JPS6117791B2 - - Google Patents

Info

Publication number
JPS6117791B2
JPS6117791B2 JP58030381A JP3038183A JPS6117791B2 JP S6117791 B2 JPS6117791 B2 JP S6117791B2 JP 58030381 A JP58030381 A JP 58030381A JP 3038183 A JP3038183 A JP 3038183A JP S6117791 B2 JPS6117791 B2 JP S6117791B2
Authority
JP
Japan
Prior art keywords
weight
alumina
spray
resistance
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58030381A
Other languages
Japanese (ja)
Other versions
JPS59156969A (en
Inventor
Naoki Tsutsui
Tamotsu Oosaki
Kazuo Yoshida
Taizo Tamehiro
Toshihiro Isobe
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58030381A priority Critical patent/JPS59156969A/en
Publication of JPS59156969A publication Critical patent/JPS59156969A/en
Publication of JPS6117791B2 publication Critical patent/JPS6117791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高炉炉壁の損傷部を補修する吹付材
に関するものである。 高炉は、炉寿命の末期になると炉壁耐火物の磨
耗、脱落などによつて鉄皮の赤熱、あるいは鉄皮
に亀裂が発生してガス漏れなどのトラブルが生
じ、その稼動率、操業度が低下する。 そこで最近、炉の休風時に炉内容物を減尺し、
上方開口部から挿入した吹付ノズルを用いて炉壁
の損傷個所を吹付補修することが知られている。
高炉補修には、他にも鉄皮を通して炉内部に耐火
材を圧入する方法があるが、これに比較して吹付
補修は、損傷個所、損傷度合などを確認の上で行
えることから、正確かつ効率的に補修することが
できる。本発明は、この高炉炉壁の吹付補修に好
適な吹付材を提供するものである。 転炉などの溶融金属容器においては、従来から
吹付補修が盛んに行われている。しかしながら、
高炉炉壁は炉内容物の降下にともなう磨耗、コー
クス、鉄鉱石からくるアルカリなどに対する抵抗
性、あるいは冷却効果の保持など、他の炉では見
られない特性が要求され、従来の吹付材ではこれ
に対応できなかつた。 本発明は、以上の特性を備えたものであり、ア
ルミナセメント5〜40重量%,残部がシリカ―ア
ルミナ質、高アルミナ質、アルミナ質から選ばれ
る一種又は二種以上を主材とした耐火材よりなる
配合物に、外掛けで粘土0.5〜15重量%と、ステ
ンレススチールフアイバー0.5〜10重量%を含有
した水冷クーラーを備える高炉炉壁の補修用吹付
材である。 骨材はシリカ―アルミナ質、高アルミナ質、ア
ルミナ質から選ばれる一種又は二種以上と主体と
する。これらは、従来の吹付材で使用されること
の多いマグネシア質、ドロマイト質に比較して熱
膨張率が小さく、かつ、耐熱衝撃性にすぐれるた
め、吹付材が付着した後の接着強度が高い。シリ
カ質に比較すると高融点であるとともに、耐アル
カリ性にすぐれる。さらに、材料中のアルミナ成
分は硬度が大きく、吹付材の耐磨耗性に寄力す
る。 アルミナ―シリカ質としては、カオリンや頁岩
質粘土を〓焼して得た各種のシヤモツト、あるい
はロー石など、高アルミナ質はポーキサイト、シ
リマナイト、ばん土質岩、カイアナイト、ムライ
ト、アンダリユーサイトなど、アルミナ質として
は焼結又は電融のアルミナ、あるいはK2O,
Na2Oを含有するβ―アルミナが例示される。ア
ルカリによる吹付材組織の脆弱化は、SiO2
Al2O3成分がアルカリと反応して生じるため、上
記の耐火材のうちでもSiO2含有量の少ない高ア
ルミナ質およびアルミナ質が好ましい。 本発明では上記耐火材を主体とし、他の耐火材
を組合せてもよい。例えば炭化珪素を組合せる
と、炭化珪素がもつすぐれた耐アルカリ性と高熱
伝導性により、本発明吹付材の耐アルカリ性と熱
伝導性をさらに向上させることができる。 骨材の粒度は、充填度を勘案して粗粒、中粒、
微粒に適宜調整し、何んら限定するものではない
が、一例を示すと5〜1mm20〜70重量%,1mm以
下0〜50重量%,0.074mm以下0〜50重量%であ
る。 結合剤としてのアルミナセメントは、よく知ら
れているようにカルシユウムアルミネートを主成
分とするもので通常、180メツシユ以下の微粉を
使用し、前記耐火材に対して内掛で5〜40重量%
配合する。5重量%未満では結合剤としての効果
が十分でなく、40重量%を超えるとその分、耐火
材の割合が少なくなつて耐食性、耐磨耗性が低下
する。また耐アルカリ性の面から、SiO2成分が
0.5重量%以下のハイアルミナセメントがより好
ましい。 従来の吹付材では、結合剤としてりん酸塩、け
い酸塩などが一般的であるが、付着性などにすぐ
れている反面、強度付与に劣る。アルミナセメン
トは強度付与が他の結合剤に比べて格段にすぐ
れ、これを配合することによつて吹付材は、炉内
容物降下にともなう激しい磨耗作用に対応できる
ものである。 粘土は、炉壁に対する付着性の役割をもつ。外
掛で0.5〜20重量%,好ましくは2〜10重量%と
する。0.5重量%未満では吹付時にリバウンドロ
スが多く、補修効率が悪い。20重量%を超えると
粘土からくるSiO2成分で吹付材の耐アルカリ性
が低下し、また、粘土が微粉であるために吹付材
の粒度構成上、微粉過多となつて好ましくない。 ステンレススチールフアイバーは吹付材の熱伝
導率を向上させる。高炉は、水冷によるクーラー
で炉壁寿命の延長を図つているが、スチールフア
イバーの混入で熱伝導率が大となり、冷却作用に
よつて吹付材の耐用性が向上する。また、、一般
に高炉は外殻鉄皮内にクーラーを備えており、ク
ーラーの製造面、構造面から必然的に生じるクー
ラー間の空隙に吹付材が充填されると、スチール
フアイバーによる高熱伝導化で冷却作用が炉壁全
体に間断なく及ぶという効果がある。 ステンレススチールフアイバーは、耐スポーリ
ング性、耐磨耗性の付与と、スポーリングにより
生じた亀裂の進展を阻止し、吹付材の脱落防止と
しても大きな役割をもつ。 スチールフアイバーをステンレス材質にしたの
は、耐熱性、耐酸化性にすぐれているからであ
る。断面形状は円形、多角形のいずれでもよい。
長さは5〜50mmが好ましく、5mm未満では表面積
が小さいことにより吹付材組織の牽引支持に劣
る。50mm超えるとカーボンの沈積による体積膨張
で吹付材の亀裂発生の原因となりやすいものとと
もに、フアイバーボールが形成されやすく、作業
性の低下となる。配合量は外掛で0.5〜10重量%
とし、0.5重量%未満では配合による効果が認め
られず、10重量%を越えると吹付材の流動性が低
下してノズル詰りを生じやすい。形状はストレー
