JPS61177723A - Exposure monitor - Google Patents

Exposure monitor

Info

Publication number
JPS61177723A
JPS61177723A JP60016444A JP1644485A JPS61177723A JP S61177723 A JPS61177723 A JP S61177723A JP 60016444 A JP60016444 A JP 60016444A JP 1644485 A JP1644485 A JP 1644485A JP S61177723 A JPS61177723 A JP S61177723A
Authority
JP
Japan
Prior art keywords
light
exposure
receiving element
light flux
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60016444A
Other languages
Japanese (ja)
Inventor
Yutaka Echizen
裕 越前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60016444A priority Critical patent/JPS61177723A/en
Publication of JPS61177723A publication Critical patent/JPS61177723A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To make such a photometry that a proper exposure area on the transcription surface becomes widest with the difficulty of being affected by the positional variation of a light source, by providing a condenser lens, two-dimensional photo receptor array, and signal amplification system. CONSTITUTION:The title apparatus is composed of a condenser lens 5, two-dimensional photo receptor array 6, signal amplification system 7, signal processing system 8 etc., and the photo receiving surface of the array 6 and a mask surface 10 are arranged at a position conjugated optically. This configuration causes the light flux from a light source 1 to be amplitude-split into a transmitted light flux, i.e. pnotometry light flux and a reflected light flux, e.g. exposure light flux via half mirror 4, and the illuminance distribution on the mask surface 10 becomes similar to that on the photo receiving surface of said array 6. Therefore, detection of the illuminance distribution on the photo receiving surface of the array 6 informs about that on the mask surface 10. The signal amplification system 7 amplifier photo reception signals individually, and the signal processing system 8 chooses signals and averages the signals outputs.

Description

【発明の詳細な説明】 [発明の属する分野] 本発明は、露光装置、特に、半導体製造用露光装置に使
用される露光監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an exposure apparatus, and particularly to an exposure monitoring apparatus used in an exposure apparatus for semiconductor manufacturing.

[従来の技術] 半導体製造用露光装置では、露光監視装置によりウェハ
面上での照度情報を把握してシャッタ制御を行ない、こ
れにより、露光時間を管理し、露光エネルギーを常に一
定にして再現性の良い露光を行なっていた。
[Prior art] In exposure equipment for semiconductor manufacturing, an exposure monitoring device grasps illuminance information on the wafer surface and performs shutter control, thereby managing exposure time and keeping exposure energy constant to ensure reproducibility. It was a good exposure.

しかし、I ’CおよびLSI等の半導体素子が高集積
化しそのパターンが微細化してゆくにつれ、このような
露光装置におけるより厳密な露光管理が必要とされるよ
うになってきた。また、半導体素子のコストダウンのた
めには島スルーブツト(処理量)を維持しなければなら
ない。従って、露光監視装置も ■光源の僅かな位置変動に影響されることなく正確な測
光が可能であること、および ■ウェハ面上での適正露光面積が最も広くなるような測
光であること という2つの要請を満足する必要がある。
However, as semiconductor elements such as I'Cs and LSIs become more highly integrated and their patterns become finer, stricter exposure control in such exposure apparatuses has become necessary. Furthermore, in order to reduce the cost of semiconductor devices, it is necessary to maintain the island throughput (throughput). Therefore, the exposure monitoring device must also be able to perform accurate photometry without being affected by slight variations in the position of the light source, and ■measure light in a way that maximizes the appropriate exposure area on the wafer surface. It is necessary to satisfy two requirements.

これらの’11Mのうち前者を満足するような露光監視
装置は、本出願人がすでに特願昭59−34247号で
提案しているように露光監視装置の受光面と露光装置の
転写面とを光学的に共役に配置すれば実現することがで
きる。
Among these '11M's, an exposure monitoring device that satisfies the former is based on the combination of the light receiving surface of the exposure monitoring device and the transfer surface of the exposure device, as already proposed by the present applicant in Japanese Patent Application No. 59-34247. This can be achieved by optically conjugate arrangement.

