気等の酸化性雰
囲気中で熱処理し、この繊維を、いわゆる、不融化繊維
に転換した後、300〜1600℃の窒素等の不活性雰
囲気中で加熱して炭化し、必要に応じて更に高温の不活
性雰囲気中で加熱して黒鉛繊維とする方法が採用されて
いる0 ピッチは、本来、加熱により軟化・溶融する物質である
から、予めピッチ繊維に酸化処理を施し、分子間架橋や
側鎖または芳香環への含酸素官能基を導入することによ
り三次元的分子構造を発達させ、引続く炭化過程におい
ても繊維形状を保持させている。
(Prior art) Generally, as a method for manufacturing carbon fiber using petroleum-based or coal-based pitch as a raw material, pitch fibers obtained by melt-spinning raw material pitch are placed in an oxidizing atmosphere such as air at 250 to 400°C. After converting this fiber into a so-called infusible fiber, carbonize it by heating in an inert atmosphere such as nitrogen at 300 to 1600°C, and if necessary, further heat it in an inert atmosphere at a high temperature. Since pitch is originally a substance that softens and melts when heated, it is necessary to oxidize the pitch fiber in advance to prevent intermolecular cross-linking and inclusion in side chains or aromatic rings. By introducing oxygen functional groups, a three-dimensional molecular structure is developed, and the fiber shape is maintained even during the subsequent carbonization process.

上述する不融化工程において、ピッチ繊維の酸化が不十
分であれば、引続く炭化時に繊維相互の融着と弾性率の
低下を招き、また酸化が過剰に進行すると炭素化時に炭
素平面の結晶成長が三次元的架橋により阻害されたり、
脱ガス反応に起因する繊維内ボイドの生成が著しくなり
、更にメソ7エーズタイプのプリカーサ−ピッチである
から紡糸時に達成された繊維軸方向への結晶の配向性を
乱してしまうことになる。このために、いずれの場合に
おいても満足すべき物性を有する炭素繊維を得ることは
困難である。従って、良好な炭素繊維を製造するには不
融化反応の進行をある範囲内に制御することが必要不可
欠となる。
In the above-mentioned infusibility process, if the pitch fibers are insufficiently oxidized, the fibers will fuse together and the elastic modulus will decrease during subsequent carbonization, and if the oxidation progresses excessively, crystal growth of carbon planes will occur during carbonization. is inhibited by three-dimensional crosslinking,
The formation of intrafiber voids due to the degassing reaction becomes significant, and furthermore, the meso-7Aze type precursor pitch disturbs the orientation of crystals in the fiber axis direction that was achieved during spinning. For this reason, in any case, it is difficult to obtain carbon fibers with satisfactory physical properties. Therefore, in order to produce good carbon fibers, it is essential to control the progress of the infusibility reaction within a certain range.

しかるに、不融化反応の進行の程度、すなわち、不融化
度を表わす提出された指標は少ないピッチ系の場合には
、プリメソフェーズピッチをプリカーサ−とする特開昭
59−1!!6525号公報において不融化工程での重
量増加を8〜7重量襲好ましくは4〜6重量%と規定さ
れており、また石油系ピッチを特徴とする特開昭58−
48a4号公報においては不融化繊維のα樹脂量を80
重量%を越えないように調節することが述べられており
、またメソフェーズピッチをプリカーサ−とする特開昭
51−119885号公報においては不融化繊維中の酸
素含有量を18〜22重景%に制御するように規定され
ている。PAN系の場合には、わずかに特開昭5y−+
ff19PA5号公報などにおいて耐炎化繊維の平衡水
分率を10〜11%程度に制御することが記載されてい
る程度であり、明確で論理的な不融化度の評価指標は見
出されていない。それ故、ピッチ系の場合には、使用す
るプリカーサ−ピッチと装置ごとに生産効率と繊維特性
の両者を考慮してヒートパターン、使用酸化性気体、か
さ密度等の処理条件を決定する必要があった。
However, in the case of a pitch system for which there are few indexes showing the degree of progress of the infusibility reaction, that is, the degree of infusibility, JP-A-59-1! ! 6525 specifies that the weight increase in the infusibility step is 8 to 7% by weight, preferably 4 to 6% by weight, and JP-A-58-6525, which is characterized by petroleum-based pitch,
In Publication No. 48a4, the amount of α resin in the infusible fiber is 80
It is stated that the oxygen content in the infusible fiber should be adjusted to 18 to 22% by weight in JP-A-51-119885, which uses mesophase pitch as a precursor. specified to be controlled. In the case of PAN system, slightly JP-A-5y-+
FF19PA5 and other documents only describe controlling the equilibrium moisture content of flame-resistant fibers to about 10 to 11%, and no clear and logical evaluation index for the degree of infusibility has been found. Therefore, in the case of pitch-based materials, it is necessary to determine processing conditions such as heat pattern, oxidizing gas used, bulk density, etc., considering both production efficiency and fiber properties for each precursor pitch and equipment used. Ta.

しかし、不融化工程後の崗維の管理項目が極めて少なく
、実質的には炭素化後の繊維特性により製品の最終チェ
ックを行っているだけであるために繊維の異常を発見し
に〈〈1後工程での対応も取りづらいので、場合によっ
ては生産効率の低下を招くことになる。更に、製品特性
のバラツキを小さく抑えることが難しく品質管理上の大
きな間知になっていた。
However, there are very few control items for the fibers after the infusibility process, and the final check of the product is essentially just based on the fiber properties after carbonization. It is also difficult to take measures in subsequent processes, which may lead to a decrease in production efficiency. Furthermore, it is difficult to keep variations in product characteristics to a small level, which poses a major problem in quality control.

重量増加率を指標にとると、平均的分子構造のlII&
なるピッチではその最適な値も異なることになり、−殺
性に乏しく、またピッチ繊維の空気中での熱重量分析結
果から酸化増量はピークを持つことがわかっているので
、同一の重量増加率を示しても不融化度の異なる場合が
あり、不融化度指標として適しているとは云い難い。一
方、平衡水分率もPAN系の耐炎化繊維には有効である
が、平衡水分率の低いピッチ系の不融化繊維には適用し
にくいと云う欠点を持っている。
Taking the weight increase rate as an index, the average molecular structure lII &
The optimal value will be different depending on the pitch, and the optimum value will be different for different pitches. Even if it shows, the degree of infusibility may differ, and it is difficult to say that it is suitable as an indicator of the degree of infusibility. On the other hand, although equilibrium moisture content is effective for PAN-based flame-resistant fibers, it has the disadvantage that it is difficult to apply to pitch-based infusible fibers that have a low equilibrium moisture content.

(発明が解決しようとする間知点) 本発明は上述する問題点に着目し、ピッチ繊維°の不融
化反応を最適に制御することを解決課題とし、プリカー
サ−ピッチの特性を最大限に発揮させ、かつ製品特性の
バラツキを小さく抑えるピッチ系高性能炭素繊維の製造
方法を達成することを目的とする。
(Problems to be Solved by the Invention) The present invention focuses on the above-mentioned problems and aims to optimally control the infusibility reaction of pitch fibers, thereby maximizing the characteristics of precursor pitch. The purpose of the present invention is to achieve a method for manufacturing pitch-based high-performance carbon fibers that can reduce the variation in product properties.

(問題点を解決するための手段) 本発明者らは前記目的を達成すべく鋭意研究の結果、プ
リカーサ−ピッチの性能を最大限に発揮できるように不
融化反応を制御し、製品の生産性を向上できる優れた物
性を有する高性能炭素繊維の製造方法を開発し、本発明
に到達した。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventors have conducted extensive research, and as a result, have controlled the infusibility reaction so as to maximize the performance of the precursor pitch, thereby increasing the productivity of the product. The present invention was achieved by developing a method for manufacturing high-performance carbon fibers that have excellent physical properties that can improve the properties of carbon fibers.

本発明の高性能炭素繊維の製造方法においては、光学的
に異方性を示す石油系および石炭系ピッチをプリカーサ
−ピッチとして用いる場合には、不融化反応を酸化繊維
の元素分析値およびキノリン不溶分(QI)値がそれぞ
れ0.025 <Q10 <0.050 。
In the method for producing high-performance carbon fibers of the present invention, when petroleum-based and coal-based pitches exhibiting optical anisotropy are used as precursor pitches, the infusibility reaction is determined based on the elemental analysis value of the oxidized fibers and the quinoline insolubility. (QI) values are 0.025 <Q10 <0.050, respectively.

Ilo <0.45および75くQI(%)く95とな
るように不融化反応を制御し、アルゴン等の不活性雰囲
気中で黒鉛化処理まで施すことにより高強度および高弾
性率を持つ高性能炭素繊維を得ることができる。特に、
BI(%)〉90%およびQI(%)〉20%で、異方
性分率が90%を越えるピッチをプリカーサ−として用
いる場合には、酸化繊維の分析値およびQI値がそれぞ
れ85くQI(%)く98.0.085 <Olo <
0.045およびIlo <0.42となるように制御
し、常法により炭化および黒鉛化処理を施して高品質で
高性能の炭素繊維を得ることができる。
By controlling the infusibility reaction so that Ilo<0.45 and 75 x QI (%) x 95, and performing graphitization treatment in an inert atmosphere such as argon, high performance with high strength and high elastic modulus is achieved. Carbon fiber can be obtained. especially,
When BI (%) > 90% and QI (%) > 20% and a pitch with an anisotropy fraction exceeding 90% is used as a precursor, the analytical value and QI value of the oxidized fiber are 85 and QI (%) 98.0.085 <Olo <
0.045 and Ilo <0.42, and carbonization and graphitization treatments are carried out by conventional methods to obtain high-quality and high-performance carbon fibers.

一般に、ピッチは多種の縮合芳香族化合物からなる混合
物であり、溶融紡糸後のピッチ繊維を酸化性雰囲気中で
熱処理することにより構造単位分子間の三次元架橋結合
の生成と、側鎖または芳香環への含酸素官能基の導入と
を促進してピッチの持つ加熱溶融性を失わせている。し
かし、三次元的架橋結合が必要以上に生成すると、引続
く炭素化過程での結晶子の成長が抑制され、また含酸素
官能基の導入が過剰であれば炭化工程でのOOおよびC
O8の脱離反応により繊維内のボイドの発生要因となり
、いずれの場合においても炭化繊維物性の低下を招く。
In general, pitch is a mixture of various condensed aromatic compounds, and by heat-treating pitch fibers after melt-spinning in an oxidizing atmosphere, three-dimensional crosslinks are formed between structural unit molecules, and side chains or aromatic rings are formed. This promotes the introduction of oxygen-containing functional groups into the pitch and causes the pitch to lose its heat-melting properties. However, if more three-dimensional crosslinks are formed than necessary, the growth of crystallites in the subsequent carbonization process will be suppressed, and if the introduction of oxygen-containing functional groups is excessive, OO and C
The elimination reaction of O8 causes voids to be generated within the fiber, leading to a decrease in the physical properties of the carbonized fiber in either case.

従って、不融化反応の進行をある範囲内に制御しなけれ
ばならない。
Therefore, the progress of the infusibility reaction must be controlled within a certain range.

第1図は不融化温度に対する繊維のキノリン不溶分(Q
I)およびベンゼン不溶分(BI)の変化状態を示して
おり(メソ7エーズピツチ、BI=92.5%およびQ
I= 88.1%)、第3図は不融化繊維のFT−IH
による測定結果(メソフェースピッチ)を示して―る(
第2図の縦軸に示す゛スペクトル強度は各吸収波長強度
と0=0結合強度(d    )との相対比を使用した
)。これらの図面から、不融化反応の進行に従いQI 
 成分が増大してカルボニル基やエーテル基の生成が顕
著になり、逆にO−H結合の強度が低下していることが
わかる。そこで、ピッチ繊維の高分子化、すなわち、三
次元的分子間架橋結合の生成の程度をキノリン不溶分で
評価し、繊維中への含酸素官能基の導入の程度を元素分
析によるVOおよびVで評価して炭化後の繊維強度との
関係を調べ、これらの最適値を“求めた。この炭素繊維
強度とキノリン不溶分との関係(光学的黒方性ピッチ)
の1例を第8図に示している。この第8図から、キノリ
ン不溶分が約75%以下および約95%以上ではW維強
度が急激に低下することがわかる。上述する結果から、
QI Olo 、Hloおよび炭化繊維強度などの値の
妥当性を各種のメソフェーズタイプのプリカーサ−ピッ
チについて確認したところ、極めて高い確率が原料特性
を最大限に発揮できることがわかった。また、これらの
最大値を実現する処理条件を選択すれば、製品のバラツ
キも従来に比べて小さく抑え得ることを確めた。
Figure 1 shows the quinoline insoluble content (Q
I) and benzene insoluble content (BI) (Meso 7Aze pitch, BI=92.5% and Q
I=88.1%), Figure 3 shows FT-IH of infusible fibers.
This shows the measurement results (mesoface pitch) by (
The spectral intensity shown on the vertical axis of FIG. 2 is the relative ratio between the intensity of each absorption wavelength and the 0=0 coupling intensity (d). From these drawings, it can be seen that QI
It can be seen that as the components increase, the formation of carbonyl groups and ether groups becomes noticeable, and on the contrary, the strength of the O-H bond decreases. Therefore, we evaluated the degree of polymerization of pitch fibers, that is, the generation of three-dimensional intermolecular crosslinks, using quinoline insoluble content, and evaluated the degree of introduction of oxygen-containing functional groups into the fibers using VO and V based on elemental analysis. The relationship between carbon fiber strength and fiber strength after carbonization was evaluated, and these optimal values were determined.
An example of this is shown in FIG. From FIG. 8, it can be seen that when the quinoline insoluble content is about 75% or less and about 95% or more, the W fiber strength decreases rapidly. From the above results,
When the validity of values such as QI Olo , Hlo and carbonized fiber strength was confirmed for various mesophase type precursor pitches, it was found that extremely high probability can maximize the raw material properties. Furthermore, we have confirmed that by selecting processing conditions that achieve these maximum values, product variations can be suppressed compared to conventional methods.

光学的異方性ピッチの場合には、溶融紡糸後のピッチ繊
維の段階で配向性が発現しており、不融化による配向の
乱れに留意しなければならない。
In the case of optically anisotropic pitch, orientation is expressed at the stage of pitch fibers after melt-spinning, and attention must be paid to disturbance of orientation due to infusibility.

すなわち、QI(%)く75および昭<o、o2gでは
不融化不足であり、QI(%)〉98および蜘〉0.0
45では繊維物性および配向性の低下を招くことになる
。このためε、本発明においては0.0!5 <Q10
 <0.045、Hlo < 0−45およびフ5くQ
I(%)く98の範囲内に制御する必要がある。これら
の値を満足する酸化a維を得るには、溶融紡糸して得た
ピッチ繊維を300−400”Cの温度範囲の醸化雰囲
気中で熱処理することにより容易に得ることができ、次
いで得られた酸化繊維を常法により炭化し、必要に応じ
て黒鉛化することにより%高品質、高性能の炭素繊維を
得ることができる。
That is, infusibilization is insufficient for QI (%) 75 and Sho<o, o2g, and QI (%)> 98 and Sho> 0.0.
45 results in a decrease in fiber physical properties and orientation. Therefore, ε, in the present invention, is 0.0!5 <Q10
<0.045, Hlo <0-45 and F5Q
It is necessary to control it within a range of 98%. Oxidized α fibers satisfying these values can be easily obtained by heat-treating pitch fibers obtained by melt spinning in a fermentation atmosphere in the temperature range of 300-400"C, and then By carbonizing the obtained oxidized fibers by a conventional method and, if necessary, graphitizing them, high-quality, high-performance carbon fibers can be obtained.

(発明の効果) 上述するように、本発明の方法により優れた力学的性質
を示し、繊維特性のバラツキも従来に比べ小さく抑える
ことができ、かつプリカーサ−ピッチの性能を最大限に
発揮することのできる炭素繊維を製造することができる
。また、不融化度の評価指標によりピッチ繊維の不融化
反応を最適に制御することが可能となり、不融化工程で
の異常が起きて□も後工程での対応がとれ、プロセス全
体としても製品の生産性を向上することができる。
(Effects of the Invention) As described above, the method of the present invention exhibits excellent mechanical properties, suppresses variation in fiber properties to a smaller level than conventional methods, and maximizes precursor pitch performance. It is possible to produce carbon fibers that can In addition, the evaluation index of the degree of infusibility makes it possible to optimally control the infusibility reaction of pitch fibers, and even if an abnormality occurs in the infusibility process, it can be dealt with in the subsequent process, and the product as a whole can be improved. Productivity can be improved.

更に、本発明における上記不融化度指標は、各種のプリ
カーサ−ピッチに対して信頼性が高く、有月である。
Furthermore, the above-mentioned infusibility index in the present invention is highly reliable and reliable for various precursor pitches.

(実施例1〜4)、(比較例1〜8) 軟化点300℃を有し、ベンゼン不溶分(Bl)91.
4%およびキノリン不溶分(Q I ) 28.7%を
含む92.1%の異方性分率を持った光学的異方性ピッ
チを、yl、径0.2鰭およびL/D= 8のノズル2
00個を有する溶融押出紡糸機により溶融紡糸して惨維
径7〜10μmのピッチ繊維束を得た。
(Examples 1 to 4), (Comparative Examples 1 to 8) It has a softening point of 300°C and a benzene insoluble content (Bl) of 91.
An optically anisotropic pitch with an anisotropic fraction of 92.1%, including 4% and 28.7% quinoline insoluble content (Q I ), yl, 0.2 fin diameter and L/D = 8 nozzle 2
A pitch fiber bundle having a fiber diameter of 7 to 10 μm was obtained by melt spinning using a melt extrusion spinning machine having a diameter of 7 to 10 μm.

このピッチ繊維束をHBrで前処理し、また前処理しな
い空気中で加熱処理して不融化を行った。この場合、昇
温速度は2〜b 300〜400°Cの範囲で水準を適訳し、これらを組
み合わせて処理条件を変化させた。
This pitch fiber bundle was pretreated with HBr and then heat treated in air without pretreatment to make it infusible. In this case, the temperature increase rate was appropriately set in the range of 2 to 300 to 400°C, and these were combined to change the processing conditions.

上述するように、前1処理の有無と、処理温度と、昇温
速度とを変化させることによって不融化度の異なる酸化
繊維を調製した。次いで、調製した各醗化彬維を最高温
度1400°Cの温度プロフィルを有する窒素雰囲気中
で、昇温速度100℃/分にて加熱処理して各種炭素繊
維に転化した。得られた各炭素繊維の物性と不融化度と
の関係を表1゛に示す。
As described above, oxidized fibers with different degrees of infusibility were prepared by varying the presence or absence of the pre-treatment, the treatment temperature, and the temperature increase rate. Next, each of the prepared fused carbon fibers was heat-treated at a heating rate of 100°C/min in a nitrogen atmosphere having a temperature profile with a maximum temperature of 1400°C to convert it into various carbon fibers. Table 1 shows the relationship between the physical properties and the degree of infusibility of each of the obtained carbon fibers.

表1から不融化度が低い、すなわち、Q工くフ5または
O/ 0<0.025では炭化物性が低下し、かつる。
Table 1 shows that when the degree of infusibility is low, that is, when Q = 5 or O/0 < 0.025, the carbide properties decrease.

それに対して実施例1N4では強度も満足すべき値であ
り、バラツキも小さいことがわかる。
On the other hand, it can be seen that in Example 1N4, the strength is also a satisfactory value and the variation is small.

(実施例5〜り) 表2に示す8種類の光学的異方性ピッチを直径0.2#
RおよびI、/D=8のノズル200個を有する溶融押
出紡糸機から、集束剤として高級アルコールエチレンオ
キサイド付加物の0.1重:tit%水溶液をl#a重
量当り2重量%の割合で塗布しながら巻取速度400m
/分でボビンに巻きりり、しかる後解舒装ψで巻戻しな
がら合糸し、3000フイラメントの集束線維を連続不
融化・炭化炉を最高1200℃の温度で通過させて焼成
し、ボビンに巻き取った。しかる後、繊維に2600℃
で黒鉛化処理して黒鉛繊維を得た。この結果を表2に示
す。
(Example 5-ri) Eight types of optical anisotropic pitches shown in Table 2 were prepared with a diameter of 0.2#.
From a melt extrusion spinning machine having 200 nozzles with R and I, /D = 8, a 0.1 weight: tit % aqueous solution of higher alcohol ethylene oxide adduct as a sizing agent was added at a rate of 2 weight % per l#a weight. Winding speed 400m while coating
The fibers are wound onto a bobbin at a speed of 1/min, and then unwound using an unwinding device ψ to double the yarn.The bundled fibers of 3000 filaments are fired by passing through a continuous infusibility/carbonization furnace at a maximum temperature of 1200℃, and then wound onto a bobbin. I took it. After that, the fibers were heated to 2600℃.
Graphitization treatment was performed to obtain graphite fibers. The results are shown in Table 2.

表2から、3柿類のプリカーサ−ピッチに対して不融化
度の判定指標か有用であり、信頼性、−膜性の高いこと
がわかる。
From Table 2, it can be seen that the index for determining the degree of infusibility is useful for the precursor pitch of the three persimmons, and has high reliability and film properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不融化温度に対する酸化繊維のベンゼン不溶分
およびキノリン不溶分の変化を示すグラフ、 第2図は不融化繊維のFT−IR測定結果を示すグラフ
、および 第3図は不融化時のキノリン不溶分と炭化強度との関係
を示すグラフである。 第1図 子紅北渇崖(’C) 第2図 不向良イと力6ノ艷 (−〇)
Figure 1 is a graph showing changes in the benzene-insoluble content and quinoline-insoluble content of oxidized fibers with respect to the infusible temperature, Figure 2 is a graph showing the FT-IR measurement results of the infusible fibers, and Figure 3 is the graph at the time of infusibility. It is a graph showing the relationship between quinoline insoluble content and carbonization strength. Fig. 1: Kobei Dangai ('C) Fig. 2: Fukakuranai and force 6 no 艷 (-〇)

Claims (1)

【特許請求の範囲】 1、光学的に異方性を示す石油系および石炭系ピッチを
溶融紡糸し、不融化し、更に炭素化する炭素繊維の製造
方法において、前記ピッチを溶融紡糸して得たピッチ繊
維を300〜400℃の酸化性雰囲気中で熱処理するこ
とにより0.025≦O/C≦0.050、H/C≦0
.45および75≦キノリン不溶分(QI)%≦95の
要件を有する酸化繊維に転化せしめ、この酸化繊維を不
活性雰囲気中で炭素化および黒鉛化することを特徴とす
る高性能炭素繊維の製造方法。 2、ベンゼン不溶分(BI)90%以上およびキノリン
不溶分(QI)20%以上を含み、かつ異方性分率が9
0%を越える光学的に異方性を示すメソフェーズタイプ
の石油系および石炭系のピッチをプリカーサとして使用
する場合には、ピッチ繊維を0.035≦O/C≦0.
045、H/C≦0.42および85≦キノリン不溶分
%≦93の要件を満足する酸化繊維に転化させる特許請
求の範囲第1項記載の方法。
[Claims] 1. A method for producing carbon fiber in which petroleum-based and coal-based pitch exhibiting optical anisotropy is melt-spun, made infusible, and further carbonized, wherein the pitch is obtained by melt-spinning the pitch. 0.025≦O/C≦0.050, H/C≦0 by heat-treating the pitch fibers in an oxidizing atmosphere at 300 to 400°C.
.. 45 and 75≦quinoline insoluble content (QI)%≦95 % quinoline insoluble matter (QI)% . 2. Contains benzene insoluble content (BI) of 90% or more and quinoline insoluble content (QI) of 20% or more, and has an anisotropic fraction of 9
When mesophase type petroleum and coal-based pitches exhibiting optical anisotropy of more than 0% are used as precursors, the pitch fibers should be 0.035≦O/C≦0.
045, H/C≦0.42 and 85≦quinoline insoluble content %≦93.
JP1858685A 1985-02-04 1985-02-04 Production of high performance carbon yarn Pending JPS61179319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1858685A JPS61179319A (en) 1985-02-04 1985-02-04 Production of high performance carbon yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1858685A JPS61179319A (en) 1985-02-04 1985-02-04 Production of high performance carbon yarn

Publications (1)

Publication Number Publication Date
JPS61179319A true JPS61179319A (en) 1986-08-12

Family

ID=11975730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1858685A Pending JPS61179319A (en) 1985-02-04 1985-02-04 Production of high performance carbon yarn

Country Status (1)

Country Link
JP (1) JPS61179319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181733A (en) * 2018-09-30 2019-01-11 中国科学院山西煤炭化学研究所 A kind of method that coal tar pitch preparation can spin pitch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136383A (en) * 1983-01-26 1984-08-04 Agency Of Ind Science & Technol Preparation of pitch for producing carbon fiber
JPS59164386A (en) * 1983-03-10 1984-09-17 Kawasaki Steel Corp Preparation of precursor pitch for carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136383A (en) * 1983-01-26 1984-08-04 Agency Of Ind Science & Technol Preparation of pitch for producing carbon fiber
JPS59164386A (en) * 1983-03-10 1984-09-17 Kawasaki Steel Corp Preparation of precursor pitch for carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109181733A (en) * 2018-09-30 2019-01-11 中国科学院山西煤炭化学研究所 A kind of method that coal tar pitch preparation can spin pitch

Similar Documents

Publication Publication Date Title
US4014725A (en) Method of making carbon cloth from pitch based fiber
US3919387A (en) Process for producing high mesophase content pitch fibers
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
US4138525A (en) Highly-handleable pitch-based fibers
US4975263A (en) Process for producing mesophase pitch-based carbon fibers
US5308599A (en) Process for producing pitch-based carbon fiber
JPS61179319A (en) Production of high performance carbon yarn
JPS60259629A (en) Production of graphitized pitch fiber
US3903248A (en) Process for the production of large denier carbon fibers
EP0148560A2 (en) Process for producing pitch-based graphite fibres
JPS6128019A (en) Production of pitch based carbon fiber
US5348719A (en) Process for producing carbon fibers having high strand strength
JPS5930915A (en) Preparation of carbon fiber
JPS59223315A (en) Production of pitch based carbon fiber
JPH05302217A (en) Production of pitch for matrix
JPS61167018A (en) Production of carbon fiber
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
KR101470261B1 (en) Pitch based carbon fiber and method of producing the same
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS6269826A (en) Production of high-strength and high-modulus carbon fiber
JP3072945B2 (en) Carbon fiber production method
JPS63175122A (en) Production of carbon fiber tow
JPH03279422A (en) Production of hollow carbon fiber
JPH01145374A (en) Production of carbon fiber-reinforced carbonaceous material
JPH054433B2 (en)