ト形の他、波形、ねじれ形、両端がふくらんだド
ツグボーン形など任意のものが使用できる。 さらに、充填性、焼結性などの向上を目的とし
て消石灰、シリカフラワー耐火性超微粉を外掛で
10重量%以下配合してもよい。また、減水効果と
親水性付与のために分散剤を3重量%以下配合し
てもよい。分散剤としてはアルカリ金属りん酸
塩、アルカリ金属ポリりん酸塩、アルカリ金属カ
ルボン酸塩、リグニンスルフオン酸塩、酢酸ビニ
ール樹脂、β―ナフタリンスルフオン酸塩、ポリ
スチレンスルフオン酸塩などがあるが、特にリグ
ニンスルフオン酸塩が効果的である。 以上からなる吹付材で高炉炉壁を補修するに
は、炉内容物の装入速度を遅くして炉内容物の水
準を降下させた後、休風し、次いで高炉炉頂の開
口部から吊下げたノズルを炉壁損傷個所へ向け、
このノズルを用いて吹付ける。吹付装置は一般に
吹付材と水とを予め混練したものを吹付ける湿式
タイプと、吹付材にノズル圧送付で水を添加して
吹付ける乾式タイプと少量の水で予じめ混練し、
さらにノズル圧送中で水を添加する半乾式とに大
別されるが、作業性の点から半乾式タイプが好ま
しい。 本発明の吹付材は、前にも述べたように水冷ク
ーラーを備えた高炉炉壁の補修用として要求され
る耐磨耗性、耐アルカリ性、耐スポーリング性お
よび高熱伝導率を兼ね備え、これをもつて補修を
行うと炉壁の寿命が著しく延長し、その結果、高
炉の稼動率、操業度を向上できる。 つぎに、本発明実施例をあげ、同時に本発明に
属しない実験例、および従来例をあげ、それぞれ
について各種特性の試験結果を示す。
The present invention relates to a spray material for repairing damaged parts of blast furnace walls. At the end of a blast furnace's life, problems such as red heat in the shell or cracks in the shell due to abrasion or falling off of the refractories on the furnace wall, such as gas leakage, occur, reducing the operating rate and efficiency of the blast furnace. descend. Therefore, recently, the contents of the furnace were reduced when the furnace was shut down.
It is known to spray repair damaged areas on the furnace wall using a spray nozzle inserted through the upper opening.
There are other methods of blast furnace repair in which refractory material is press-fitted into the furnace through the steel shell, but compared to this method, spray repair is more accurate and accurate since it can be carried out after checking the damage location and degree of damage. It can be repaired efficiently. The present invention provides a spraying material suitable for spraying repair of the blast furnace wall. BACKGROUND ART Spraying repairs have been widely used in molten metal containers such as converters. however,
Blast furnace walls are required to have properties not found in other furnaces, such as resistance to abrasion caused by the falling contents of the furnace, coke, alkali from iron ore, and retention of cooling effects. I was unable to respond to this. The present invention has the above characteristics, and is a refractory material whose main material is 5 to 40% by weight of alumina cement and the remainder is one or more selected from silica-alumina, high alumina, and alumina. This is a spraying material for repairing blast furnace walls, which is equipped with a water-cooled cooler containing 0.5 to 15% by weight of clay and 0.5 to 10% by weight of stainless steel fiber in a formulation consisting of: The aggregate is mainly one or more types selected from silica-alumina, high alumina, and alumina. These materials have a lower coefficient of thermal expansion than magnesia and dolomite materials, which are often used in conventional spray materials, and have excellent thermal shock resistance, so they have high adhesive strength after the spray materials are attached. . It has a higher melting point than siliceous materials and has excellent alkali resistance. Furthermore, the alumina component in the material has high hardness and contributes to the abrasion resistance of the spray material. Alumina-silica materials include kaolin and various types of syamoto obtained by calcining shale clay, or loite, and high alumina materials include pauxite, sillimanite, argillaceous rock, kyanite, mullite, andalyusite, etc. The quality is sintered or electrofused alumina, or K 2 O,