しかしながら、上記2つの要請を同時に満足するものは
、以下のような理由により、未だに実現していない。そ
れは、同一型式であっても照度分布の装置差があり、す
べての照度分布に適した測光方法は知られていないため
である。この照度分布の装置差は、光源の設定位置の差
や照明光学系の僅かな偏心などに起因するものと考えら
れる。
However, a device that simultaneously satisfies the above two requirements has not yet been realized for the following reasons. This is because even devices of the same model have different illuminance distributions, and there is no known photometry method that is suitable for all illuminance distributions. This device difference in illuminance distribution is thought to be due to differences in the set positions of the light sources, slight eccentricity of the illumination optical system, and the like.

[発明の目的] 本発明の目的は、光源の位置変動に影響され難く、転写
面上の適正露光面積が最も広くなるような測光を行なう
ことのできる露光監視装置を提供することにある。
[Object of the Invention] An object of the present invention is to provide an exposure monitoring device that is not easily affected by positional fluctuations of a light source and can perform photometry that maximizes the appropriate exposure area on the transfer surface.

[実施例の説明] 以下、本発明の実施例について図面を参照しながら説明
する。
[Description of Examples] Examples of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例に係る露光監視装置を適用
したコンタクト方式或いはプロキシミティ方式の露光装
置の概略配置図である。同図において、1は水銀ランプ
等の光源、2は楕円鏡、3はオプチカル・インテグレー
タ、4は光源2からの光束を一部透過し他を反射するハ
ーフミラ−15はハーフミラ−4を透過した光束を集光
するコンデンサレンズ、6はその受光面が複数個の受光
素子(光電変換素子) 61.62.・・・、 6mを
配列して構成された2次元受光素子アレイ、7は受光素
子61、62.・・・、 6m+からそれぞれ出力され
る電気信号を個々に増幅する信号増幅系、8は信号増幅
系7で増幅された受光素子61.62.・・・、 6m
の出力信号を演算処理する信号処理系、9はハーフミラ
−4で反射された光束を平行化するためのコリメータレ
ンズ、10はマスク面すなわち転写面、11はウェハで
ある。
FIG. 1 is a schematic layout diagram of a contact type or proximity type exposure apparatus to which an exposure monitoring apparatus according to an embodiment of the present invention is applied. In the figure, 1 is a light source such as a mercury lamp, 2 is an elliptical mirror, 3 is an optical integrator, 4 is a half mirror that partially transmits the light beam from the light source 2 and reflects the rest, and 15 is the light beam that has passed through the half mirror 4. 6 is a condenser lens that condenses light, and 6 is a light receiving surface having a plurality of light receiving elements (photoelectric conversion elements) 61.62. . . , a two-dimensional light-receiving element array configured by arranging 6 m of light-receiving elements 7, 61, 62 . . . , a signal amplification system that individually amplifies the electrical signals output from each of 6m+, and 8 is a light receiving element 61, 62, . ..., 6m
9 is a collimator lens for collimating the light beam reflected by the half mirror 4, 10 is a mask surface, that is, a transfer surface, and 11 is a wafer.

第1図において、本発明の露光監視装置は、コンデンサ
レンズ5.2次元受光素子アレイ6、信号増幅系7、お
よび信号処理系8等により構成され、受光素子アレイ6
の受光面とマスク面10とは光学的に共役な位置に配置
されている。この配置のため、光源1からの光束は、ハ
ーフミラ−4を介して透過光束すなわち測光光束と反射
光束すなわち露光光束とに振幅分割され、かつマスク面
10上の照度分布と二次元受光素子アレイ6の受光面に
おける照度分布とが相似形となる。従って、2次元受光
素子アレイ6の受光面上の照度分布を検出することによ
りマスク面10上の照度分布を知ることができる。
In FIG. 1, the exposure monitoring apparatus of the present invention is composed of a condenser lens 5, a two-dimensional light receiving element array 6, a signal amplification system 7, a signal processing system 8, etc.
The light receiving surface and the mask surface 10 are arranged at optically conjugate positions. Because of this arrangement, the luminous flux from the light source 1 is amplitude-divided into a transmitted luminous flux, that is, a photometric luminous flux, and a reflected luminous flux, that is, an exposure luminous flux via the half mirror 4, and the illuminance distribution on the mask surface 10 and the two-dimensional light receiving element array 6 The illuminance distribution on the light receiving surface has a similar shape. Therefore, by detecting the illuminance distribution on the light receiving surface of the two-dimensional light receiving element array 6, the illuminance distribution on the mask surface 10 can be known.

