JPS61178405A - Method of regenerating adsorbent for nitrogen generator - Google Patents

Method of regenerating adsorbent for nitrogen generator

Info

Publication number
JPS61178405A
JPS61178405A JP60016503A JP1650385A JPS61178405A JP S61178405 A JPS61178405 A JP S61178405A JP 60016503 A JP60016503 A JP 60016503A JP 1650385 A JP1650385 A JP 1650385A JP S61178405 A JPS61178405 A JP S61178405A
Authority
JP
Japan
Prior art keywords
adsorbent
tank
adsorption
adsorption tank
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60016503A
Other languages
Japanese (ja)
Inventor
Shinji Mihashi
三橋 晋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60016503A priority Critical patent/JPS61178405A/en
Publication of JPS61178405A publication Critical patent/JPS61178405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:In separating and collecting N2 by sending compressed air to two adsorption tanks alternately so that O2 is generated in an adsorbent in the adsorption tanks, to regenerate the adsorbent without requiring an exclusive vacuum pump, by using negative pressure produced in an air compressor. CONSTITUTION:Air passed through the filter 5 is compressed by the compressor 1, sent through the aftercooler 2 and the drain separator 3 to the first adsorption tank 4A, O2 in the air is adsorbed on an adsorbent in it, and high-purity N2 is stored in the N2 product tank 12. In the operation, negative pressure in a cylinder in the compressor 1 is stored through the back-flow valve 18 and the solenoid valve 19 in the vacuum tank 20. After the adsorbent in the first adsorption tank 4A adsorbs O2 sufficiently, feed of compressed air is changed into the second adsorption tank 4B. Simultaneously the solenoid valve 8 of a pipe to connect the first adsorption tank 4A to the vacuum tank 20 is opened, the first adsorption tank is evacuated, O2 adsorbed on the adsorbent is released into the air, the adsorbent is regenerated, and used from the next O2 adsorption.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は2槽の吸着槽に交互に被処理流体を供給し、一
方では吸着剤による吸着処理を、他方では吸着剤の再生
をそれぞれ行なう圧力スイング法に関する吸着剤の再生
方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention involves supplying a fluid to be treated alternately to two adsorption tanks, and adjusting the pressure to perform adsorption treatment with an adsorbent in one tank and regenerate the adsorbent in the other tank. This invention relates to an adsorbent regeneration method related to the swing method.

〔発明の背景〕[Background of the invention]

第1図により窒素発生装置の従来技術について説明する
The conventional technology of a nitrogen generator will be explained with reference to FIG.

第1図において1は圧縮機、2はアフタークーラー、3
はドレンセパレーター、4Aおよび4Bは第1吸着槽お
よび第2吸着槽である。
In Figure 1, 1 is a compressor, 2 is an aftercooler, and 3 is a compressor.
is a drain separator, and 4A and 4B are a first adsorption tank and a second adsorption tank.

圧縮機1は5のフィルターを介し大気空気を吸込み、圧
縮機工で圧縮された空気はアフタークーラー2およびド
レンセパレーター3により水分を除去し吸着槽に供給さ
れるが、以下にこのプロセスを説明すると、まず第1吸
着槽4Aの電磁弁6゜7および8のうち電磁弁6および
7は開、電磁弁8は閉の状態にする。−力筒2吸着槽4
Bの電磁弁9,10および11のうち電磁弁9および1
0:、は閉、電磁弁11は開の状態にする。この状態で
圧縮空気を供給すると圧縮空気は電磁弁6を介し第1吸
着槽4Aに供給され、吸着槽内の吸着剤により圧縮空気
中の酸素ガスが吸着され残りの窒素ガスは電磁弁7を介
し製品槽12にたくわえられる。
The compressor 1 sucks atmospheric air through a filter 5, and the air compressed by the compressor removes moisture through an aftercooler 2 and a drain separator 3 before being supplied to an adsorption tank. This process will be explained below. First, among the solenoid valves 6, 7 and 8 of the first adsorption tank 4A, the solenoid valves 6 and 7 are opened and the solenoid valve 8 is closed. -Power cylinder 2 adsorption tank 4
Among the solenoid valves 9, 10 and 11 of B, solenoid valves 9 and 1
0: is closed and the solenoid valve 11 is open. When compressed air is supplied in this state, the compressed air is supplied to the first adsorption tank 4A via the solenoid valve 6, the oxygen gas in the compressed air is adsorbed by the adsorbent in the adsorption tank, and the remaining nitrogen gas is passed through the solenoid valve 7. The processed product is stored in the product tank 12.