β-alumina containing Na 2 O is exemplified. The weakening of the spray material structure due to alkali is caused by SiO 2
Since the Al 2 O 3 component is generated by reacting with an alkali, high alumina materials and alumina materials with low SiO 2 content are preferred among the above refractory materials. In the present invention, the above-mentioned refractory material is used as the main material, and other refractory materials may be used in combination. For example, when silicon carbide is used in combination, the alkali resistance and thermal conductivity of the spray material of the present invention can be further improved due to the excellent alkali resistance and high thermal conductivity of silicon carbide. The particle size of aggregate is coarse, medium, or coarse depending on the degree of filling.
The particles are suitably adjusted to fine particles, and although not limited in any way, examples include 5 to 1 mm, 20 to 70 weight %, 1 mm or less, 0 to 50 weight %, and 0.074 mm or less, 0 to 50 weight %. As is well known, alumina cement as a binder is mainly composed of calcium aluminate, and is usually used in fine powder of 180 mesh or less, and has an internal weight of 5 to 40 mesh relative to the refractory material. %
Blend. If it is less than 5% by weight, the effect as a binder is insufficient, and if it exceeds 40% by weight, the proportion of refractory material decreases accordingly, resulting in a decrease in corrosion resistance and abrasion resistance. In addition, from the standpoint of alkali resistance, the SiO 2 component is
High alumina cement of 0.5% by weight or less is more preferred. In conventional spray materials, phosphates, silicates, etc. are commonly used as binders, but while they have excellent adhesion, they are inferior in imparting strength. Alumina cement provides much better strength than other binders, and by incorporating it, the spray material can withstand the severe abrasion caused by the falling contents of the furnace. Clay has the role of adhesion to the furnace wall. The outer weight is 0.5 to 20% by weight, preferably 2 to 10% by weight. If it is less than 0.5% by weight, there will be a lot of rebound loss during spraying and the repair efficiency will be poor. If it exceeds 20% by weight, the alkali resistance of the spray material will decrease due to the SiO 2 component coming from the clay, and since the clay is a fine powder, the particle size structure of the spray material will result in an excessive amount of fine powder, which is undesirable. Stainless steel fibers improve the thermal conductivity of the spray material. Blast furnaces use water-cooled coolers to extend the life of the furnace walls, but the inclusion of steel fiber increases thermal conductivity, and the cooling effect improves the durability of the sprayed material. In addition, blast furnaces are generally equipped with a cooler inside the outer shell, and when the gap between the coolers, which inevitably arises from the manufacturing and structural aspects of the cooler, is filled with spray