信号増幅系7は、2次元受光素子アレイ6の各素子61
.62.・・・、 6mからマスク面10上の照度分布
に対応して出力される電気信号(以下、受光信号という
)を個々に増幅し、信号処理系8では、信号増幅系7か
ら出力される複数の受光信号について「複数信号の取捨
選択」と「信号出力の平均化」を行なう。例えば、全部
の受光信号を取り込んで平均化処理を為せば平均測光と
なり、マスク面10の中央部に対応する受光素子からの
受光信号のみを選択して取り込めば中央重点測光となる
。すなわち、受光信号の取捨選択法がさまざまな測光方
式に対応することになる。
The signal amplification system 7 includes each element 61 of the two-dimensional light receiving element array 6.
.. 62. ..., the electrical signals (hereinafter referred to as light reception signals) output from 6 m corresponding to the illuminance distribution on the mask surface 10 are individually amplified, and the signal processing system 8 amplifies the plurality of electrical signals output from the signal amplification system 7. ``Selection of multiple signals'' and ``averaging of signal outputs'' are performed for the received light signals. For example, if all received light signals are taken in and averaged, average photometry will be obtained, and if only the received light signals from the light receiving elements corresponding to the center of the mask surface 10 are selected and taken in, center-weighted photometry will be obtained. In other words, the method for selecting the received light signals corresponds to various photometry methods.

次に、平均測光方式および中央重点測光方式と適正露光
面積との関係を説明する。
Next, the relationship between the average photometry method, the center-weighted photometry method, and the appropriate exposure area will be explained.

第2〜5図は、マスク面上の照度分布曲線21と21′
 に対してそれぞれ平均測光(第2図、第4図)および
中央重点測光(第2図、第4図)を適用した場合につい
て、それぞれの測光領域を矢印A。
Figures 2 to 5 show illuminance distribution curves 21 and 21' on the mask surface.
The respective photometry areas are indicated by arrows A when average photometry (Figs. 2 and 4) and center-weighted photometry (Figs. 2 and 4) are applied, respectively.

AおよびB、Bの間隔で表わし、そのときの適正露光面
積を斜線部で示して比較したものである。
It is expressed by the intervals of A, B, and B, and the appropriate exposed area at that time is shown by the shaded area for comparison.

これらの図においては、信号処理系8から得られる信号
出力を平均照度22.22’ として、この上下の一定
範囲を適正露光範囲としている。23.23’は適正露
光となる許容上限照度を、24.24’ は許容下限照
度を示す。第2図および第3図かられかるように、照度
分布曲線が21のような場合は、中央重点測光(第3図
)の方が適正露光面積が広い。
In these figures, the signal output obtained from the signal processing system 8 is defined as an average illuminance of 22.22', and a certain range above and below this is defined as the appropriate exposure range. 23.23' indicates the upper limit of permissible illuminance for proper exposure, and 24.24' indicates the lower limit of permissible illuminance. As can be seen from FIGS. 2 and 3, when the illuminance distribution curve is 21, the center-weighted photometry (FIG. 3) has a wider appropriate exposure area.

一方、第4図および第5図のように、照度分布曲線が2
1′のような場合は、平均測光(第4図)の方が適正露
光面積が広い。
On the other hand, as shown in Figures 4 and 5, the illuminance distribution curve is
In a case like 1', average photometry (Fig. 4) provides a wider appropriate exposure area.

以上の説明からもわかるように、平均照度22゜22′
の選び方すなわち測光方式の選び方が重要である。なお
、上述においては説明の便宜上、平均測光と中央重点測
光に限定したが、もちろん、スポット測光や周辺重点測
光の方が上記要請をより満足するのであれば、それを採
用すればよい。
As can be seen from the above explanation, the average illuminance is 22°22'
In other words, how to choose the photometry method is important. Note that in the above description, for convenience of explanation, only average photometry and center-weighted photometry are used, but of course, if spot photometry or peripheral-weighted photometry more satisfies the above requirements, it may be used.

このように転写面の状況に応じて測光方式を決定する方
法、すなわち信号の取捨選択法について以下説明する。
A method for determining the photometry method according to the situation of the transfer surface, that is, a method for selecting signals will be described below.