一方第2吸着槽4Bは真空ポンプ13により真空になり
、吸着槽内の吸着剤に吸着されている酸素ガスは電磁弁
11を介し大気14に放出されるので結果的には吸着剤
は再生されることになる。
On the other hand, the second adsorption tank 4B is evacuated by the vacuum pump 13, and the oxygen gas adsorbed by the adsorbent in the adsorption tank is released to the atmosphere 14 via the solenoid valve 11, so that the adsorption agent is regenerated as a result. That will happen.

以上説明したプロセスを交互に繰返して行なうことによ
り窒素ガスは連続的に発生させることができるものであ
る。
By alternately repeating the process described above, nitrogen gas can be continuously generated.

尚第1図に示した15は窒素濃度検出器であり、上記に
示したプロセスに何らかのトラブルが発生し酸素ガスが
残留していた場合、この検出器15により弁16を閉じ
、製品槽12へのガスの供給を停止させるためのもので
ある。また図中の点線で示した部分は、圧縮機1.アフ
タークーラー2および真空ポンプ13にそれぞれ供給し
ている冷却水を示している。
In addition, 15 shown in FIG. 1 is a nitrogen concentration detector. If some trouble occurs in the process shown above and oxygen gas remains, this detector 15 closes the valve 16 and releases the gas to the product tank 12. This is to stop the gas supply. Also, the part indicated by the dotted line in the figure is the compressor 1. Cooling water supplied to the aftercooler 2 and the vacuum pump 13 is shown.

このような従来の装置では、真空ポンプを必要とし、構
成が複雑になること、制御が面倒になることおよびコス
ト高となる問題がある。
Such conventional devices require a vacuum pump, resulting in a complicated configuration, troublesome control, and high cost.

〔発明の目的〕 本発明の目的は真空ポンプを用いずに圧力スイング法に
よる吸着剤の再生を可能にしたものである。
[Object of the Invention] An object of the present invention is to enable regeneration of an adsorbent by a pressure swing method without using a vacuum pump.

〔発明の概要〕[Summary of the invention]

窒素発生装置は圧縮機によって圧縮空気を得、これを2
槽の吸着槽に交互に供給し、吸着槽内の吸着剤に酸素ガ
スを吸着させ窒素ガスを取り出すものであるが、圧縮機
は空気を吸込む行程において負圧が発生するが、本発明
はこの負荷を逆止弁を介し真空槽にたくわえ、これによ
り吸着剤を再生させるものである。
Nitrogen generators obtain compressed air using a compressor, which is then
Nitrogen gas is alternately supplied to an adsorption tank in a tank, and the adsorbent in the adsorption tank adsorbs oxygen gas to extract nitrogen gas, but the compressor generates negative pressure in the process of sucking air. The load is stored in a vacuum tank via a check valve, thereby regenerating the adsorbent.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第2図にて説明する。 An embodiment of the present invention will be described below with reference to FIG.

尚本図において第1図と同じ符号をつけたものは同じも
のを示す。
In this figure, the same reference numerals as in FIG. 1 indicate the same parts.

圧縮機1はシリンダ内にピストン1aを有し、シリンダ
の一端には吸込弁1bおよび吐出弁1cが取り付けられ
ているが、この構成においてピストン1aを一往復させ
ると、シリンダ内圧力は。
The compressor 1 has a piston 1a in a cylinder, and a suction valve 1b and a discharge valve 1c are attached to one end of the cylinder. In this configuration, when the piston 1a is reciprocated once, the pressure inside the cylinder will be.

第3図に示すような圧力変化を示す、第3図において、
P4は吐出圧力、P、は吸込圧力(大気圧)であるが圧
縮機の吸込行程ではハツチングで示すように吸込圧力P
、より低い圧力が発生する。これはフィルター5.吸込
管路17.および吸込弁1bの流路抵抗によるものであ
り、普常この圧力は0.2〜0.3 kg/cdである
ことは周知のことである。
In Figure 3, which shows pressure changes as shown in Figure 3,
P4 is the discharge pressure, P is the suction pressure (atmospheric pressure), but in the suction stroke of the compressor, the suction pressure P is shown by hatching.
, a lower pressure will occur. This is filter 5. Suction pipe line 17. This is due to the flow path resistance of the suction valve 1b, and it is well known that this pressure is normally 0.2 to 0.3 kg/cd.

本発明はこのシリンダ内に発生する負圧を利用し吸着剤
の再生を行なうものである。
The present invention utilizes the negative pressure generated within this cylinder to regenerate the adsorbent.

すなわち、第2図において、圧縮機1のシリンダ内の負
圧を逆止弁18および電磁弁19を介し真空槽20にた
くわえられる“よう接続する。また真空槽20には酸素
ガスの濃度が高いガスを大気へ放出するための電磁弁2
1および22が取付けられている。
That is, in FIG. 2, the negative pressure in the cylinder of the compressor 1 is connected to the vacuum chamber 20 through the check valve 18 and the solenoid valve 19 so that it is stored in the vacuum chamber 20. Solenoid valve 2 for releasing gas to the atmosphere
1 and 22 are installed.

一方第1吸着槽4Aおよび第2吸着槽4Bには大気へ圧
縮空気を放出できるようあらたに電磁弁23および24
を取付ける。そして第1吸着槽4Aの電磁弁8と第2吸
着槽4Bの電磁弁をそれぞれ真空槽2〇へ接続させる。
On the other hand, new solenoid valves 23 and 24 are installed in the first adsorption tank 4A and the second adsorption tank 4B to release compressed air to the atmosphere.
Install. Then, the solenoid valve 8 of the first adsorption tank 4A and the solenoid valve of the second adsorption tank 4B are connected to the vacuum tank 20, respectively.

この構成において、窒素発生装置としてのプロセスを説
明すると、まず第1吸着槽4Aのみに圧縮空気を供給す
るため第1吸着槽4Aの電磁弁6゜7奄開の状態にし、
電磁弁8,23は閉の状態にしておく(この時の第2吸
着槽4Bの電磁弁9゜10、11および24はいずれも
閉の状態、また真空槽20に取り付けた電磁弁21.2
2も閉の状態)、この状態で圧縮機1を運転すると圧縮
空気はアフタークーラー2.ドレンセパレーター3を介
し第1吸着槽4Aに供給され、第1吸着槽4A内の吸着
剤によって酸素ガスが吸着され、窒素ガスのみ電磁弁7
を介し製品槽12へたくわえられる。一方、シリンダ内
に発生する負圧は逆止弁18および電磁弁19を介し真
空槽へたくわえられる。そして第1吸着槽4A内の吸着
剤が充分酸素ガスを吸着した時点(飽和状態)でまず、
電磁弁6,7を閉にすると同時に第2吸着槽4Bの電磁
弁9.10を開の状態にし吸着作業を第2吸着槽4Bに
うつす。
In this configuration, to explain the process as a nitrogen generator, first, in order to supply compressed air only to the first adsorption tank 4A, the solenoid valve of the first adsorption tank 4A is opened to 6° 7 degrees,
The solenoid valves 8 and 23 are kept closed (at this time, the solenoid valves 9, 10, 11, and 24 of the second adsorption tank 4B are all closed, and the solenoid valves 21 and 24 attached to the vacuum chamber 20 are closed).
2 is also closed), and when compressor 1 is operated in this state, the compressed air flows to aftercooler 2. Oxygen gas is supplied to the first adsorption tank 4A via the drain separator 3, and oxygen gas is adsorbed by the adsorbent in the first adsorption tank 4A, and only nitrogen gas is supplied to the solenoid valve 7.
The product is stored in the product tank 12 via. On the other hand, the negative pressure generated within the cylinder is stored in the vacuum tank via the check valve 18 and the electromagnetic valve 19. When the adsorbent in the first adsorption tank 4A has adsorbed enough oxygen gas (saturated state), first,
At the same time as the solenoid valves 6 and 7 are closed, the solenoid valve 9.10 of the second adsorption tank 4B is opened to transfer the adsorption work to the second adsorption tank 4B.

この間に第1吸着槽4A内の吸着剤に吸着した酸素ガス
を取り出し吸着剤の再生を行なうのであるが、それはま
ず第1段階で電磁弁23を開にし第1吸着槽4Aの残留
圧縮空気を大気へ放出した後、ただちに電磁弁23を閉
゛の状態にもどす、第2段階で電磁弁8を開にして真空
槽20に接続し第1吸着槽内を真空にし、吸着剤に吸着
している酸素ガスを放出し吸着剤の再生を行なったのち
に電磁弁8を閉の状態にもどす、この状態での真空槽2
0内の酸素濃度は高いので、これを圧縮機1が吸込んで
は問題があるので、次の第3段階では真空槽20内の酸
素濃度を低くするため真空槽20に取り付けた電磁弁2
1.22を開にし圧縮空気を一部大気に放出させ、その
後電磁弁21゜22を閉の状態にすると同時に、電磁弁
19を開の状態にし再び真空槽20内を真空にする。
During this time, the oxygen gas adsorbed on the adsorbent in the first adsorption tank 4A is taken out and the adsorbent is regenerated.In the first step, the solenoid valve 23 is opened and the residual compressed air in the first adsorption tank 4A is removed. Immediately after releasing the gas into the atmosphere, the solenoid valve 23 is returned to the closed state. In the second step, the solenoid valve 8 is opened and connected to the vacuum tank 20 to create a vacuum inside the first adsorption tank, and the adsorbent absorbs the adsorbent. After releasing the oxygen gas and regenerating the adsorbent, the solenoid valve 8 is returned to the closed state.
Since the oxygen concentration in the vacuum chamber 20 is high, there will be a problem if the compressor 1 sucks it in. Therefore, in the next third stage, a solenoid valve 2 attached to the vacuum chamber 20 is used to lower the oxygen concentration in the vacuum chamber 20.
1.22 is opened to release a part of the compressed air to the atmosphere, and then the solenoid valves 21 and 22 are closed, and at the same time, the solenoid valve 19 is opened to make the vacuum chamber 20 vacuum again.

以上説明したプロセスを第1吸着槽4Aと第2吸着槽4
Bで交互に行なえば、窒素ガスは連続的に供給が可能と
なり、従来のごとく別個の真空ポンプを用いなくとも吸
着剤の再生ができる。
The process explained above is carried out in the first adsorption tank 4A and the second adsorption tank 4A.
By alternately performing the steps B, nitrogen gas can be supplied continuously, and the adsorbent can be regenerated without using a separate vacuum pump as in the past.

尚第2図での圧縮機1は往復動圧縮機の例で示している
が、本発明はこれに固定するものではなく、他の回転式
圧縮機(スクリュー形スクロール形、ロータリ形など)
でも吸込抵抗による負圧は発生するので、同じ方法を用
いることができるということはいうまでもないことであ
る。
Although the compressor 1 in FIG. 2 is shown as an example of a reciprocating compressor, the present invention is not limited to this, and may be applied to other rotary compressors (screw type, rotary type, etc.)
However, since negative pressure is generated due to suction resistance, it goes without saying that the same method can be used.

また、真空ポンプが不要になる結果、 (1)装置の消費電力が少なくなる、 (2)装置空間を小さくできる、 (3)装置のコストを安くできる。Also, as a result of eliminating the need for a vacuum pump, (1) The power consumption of the device is reduced. (2) The equipment space can be reduced. (3) The cost of the device can be reduced.

(4)メンテナンスが簡素化できる、 などの効果がある。(4) Maintenance can be simplified. There are effects such as

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば真空ポンプを廃止すること
ができる。
As described above, according to the present invention, the vacuum pump can be abolished.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術を説明する装置系統図、第2戸は本発
明を説明する装置系統図、第3図はP−V線図である。 1・・・圧縮機、2・・・アフタークーラー、4A・・
・第1吸着槽、4B・・・第2吸着剤、6,7,8,9
゜10.11,19,21,22,23.24・・・電
磁弁、18・・・逆止弁、20・・・真空槽。
FIG. 1 is a system diagram of a device to explain the prior art, the second diagram is a system diagram of a device to explain the present invention, and FIG. 3 is a PV diagram. 1...Compressor, 2...Aftercooler, 4A...
・First adsorption tank, 4B...Second adsorption agent, 6, 7, 8, 9
゜10.11, 19, 21, 22, 23.24... Solenoid valve, 18... Check valve, 20... Vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機により、圧縮空気を2槽の吸着槽に交互に供給し
、吸着槽内の吸着剤により、空気中の酸素ガスを吸着さ
せ、窒素ガスのみ取り出す窒素発生装置において、圧縮
機の吸込行程に発生する負圧を逆止弁を介し真空槽にた
くわえ、この負圧によつて吸着剤に吸着している酸素ガ
スを大気に放出させ吸着剤の再生を行なうことを特徴と
する吸着剤の再生方法。
In a nitrogen generator, a compressor alternately supplies compressed air to two adsorption tanks, the adsorbent in the adsorption tank adsorbs oxygen gas in the air, and extracts only nitrogen gas. Adsorbent regeneration characterized by storing the generated negative pressure in a vacuum chamber via a check valve, and using this negative pressure to release oxygen gas adsorbed on the adsorbent to the atmosphere to regenerate the adsorbent. Method.
JP60016503A 1985-02-01 1985-02-01 Method of regenerating adsorbent for nitrogen generator Pending JPS61178405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016503A JPS61178405A (en) 1985-02-01 1985-02-01 Method of regenerating adsorbent for nitrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016503A JPS61178405A (en) 1985-02-01 1985-02-01 Method of regenerating adsorbent for nitrogen generator

Publications (1)

Publication Number Publication Date
JPS61178405A true JPS61178405A (en) 1986-08-11

Family

ID=11918075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016503A Pending JPS61178405A (en) 1985-02-01 1985-02-01 Method of regenerating adsorbent for nitrogen generator

Country Status (1)

Country Link
JP (1) JPS61178405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002531A (en) * 2014-06-18 2016-01-12 株式会社神戸製鋼所 Psa apparatus, and a method of adsorption and removal using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002531A (en) * 2014-06-18 2016-01-12 株式会社神戸製鋼所 Psa apparatus, and a method of adsorption and removal using the same

Similar Documents

Publication Publication Date Title
US5154737A (en) System for eliminating air leakage and high purity oxygen of a PSA oxygen concentrator
KR20020048327A (en) Gas concentrating Method and apparatus for use of Pressure Swing Adsorption
JP2004000819A (en) Gas isolating process
JP2008229493A (en) Pressure swing adsorption type oxygen concentrator
JPS61178405A (en) Method of regenerating adsorbent for nitrogen generator
JPH01184016A (en) Apparatus for gas separation
KR100440873B1 (en) Oxygen concentrator
JP3378949B2 (en) Pressure fluctuation type air separation device and operation method thereof
JPH11267439A (en) Gas separation and gas separator for performing same
JPS61178406A (en) Method of regenerating adsorbent for nitrogen generator
JP2012110824A (en) Psa device
JP3895037B2 (en) Low pressure oxygen enrichment method
KR100360835B1 (en) A continuous oxygen concentrator with 3 tower-2 compressor and the method thereof
JP6747479B2 (en) Oxygen concentrator
JP2019085293A (en) Low oxygen concentration air supply apparatus
JP3237973B2 (en) How to start pressure swing adsorption equipment
JPH11347336A (en) Small-size gas separation device
KR200248642Y1 (en) Oxygen concentrator
KR200217386Y1 (en) A continuous oxygen concentrator with 3 tower-2 compressor and the method thereof
JP2020146685A (en) Oxygen concentration method
JPH0938443A (en) Gas separator
JPH0433942Y2 (en)
JP2005262192A (en) Oxygen concentrator
KR200287409Y1 (en) Gas concentrating apparatus for use of Pressure Swing Adsorption
JP3071314B2 (en) High productivity gas separation method