material, high thermal conductivity due to the steel fibers is achieved. This has the effect that the cooling effect is continuously applied to the entire furnace wall. Stainless steel fibers provide spalling and abrasion resistance, prevent the growth of cracks caused by spalling, and play an important role in preventing the spray material from falling off. The steel fiber was made of stainless steel because it has excellent heat resistance and oxidation resistance. The cross-sectional shape may be either circular or polygonal.
The length is preferably 5 to 50 mm; if it is less than 5 mm, the surface area is small and the traction support of the spray material structure is poor. If it exceeds 50 mm, volumetric expansion due to carbon deposition tends to cause cracks in the sprayed material, and fiber balls are also likely to form, reducing workability. The blending amount is 0.5 to 10% by weight.
If it is less than 0.5% by weight, no effect will be observed, and if it exceeds 10% by weight, the fluidity of the spray material will decrease and nozzle clogging will easily occur. In addition to straight shapes, any shape can be used, such as wavy, twisted, dog-bone shapes with bulges at both ends. Furthermore, in order to improve filling properties and sintering properties, slaked lime and silica flour refractory ultrafine powder are added to the outside.
It may be added in an amount of 10% by weight or less. Further, 3% by weight or less of a dispersant may be added for water reduction effect and imparting hydrophilicity. Examples of dispersants include alkali metal phosphates, alkali metal polyphosphates, alkali metal carboxylates, lignin sulfonates, vinyl acetate resins, β-naphthalene sulfonates, and polystyrene sulfonates. In particular, lignin sulfonate is effective. In order to repair the blast furnace wall with the above-mentioned spray material, the charging speed of the furnace contents is slowed down to lower the level of the furnace contents, the air is rested, and then the blast furnace is suspended from the opening at the top of the blast furnace. Aim the lowered nozzle at the damaged area of the furnace wall,
Spray using this nozzle. Spraying equipment is generally of the wet type, which sprays a mixture of spray material and water that has been mixed in advance, and the dry type, which sprays the spray material with water added to it by pressure through a nozzle.
It is further divided into a semi-dry type in which water is added during pressure feeding through a nozzle, but the semi-dry type is preferred from the viewpoint of workability. As mentioned earlier, the spray material of the present invention has the abrasion resistance, alkali resistance, spalling resistance, and high thermal conductivity required for repairing the walls of blast furnaces equipped with water-cooled coolers. If repairs are carried out, the life of the furnace wall will be significantly extended, and as a result, the operating rate and operation rate of the blast furnace can be improved. Next, examples of the present invention will be given, as well as experimental examples that do not belong to the present invention, and conventional examples, and test results of various characteristics will be shown for each.

【表】 第2表〜第4表の吹付材に含有させたステンレ
ススチールフアイバーはいずれもSUS430,巾0.5
mm×厚さ0.3mm×長さ25mmのものである。
[Table] The stainless steel fibers contained in the spray materials in Tables 2 to 4 are all SUS430, width 0.5
mm x thickness 0.3mm x length 25mm.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 試験条件は次のとおりである。 (1)耐磨耗性;試料を第2表では1000℃,第3表お
よび第4表では1200℃に加熱し、サ
ンドプラスト法により測定。数値が
小さいほど耐磨耗性にすぐれる。 (2)耐アルカリ性;試料を炭酸カリウムとコークス
粉(重量比4:1)の混合物に挿入
した状態で、第2表は1200℃×5時
間を6回、第3表および第4表では
1300℃×5時間を6回くり返した
後、圧縮強さを測定した。 数値が大きいほど耐アルカリ性にす
ぐれる。 (3)耐スポーリング性;第2表は1000℃→水冷、第
3表および第4表では1300→水冷の
加熱と冷却をくり返し、試料に亀裂
が認められるまでの回数。 数値が大きいほど耐スポーリング性
にすぐれる。 (4)熱伝導率;熱線法により測定。at300℃数値が
大きいほど熱伝導率が高い。 (5)付着性;400℃に加熱した耐火物面に対して吹
付けた場合の付着率。 数値が大きいほど付着性にすぐれ
る。 (6)圧縮強さ;試料を第2表では1000℃×3時間、
第3表および第4表では1300℃×3
時間加熱した後、圧縮強さを測定。 数値が大きいほど圧縮強度が大きい。
[Table] The test conditions are as follows. (1) Abrasion resistance: Samples were heated to 1000°C in Table 2 and 1200°C in Tables 3 and 4, and measured by the sandplast method. The smaller the value, the better the wear resistance. (2) Alkali resistance: Table 2 shows 1200℃ x 5 hours 6 times with the sample inserted into a mixture of potassium carbonate and coke powder (weight ratio 4:1); Tables 3 and 4 show
After repeating the test at 1300°C for 5 hours 6 times, the compressive strength was measured. The higher the number, the better the alkali resistance. (3) Spalling resistance: Table 2 shows the number of times heating and cooling is repeated from 1000°C to water cooling, and Tables 3 and 4 show the number of times heating and cooling is repeated from 1300°C to water cooling until cracks are observed in the sample. The larger the value, the better the spalling resistance. (4) Thermal conductivity; measured by hot wire method. at300℃ The larger the value, the higher the thermal conductivity. (5) Adhesion: Adhesion rate when sprayed on a refractory surface heated to 400℃. The larger the number, the better the adhesion. (6) Compressive strength;
In Tables 3 and 4, 1300℃ x 3
After heating for a time, measure the compressive strength. The larger the number, the greater the compressive strength.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナセメント5〜40重量%,残部がシリ
カ―アルミナ質、高アルミナ質、アルミナ質から
選ばれる一種又は二種以上を主材とした耐火材よ
りなる配合物に、外掛けで粘土0.5〜15重量%
と、ステンレススチールフアイバー0.5〜1.0重量
%を含有した水冷クーラーを備える高炉炉壁の補
修用吹付材。
1 A mixture consisting of 5 to 40% by weight of alumina cement and the balance being a refractory material whose main material is one or more selected from silica-alumina, high alumina, and alumina, and an outer coating of 0.5 to 15% clay. weight%
A spray material for repairing blast furnace walls equipped with a water cooler containing 0.5 to 1.0% by weight of stainless steel fiber.
JP58030381A 1983-02-25 1983-02-25 Blast furnace repairing spray material Granted JPS59156969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030381A JPS59156969A (en) 1983-02-25 1983-02-25 Blast furnace repairing spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030381A JPS59156969A (en) 1983-02-25 1983-02-25 Blast furnace repairing spray material

Publications (2)

Publication Number Publication Date
JPS59156969A JPS59156969A (en) 1984-09-06
JPS6117791B2 true JPS6117791B2 (en) 1986-05-09

Family

ID=12302302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030381A Granted JPS59156969A (en) 1983-02-25 1983-02-25 Blast furnace repairing spray material

Country Status (1)

Country Link
JP (1) JPS59156969A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127671A (en) * 1984-11-20 1986-06-14 新日本製鐵株式会社 Castable for spray repairing blast furnace
US5632937A (en) * 1991-03-22 1997-05-27 Magneco/Metrel, Inc. Method of installing a refractory lining
CA2062697C (en) * 1991-03-22 1997-04-22 Charles W. Connors, Jr. Method and apparatus for manufacturing and repairing molten metal containment vessels
US5511762A (en) * 1991-03-22 1996-04-30 Magneco/Metrel, Inc. Consumable form with degradable lining
US5484138A (en) * 1993-11-22 1996-01-16 Magneco/Metrel, Inc. Consumable form with adjustable walls
CN103819211B (en) * 2014-01-07 2017-06-27 山东耀华特耐科技有限公司 CFBB lightweight wear-resistant plastic refractory and preparation method thereof
JP6441684B2 (en) * 2015-01-06 2018-12-19 新日鐵住金株式会社 Castable refractories for lids of molten metal containers
JP6441685B2 (en) * 2015-01-06 2018-12-19 新日鐵住金株式会社 Castable refractories for lids of molten metal containers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711878A (en) * 1980-06-25 1982-01-21 Shinagawa Refractories Co Indefinite-form refractories
JPS5744636A (en) * 1980-09-01 1982-03-13 Wako Chem Kk Impregnating agent for preparing mainly semirigid or rigid resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711878A (en) * 1980-06-25 1982-01-21 Shinagawa Refractories Co Indefinite-form refractories
JPS5744636A (en) * 1980-09-01 1982-03-13 Wako Chem Kk Impregnating agent for preparing mainly semirigid or rigid resin foam

Also Published As

Publication number Publication date
JPS59156969A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
JP4838619B2 (en) Alumina-silica brick for CDQ
JPS6117791B2 (en)
JPH0313193B2 (en)
JP2874831B2 (en) Refractory for pouring
CN114804823A (en) Heat-insulating refractory material for air supply device of iron-making blast furnace
JP2000203953A (en) Castable refractory for trough of blast furnace
JP2604310B2 (en) Pouring refractories
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
EP0798279B1 (en) Wet-gunning method
JPS6117790B2 (en)
JP2562767B2 (en) Pouring refractories
JP6374926B2 (en) Unfixed refractory for repair and repair method
JP4348174B2 (en) Dry-type spraying refractory for repairing tundish with used refractory
JPH09157043A (en) Casting refractory for blast-furnace launder
JPH0952169A (en) Refractory for tuyere of molten steel container
JP4456193B2 (en) Refractory spraying method
JPH03115176A (en) Refractory for injection execution
JPH0465370A (en) Casting material for molten pig iron pretreating vessel
Pivinskii New refractory concretes and binding systems: Basic trends of development, production, and use of refractories in the 21st century. Part IV. Low-cement concretes and cement-free unshaped refractories
JPS59146975A (en) Plate refractories for sliding nozzle
JPH04325466A (en) Unshaped refractory and stainless hot metal ladle lined inside therewith
JP4011774B2 (en) Secondary smelting ladle lining refractories using irregular refractories
KR100218242B1 (en) Meterials for repair refractory lining of ladle or tundish and method for repair refractory lining
JP4475724B2 (en) Method for manufacturing amorphous refractory having a close-packed structure excellent in strength and spall resistance