先ず、2次元受光素子アレイ6の各受光素子61゜62
、・・・、 6mの感度を補正するため、マスク面10
上の照度と各受光素子61.62.・・・、 61の受
光信号出力の比を事前に知っておく。
First, each light receiving element 61°62 of the two-dimensional light receiving element array 6
,..., To correct the sensitivity of 6m, the mask surface 10
The illuminance above and each light receiving element 61.62. ..., the ratio of the received light signal output of 61 is known in advance.

次に、2次元受光素子アレイ6を構成する受光素子61
.62.・・・、 6mの個数をm1各素子の信号出力
をχk  (k=1.2.・・・2m)、これらの信号
のうち平均処理に使用する信号の個数をnとして、平均
値z(n)、平均値からの偏差ykおよび適正露光とな
る信号の個数N (n)を下記式により計算する。
Next, the light receiving elements 61 constituting the two-dimensional light receiving element array 6
.. 62. ..., the number of 6m is m1, the signal output of each element is χk (k=1.2...2m), the number of signals used for averaging among these signals is n, and the average value z( n), the deviation yk from the average value, and the number N (n) of signals that result in proper exposure are calculated using the following formula.

yk=lχに−z(n)l     −・・−−−−<
2>N1n)=ΣH(a −yk )−=−・・・(3
)に=/ 但し、)((a−yk)は、O≦yh≦aのときは1、
yk>aのときはOである。
yk=lχ to −z(n)l −・・−−−−<
2>N1n)=ΣH(a −yk)−=−・・・(3
)=/ However, )((a-yk) is 1 when O≦yh≦a,
When yk>a, it is O.

ここで、2aは適正露光照度の許容照度幅(すなわち第
2〜5図の許容照度限界23と24または23′と24
′ との幅)に対応する信号出力である。
Here, 2a is the allowable illuminance range of appropriate exposure illuminance (i.e., the allowable illuminance limits 23 and 24 or 23' and 24 in Figs. 2 to 5).
′) is the signal output corresponding to the width.

上記計算の結果、適正露光となる面積は、個数N(n)
として得られるので、上記要請に最適な信号の取捨選択
法とは、「すべてのn (=1.2゜・・・、m)につ
いて選択可能な受光信号の組合せの各々についてN (
n)を計算し、これらの中でN(n)が最大となる組合
せ方を求めるjことに相当する。
As a result of the above calculation, the area for proper exposure is the number N (n)
Therefore, the optimal signal selection method for the above requirement is ``N (=1.2°..., m) for each combination of light receiving signals that can be selected for all n (=1.2°..., m).
This corresponds to calculating j) and finding a combination that maximizes N(n) among them.

しかしながら、1通りのnに対して信号の組合せ方は、
mcn =ml/n ! (m−n) !通りと多数あ
るので、すべてのnについて検討するのは甚だ繁雑であ
る。一方、N(n>が最大となるような信号の組合せ方
は1つとは限らない。
However, the way to combine signals for one type of n is
mcn = ml/n! (m-n)! Since there are as many as n, it is extremely complicated to consider all n. On the other hand, there is not only one way to combine signals such that N(n> is the maximum).

そこで、能率的で的確な平均処理を行なうには、「代表
的な信号の組合せを予め幾通りか記憶させておき、それ
らの中で比較してN(n)が最大となるような受光信号
の組合せを選び出す」ようにすればよい。
Therefore, in order to perform efficient and accurate averaging processing, it is necessary to memorize several representative combinations of signals in advance, and compare them to find the received light signal that maximizes N(n). All you have to do is select a combination of

例えば第6図は、60個の受光素子を有する受光素子ア
レイ6を用い、この中から31〜36で表わすような6
つの組合せを選択することができるようにしである。3
1〜35はそれぞれの相隣接する4個の受光素子で構成
された受光素子群であり、36は60個の受光素子全部
で構成された受光素子群である。受光素子群31〜35
はそれぞれ重点測光に、また、受光素子群36は平均測
光に対応している。
For example, in FIG. 6, a light-receiving element array 6 having 60 light-receiving elements is used.
This allows you to choose between two combinations. 3
Numerals 1 to 35 are light-receiving element groups composed of four adjacent light-receiving elements, and 36 is a light-receiving element group composed of all 60 light-receiving elements. Light receiving element groups 31 to 35
correspond to weighted photometry, and the light receiving element group 36 corresponds to average photometry.

この場合、前記(1)式は、受光素子群31〜35につ
いてはそれぞれχ+(4)、、、・・・、Ts(4)、
受光素子群36についてはz(60)となり、これらに
対応して(3)式のN+(4)、・・・、N5(4)お
よびN(60)が得られる。これらの大小を比較して受
光素子群31〜36のうち最適のものを選べばよい。
In this case, the above equation (1) is expressed as χ+(4), . . . , Ts(4), respectively for the light receiving element groups 31 to 35.
For the light receiving element group 36, z(60) is obtained, and correspondingly, N+(4), . . . , N5(4) and N(60) of equation (3) are obtained. The most suitable one among the light receiving element groups 31 to 36 may be selected by comparing these sizes.

なお、上述において2次元受光素子アレイを構成する各
受光素子としてはホトトランジスタやホトダイオード等
光の照度に対応した電気信号を発生するものを使用する
。また、この受光素子アレイの代りにCCDや撮像管等
の撮像素子を用いることもできる。この場合は、例えば
ゲート回路等を用いてN像素子の出力信号の所望の受光
領域に対応するタイミングの部分のみを取り出すように
すればよい。
In the above description, as each light receiving element constituting the two-dimensional light receiving element array, a phototransistor, a photodiode, or the like which generates an electric signal corresponding to the illuminance of light is used. Moreover, an image pickup device such as a CCD or an image pickup tube can be used instead of this light receiving element array. In this case, for example, a gate circuit or the like may be used to extract only the portion of the output signal of the N image element at the timing corresponding to the desired light receiving area.

[発明の適用例] 前記実施例は本発明をコンタクト方式或いはプロキシミ
ティ方式の露光装置に適用した場合について説明したが
、ウェハと光学的に共役な位置に2次元受光素子を配置
すれば、ミラープロジェクション方式或いはステップア
ンドリピート方式(ステッパ)の投影露光装置にもその
まま適用可能である。
[Application Example of the Invention] In the above embodiment, the present invention was applied to a contact type or proximity type exposure apparatus. However, if a two-dimensional light receiving element is placed at a position optically conjugate with a wafer, The present invention can also be applied to a projection exposure apparatus using a projection method or a step-and-repeat method (stepper).

[発明の効果] 以上説明したように、本発明によれば、各装置毎に最適
な測光方式を選択することができ、ウェハ面上での適正
露光面積を広げ、スループットの向上を図ることができ
る。
[Effects of the Invention] As explained above, according to the present invention, it is possible to select the optimal photometry method for each device, expand the appropriate exposure area on the wafer surface, and improve throughput. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る露光監視装置を適用し
た露光装置の概略配置図、第2〜5図はそれぞれ測光方
式と適正露光面積との関係を説゛明するためのマスク面
上における位置と照度との関係を示す説明図、第6図は
具体的な信号の組合せ方を説明するための受光面上での
受光素子配列を示す図である。 1:光源、4:ハーフミラ−, 5:コンデンサレンズ、 6:2次元受光素子アレイ、 61、62.・・・、6n:受光素子、8:信号処理部
、9:コリメータレンズ、10:マスク面、11:ウェ
ハ。
FIG. 1 is a schematic layout diagram of an exposure device to which an exposure monitoring device according to an embodiment of the present invention is applied, and FIGS. 2 to 5 are mask surfaces for explaining the relationship between the photometry method and the appropriate exposure area, respectively. FIG. 6 is an explanatory diagram showing the relationship between the position and illuminance on the top, and FIG. 6 is a diagram showing the arrangement of light receiving elements on the light receiving surface to explain a specific method of combining signals. 1: light source, 4: half mirror, 5: condenser lens, 6: two-dimensional light receiving element array, 61, 62. ..., 6n: light receiving element, 8: signal processing section, 9: collimator lens, 10: mask surface, 11: wafer.

Claims (1)

【特許請求の範囲】 1、露光装置の転写面における露光エネルギーを制御す
るために光源からの光束を監視する露光監視装置であっ
て、コンデンサレンズと、このコンデンサレンズを通つ
た光束が入射されるとともに上記転写面と光学的に共役
な位置に配置された2次元受光素子と、この2次元受光
素子の受光面を複数個に分割して形成される各領域ごと
の受光量に相当する出力信号のうち平均処理すべき信号
の組合せを複数種類記憶する記憶手段と、上記組合せの
うち所望のものを選択する手段と、選択された組合せの
出力信号に基づいて上記転写面の照度を演算する信号処
理系とを具備することを特徴とする露光監視装置。 2、前記2次元受光素子が、複数の光電変換素子をそれ
ぞれ前記各領域に対応して配列した2次元受光素子アレ
イである特許請求の範囲第1項記載の露光監視装置。 3、前記2次元受光素子が、撮像管またはCCD等の撮
像素子である特許請求の範囲第1項記載の露光監視装置
。 4、前記コンデンサレンズは、前記光源からの光束をハ
ーフミラーで振幅分割した光束の一方を集光する特許請
求の範囲第1、2または3項記載の露光監視装置。
[Claims] 1. An exposure monitoring device that monitors a light flux from a light source in order to control exposure energy on a transfer surface of an exposure device, comprising a condenser lens and a light flux that passes through the condenser lens. a two-dimensional light-receiving element disposed at a position optically conjugate with the transfer surface, and an output signal corresponding to the amount of light received in each region formed by dividing the light-receiving surface of the two-dimensional light-receiving element into a plurality of regions. storage means for storing a plurality of types of signal combinations to be averaged; means for selecting a desired one of the combinations; and a signal for calculating the illuminance of the transfer surface based on the output signal of the selected combination. An exposure monitoring device comprising: a processing system. 2. The exposure monitoring apparatus according to claim 1, wherein the two-dimensional light receiving element is a two-dimensional light receiving element array in which a plurality of photoelectric conversion elements are arranged corresponding to each of the areas. 3. The exposure monitoring apparatus according to claim 1, wherein the two-dimensional light receiving element is an image pickup device such as an image pickup tube or a CCD. 4. The exposure monitoring device according to claim 1, 2 or 3, wherein the condenser lens condenses one of the light fluxes obtained by amplitude-dividing the light flux from the light source using a half mirror.
JP60016444A 1985-02-01 1985-02-01 Exposure monitor Pending JPS61177723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016444A JPS61177723A (en) 1985-02-01 1985-02-01 Exposure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016444A JPS61177723A (en) 1985-02-01 1985-02-01 Exposure monitor

Publications (1)

Publication Number Publication Date
JPS61177723A true JPS61177723A (en) 1986-08-09

Family

ID=11916406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016444A Pending JPS61177723A (en) 1985-02-01 1985-02-01 Exposure monitor

Country Status (1)

Country Link
JP (1) JPS61177723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269022A (en) * 1987-04-28 1988-11-07 Canon Inc Apparatus for measuring illuminance irregularity
JPH023907A (en) * 1988-06-21 1990-01-09 Nikon Corp Projection aligner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269022A (en) * 1987-04-28 1988-11-07 Canon Inc Apparatus for measuring illuminance irregularity
JPH023907A (en) * 1988-06-21 1990-01-09 Nikon Corp Projection aligner

Similar Documents

Publication Publication Date Title
US5783833A (en) Method and apparatus for alignment with a substrate, using coma imparting optics
US7551262B2 (en) Exposure apparatus having a position detecting system and a wavelength detector
TW201217770A (en) Inspection apparatus, inspection method, exposure method, and method for manufacturing semiconductor device
JP3262039B2 (en) Exposure apparatus and device manufacturing method using the same
JP2006339448A (en) Exposure device with photodetection unit
JP2900390B2 (en) Focus detection device
JP4730712B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP3360321B2 (en) Surface position detecting apparatus and method, and exposure apparatus and method
JP2002025879A (en) Detector for optical position deviation
JPH07220989A (en) Exposure apparatus and manufacture of device using the same
JPS61177723A (en) Exposure monitor
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
JPS58218631A (en) F-number detecting method
JPH11251218A (en) Method and device for detecting position and aligner equipped with the same
JPS6153510A (en) Apparatus for detecting position
TWI833392B (en) Apparatus for measuring overlay
JPH05209841A (en) