JPS6117918B2 - - Google Patents

Info

Publication number
JPS6117918B2
JPS6117918B2 JP3039479A JP3039479A JPS6117918B2 JP S6117918 B2 JPS6117918 B2 JP S6117918B2 JP 3039479 A JP3039479 A JP 3039479A JP 3039479 A JP3039479 A JP 3039479A JP S6117918 B2 JPS6117918 B2 JP S6117918B2
Authority
JP
Japan
Prior art keywords
electrodeposition
ozone
electrodeposition coating
post
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3039479A
Other languages
Japanese (ja)
Other versions
JPS55122895A (en
Inventor
Shiro Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3039479A priority Critical patent/JPS55122895A/en
Publication of JPS55122895A publication Critical patent/JPS55122895A/en
Publication of JPS6117918B2 publication Critical patent/JPS6117918B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は電着塗装法において電着塗装液に発
生する微生物障害を除去する方法に関するもので
ある。 水質規制の強化に伴い電着塗装工程中にクロー
ズドシステムが採用されたところでは、その系内
での微生物の増殖が原因と推定される各種の製品
不良が発生している。このような電着塗装方法の
一例を第1図に基いて説明する。第1図におい
て、1は電着前処理洗浄装置、2は電着浴槽、3
はろ過器、4は後処理洗浄槽、5は工業用水また
は水道水の配管、6,7,8は電着塗装液を循環
させるための配管、9は被塗装物の搬送経路であ
る。 被塗装物は、まず前処理洗浄装置1で、配管5
を通る脱脂およびイオン交換された工業用水また
は水道水で前処理洗浄される。その後、被塗装物
は電着浴槽2に送込まれ、ここで電着塗装液の塗
料が電着される。さらにその後、被塗装物は後処
理洗浄槽4で処理された後、焼付炉へ送られる。
電着塗装液は、電着浴槽2で塗料の供給源になる
だけではなく、ろ過器3でろ過された後、大部分
が電着浴槽2へ返送されるが、一部は後処理洗浄
槽4へ送られ、ここで洗浄液の役割を果し、その
後再び電着浴槽2へ返送されて循環使用される。 従来、前述のような電着塗装法の工程中に発生
する微生物障害の対策としては、電着浴槽2内へ
殺菌剤を直接投与する方法が採られていた。ま
た、殺菌剤としては有機化合物系のものが多く使
用されていた。 しかし、このような方法は、電着浴槽へ殺菌剤
を直接投与するので、投与量が多くなり不経済で
ある。また、投与を重ねるに従つて殺菌剤が電着
浴槽内に蓄積され、電流効率の低下並びに電着不
良を生ずるという欠点があつた。 この発明の発明者は、前述のような従来の方法
の欠点を除去するために、電着浴槽以外に殺菌剤
の投与個所を設定すること、および殺菌剤として
残留性のないものを見つけ出すことの課題を得
て、このような課題を解決するために、まず電着
塗装工程における微生物の増殖場所、微生物の種
類および増殖速度を調査した。その結果を後記第
1表および第2表に示す。
The present invention relates to a method for removing microbial damage occurring in an electrodeposition coating solution in an electrodeposition coating method. In places where closed systems have been adopted during the electrodeposition coating process due to stricter water quality regulations, various product defects have occurred, which are presumed to be caused by the growth of microorganisms within the system. An example of such an electrodeposition coating method will be explained based on FIG. 1. In FIG. 1, 1 is an electrodeposition pretreatment cleaning device, 2 is an electrodeposition bath, and 3
4 is a filter, 4 is a post-treatment cleaning tank, 5 is industrial water or tap water piping, 6, 7, and 8 are piping for circulating the electrodeposition coating solution, and 9 is a conveyance path for the object to be coated. The object to be coated is first cleaned in the pre-treatment cleaning device 1, and the pipe 5
Pre-cleaned with degreased and ion-exchanged industrial water or tap water. Thereafter, the object to be coated is sent to an electrodeposition bath 2, where a paint of an electrodeposition coating liquid is electrodeposited. Further thereafter, the object to be coated is treated in a post-treatment cleaning tank 4 and then sent to a baking furnace.
The electrodeposition coating liquid not only serves as a paint supply source in the electrodeposition bath 2, but also after being filtered by a filter 3, most of it is returned to the electrodeposition bath 2, but a portion is sent to a post-treatment cleaning tank. 4, where it plays the role of a cleaning liquid, and then returned to the electrodeposition bath 2 for circulation use. Conventionally, as a countermeasure against microbial damage occurring during the electrodeposition coating process as described above, a method has been adopted in which a disinfectant is directly administered into the electrodeposition bath 2. Furthermore, many organic compound-based fungicides were used. However, such a method is uneconomical because the disinfectant is directly administered to the electrodeposition bath, resulting in a large amount of disinfectant to be administered. Furthermore, as the disinfectant is repeatedly administered, it accumulates in the electrodeposition bath, resulting in a decrease in current efficiency and poor electrodeposition. In order to eliminate the drawbacks of the conventional methods as described above, the inventor of this invention has decided to set a disinfectant injection point other than the electrodeposition bath, and to find a non-residual disinfectant. In order to solve these problems, we first investigated the growth locations of microorganisms, types of microorganisms, and growth rates in the electrodeposition coating process. The results are shown in Tables 1 and 2 below.

【表】 第1表の結果から、微生物の増殖の場は、電着
浴槽と後処理洗浄槽であり、とくに後処理洗浄槽
で顕著な微生物の増殖がみられるという知見を得
た。
[Table] From the results shown in Table 1, it was found that the places where microorganisms proliferate are the electrodeposition bath and the post-treatment cleaning tank, and particularly remarkable microbial growth was observed in the post-treatment cleaning tank.

【表】 前記第2表は電着塗装液中の微生物の消長を調
査したものであり、電着塗装液中では経時的に増
殖する菌が経時的に死滅する菌に比べて遥かに少
ないという知見を得た。 前述の結果から電着塗装工程中における微生物
増殖過程は次のように推察される。 塗装障害の原因となる微生物は電着浴槽に蓄積
された死滅菌体および流入して来た生存可能菌
(第2表のNo.6およびNo.12)である。微生物増
殖の場は電着浴槽および後処理洗浄槽であり、後
処理洗浄槽の方が多種多様の微生物が増殖する。
後処理洗浄槽で増殖した微生物の大部分(第2表
のNo.6、No.12を除く)は電着浴槽で死滅する。
電着浴槽および後処理洗浄槽での微生物の増殖条
件は時(月)の経過と共に満たされる。 以上の結果から、殺菌剤の投与個所としては、
主な微生物増殖の場である後処理洗浄槽での微生
物増殖の条件をなくす個所で、しかも効果的に殺
菌剤を投与できるところが適当である。すなわ
ち、第1図のろ過器3から後処理洗浄槽4へ至る
間の循環系を流れる後処理洗浄液に投与すること
が適当である。また、殺菌力が強く残留性がない
殺菌剤としてオゾンを用いて、後処理洗浄液に投
与した殺菌効果について次の第3表に示す。
[Table] Table 2 above is a survey of the evolution of microorganisms in the electrodeposition coating solution, and it is said that in the electrodeposition coating solution, there are far fewer bacteria that grow over time than bacteria that die over time. I gained knowledge. From the above results, the microbial growth process during the electrodeposition coating process is inferred as follows. The microorganisms that cause painting failure are dead sterilized cells accumulated in the electrodeposition bath and viable bacteria (No. 6 and No. 12 in Table 2) that have flowed into the bath. The places where microorganisms grow are the electrodeposition bath and the post-treatment cleaning tank, and a wider variety of microorganisms grow in the post-treatment cleaning tank.
Most of the microorganisms grown in the post-treatment cleaning tank (excluding No. 6 and No. 12 in Table 2) are killed in the electrodeposition bath.
The conditions for growth of microorganisms in the electrodeposition bath and post-treatment cleaning bath are satisfied over time (months). Based on the above results, the areas where fungicides should be administered are:
It is appropriate to use a location that eliminates the conditions for microbial growth in the post-treatment cleaning tank, which is the main place for microbial growth, and a location where the disinfectant can be administered effectively. That is, it is appropriate to administer it to the post-treatment cleaning liquid flowing through the circulation system from the filter 3 to the post-treatment cleaning tank 4 in FIG. Furthermore, the following Table 3 shows the sterilizing effect of ozone, which is a sterilizing agent with strong sterilizing power and no residual properties, and is administered to the post-treatment cleaning liquid.

【表】 第3表の結果から、オゾンを後処理洗浄液1
当り60mg投与すれば十分な殺菌効果が得られるこ
とが判明した。また、オゾンと微生物との反応は
きわめて速く、余剰のオゾンも試料液中に存在し
ていた塗料成分と反応して消費されてしまう。そ
して、オゾンと塗料成分との反応生成物もきわめ
て微量である。従つて、オゾンが電着塗装工程で
増殖する微生物に対する適当な殺菌剤であること
が判明した。 この発明は、前述のような知見を得て完成した
ものであつて、電着浴槽とろ過器との間に電着塗
装液を循環させると共に、この電着塗装液の一部
をろ過器出口から後処理洗浄槽へ送り電着浴槽に
戻す工程を含む電着塗装法において、ろ過器と後
処理洗浄槽との間で電着塗装液にオゾンを注入す
ることを特徴とするものである。 以下この発明の一実施例を第2図に基いて説明
する。第2図において、10は三方弁、11は循
環電着塗装液の分岐管、12はオゾン反応塔、1
3はオゾン発生器、14は散気管、15は排オゾ
ン処理装置、16は排気管である。なお、第2図
中第1図と同一または相当する部分は同符号をつ
けて説明を省略する。 電着浴槽2とろ過器3との間を循環している電
着塗料の水溶液からなる電着塗装液を、ろ過器3
でろ過し、一部の微生物および微生物以外のオゾ
ン消費物質を除去した後、ろ過器3の出口から大
部分は電着浴槽2へ返送し、一部が後処理洗浄槽
4へ送られ、その後電着浴槽2へ送られる。微生
物増殖時には、ろ過器3を経て後処理洗浄槽4へ
送られる電着塗装液を、三方弁10の操作によつ
て切換え、オゾン反応塔12へ導入し、オゾン発
生器13で発生させたオゾンを散気管14から電
着塗装液に注入することにより、オゾン反応塔1
2内の電着塗装液を殺菌した後、後処理洗浄槽4
へ送り、被塗装物の処理に用い、その後電着浴槽
2に戻す。一方、オゾン反応塔12で電着塗装液
と反応させた後のガスは、排オゾン処理装置15
で余剰オゾンを除去して排気管16から大気に放
出する。 なお、この発明において、オゾンの注入方法
は、第2図のような気泡塔の他に、オゾン含有ガ
スを循環系の電着塗装液に直接注入してもよい。 以上説明したようにこの発明の微生物障害除去
方法によれば、殺菌剤の投与個所をろ過器を通過
した後に、後処理浄化槽に至る循環系に設置し、
殺菌剤としてオゾンを用いているので、次のよう
な効果が得られる。 殺菌剤を電着浴槽に投与しないので、電着浴槽
に殺菌剤が蓄積されず、電極反応に悪影響を及ぼ
さない。殺菌剤の投与個所がろ過器でオゾン消費
物質をろ過した後の少量の電着塗装液であるの
で、オゾンの消費量が少なくてすむ。殺菌剤の投
与個所が微生物増殖の主要な場である後処理洗浄
槽へ送られる直前の電着塗装液中であるので、微
生物の殺菌および増殖防止が効果的に達成でき
る。殺菌剤としてオゾンを用いているので、残留
性がなく、循環系内に蓄積されない。オゾンはオ
ゾン発生器で発生させるもので、原料は空気であ
り、制御が容易である。オゾン反応塔で未反応で
あつたガス中のオゾンは排オゾン処理装置で処理
して排出することができるので、2次公害の恐れ
もない。
[Table] From the results in Table 3, ozone is removed from post-treatment cleaning solution 1.
It was found that a sufficient bactericidal effect could be obtained by administering 60mg per dose. Furthermore, the reaction between ozone and microorganisms is extremely fast, and excess ozone is also consumed by reacting with paint components present in the sample liquid. Also, the amount of reaction products between ozone and paint components is extremely small. Therefore, ozone has been found to be a suitable disinfectant against microorganisms that grow during electrocoating processes. This invention was completed based on the above-mentioned knowledge, and it circulates the electrodeposition coating liquid between the electrodeposition bath and the filter, and also directs a part of the electrodeposition coating liquid to the outlet of the filter. This electrodeposition coating method includes the steps of sending the electrocoating liquid from the electrocoating liquid to a post-treatment cleaning tank and returning it to the electrodeposition bath, and is characterized by injecting ozone into the electrodeposition coating liquid between the filter and the post-treatment cleaning tank. An embodiment of the present invention will be described below with reference to FIG. In Fig. 2, 10 is a three-way valve, 11 is a branch pipe for circulating electrodeposition coating liquid, 12 is an ozone reaction tower, 1
3 is an ozone generator, 14 is an aeration pipe, 15 is an exhaust ozone treatment device, and 16 is an exhaust pipe. In addition, the parts in FIG. 2 that are the same as or correspond to those in FIG. The electrodeposition coating liquid consisting of an aqueous solution of electrodeposition paint circulating between the electrodeposition bath 2 and the filter 3 is passed through the filter 3.
After removing some microorganisms and ozone consuming substances other than microorganisms, most of the ozone consuming substances are returned to the electrodeposition bath 2 from the outlet of the filter 3, and a part is sent to the post-treatment cleaning tank 4, and then It is sent to the electrodeposition bath 2. During the growth of microorganisms, the electrocoating liquid sent to the post-treatment cleaning tank 4 via the filter 3 is switched by operating the three-way valve 10 and introduced into the ozone reaction tower 12, where it is fed into the ozone generated by the ozone generator 13. is injected into the electrodeposition coating liquid from the aeration pipe 14,
After sterilizing the electrodeposition coating liquid in 2, the post-treatment cleaning tank 4
The electrodepositing bath 2 is sent to the electrodeposition bath 2, used for processing the object to be coated, and then returned to the electrodeposition bath 2. On the other hand, the gas after reacting with the electrodeposition coating liquid in the ozone reaction tower 12 is transferred to the exhaust ozone treatment device 15.
Excess ozone is removed and released into the atmosphere from the exhaust pipe 16. In the present invention, the ozone injection method may be performed by directly injecting the ozone-containing gas into the electrodeposition coating liquid in the circulating system, in addition to the bubble column shown in FIG. As explained above, according to the method for removing microbial disturbances of the present invention, the disinfectant injection point is installed in the circulation system leading to the post-treatment septic tank after passing through the filter,
Since ozone is used as a disinfectant, the following effects can be obtained. Since the disinfectant is not administered to the electrodeposition bath, the disinfectant does not accumulate in the electrodeposition bath and does not adversely affect the electrode reaction. Since the disinfectant is administered in a small amount of the electrodeposition coating solution after ozone consuming substances have been filtered out using a filter, the amount of ozone consumed can be reduced. Since the disinfectant is administered in the electrodeposition coating solution immediately before being sent to the post-treatment cleaning tank, which is the main site for microbial proliferation, microbial sterilization and proliferation prevention can be effectively achieved. Since ozone is used as a disinfectant, it has no residual properties and does not accumulate in the circulatory system. Ozone is generated by an ozone generator, the raw material is air, and it is easy to control. Since the ozone in the gas that has not reacted in the ozone reaction tower can be treated and discharged by the exhaust ozone treatment device, there is no fear of secondary pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電着塗装工程の一例を示す系統図、第
2図は第1図の電着塗装工程にこの発明を適用し
た一実施例を示す系統図である。 1……前処理洗浄装置、2……電着浴槽、3…
…ろ過器、4……後処理洗浄槽、10……三方
弁、12……オゾン反応塔、13……オゾン発生
器、14……散気器、15……非オゾン処理装
置、16……排気管。なお、図中同一符号は同一
または相当部分を示す。
FIG. 1 is a system diagram showing an example of an electrodeposition coating process, and FIG. 2 is a system diagram showing an embodiment in which the present invention is applied to the electrodeposition coating process of FIG. 1...Pretreatment cleaning device, 2...Electrodeposition bath, 3...
... Filter, 4 ... Post-treatment cleaning tank, 10 ... Three-way valve, 12 ... Ozone reaction tower, 13 ... Ozone generator, 14 ... Diffuser, 15 ... Non-ozone treatment device, 16 ... Exhaust pipe. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 電着浴槽とろ過器との間に電着塗装液を循環
させると共に、この電着塗装液の一部をろ過器出
口から後処理洗浄槽へ送り電着浴槽に戻す工程を
含む電着塗装法において、ろ過器と後処理洗浄槽
の間で電着塗装液にオゾンを注入することを特徴
とする電着塗装法における微生物障害除去方法。
1. Electrodeposition coating, which includes the process of circulating the electrodeposition coating liquid between the electrodeposition bath and the filter, and sending a part of this electrodeposition coating liquid from the filter outlet to the post-treatment cleaning tank and returning it to the electrodeposition bath. A method for removing microbial disturbances in an electrodeposition coating method, which is characterized by injecting ozone into an electrodeposition coating solution between a filter and a post-treatment cleaning tank.
JP3039479A 1979-03-15 1979-03-15 Removing method for microorganism impediment in electrocoating Granted JPS55122895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3039479A JPS55122895A (en) 1979-03-15 1979-03-15 Removing method for microorganism impediment in electrocoating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039479A JPS55122895A (en) 1979-03-15 1979-03-15 Removing method for microorganism impediment in electrocoating

Publications (2)

Publication Number Publication Date
JPS55122895A JPS55122895A (en) 1980-09-20
JPS6117918B2 true JPS6117918B2 (en) 1986-05-09

Family

ID=12302702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039479A Granted JPS55122895A (en) 1979-03-15 1979-03-15 Removing method for microorganism impediment in electrocoating

Country Status (1)

Country Link
JP (1) JPS55122895A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264690A (en) * 1990-03-14 1991-11-25 Trinity Ind Corp Method of controlling electrode liquid in diaphragm electrode unit
ES2394457T3 (en) * 2004-06-23 2013-01-31 Ashland Licensing And Intellectual Property Llc Device and method for treating fluids used in electro-coating processes with ultrasound

Also Published As

Publication number Publication date
JPS55122895A (en) 1980-09-20

Similar Documents

Publication Publication Date Title
US5147605A (en) Method for the sterilization of ultrapure water line
EP2569028B1 (en) System for producing ultra-pure water in dialysis
US4452264A (en) Rinsing of articles to remove an adhering substance
JPS6117918B2 (en)
CN207671866U (en) A kind of high saliferous high concentration hard-degraded organic waste water advanced treatment system
JPH0461984A (en) Bacteriostatic method of active carbon
US4537640A (en) Rinsing of articles to remove an adhering substance
CN213763049U (en) Cleaning device, dispensing device and treatment device
DE69938175D1 (en) METHOD AND DEVICE FOR DETOXIFYING AND ODOR REFRESHING OF STERILIZING GAS
US7160458B2 (en) Method for purification of process water from a kerosene desulfurization plant
KR100331340B1 (en) device for eliminating stench and volatile compound with microbe
JPS5881996A (en) Sterilization of microorganism in electrodepostion painting
JPH05140799A (en) Sterilizer
DE102004039084B4 (en) Device for cleaning or pasteurizing objects
JPH01207191A (en) Mechanical element for liquid treatment
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
JPH07236883A (en) Water treatment apparatus
CN211570311U (en) Water treatment device meeting requirements of water for final rinsing and damp-heat disinfection
CN213171970U (en) Denitrogenation device to high salinity waste water
JPS58133884A (en) Sterilizing method of supply system for high purity water
CN204778957U (en) Reuse of reclaimed water system with shutdown protection function
JPH0686999A (en) Method and device for transporting sludge
KR19980071769A (en) Livestock Manure Treatment Method for Improving Livestock Environment
CN212102456U (en) Medical appliances washs waste water cyclic utilization device
JPS62176507A (en) Regenerating treatment of super filter membrane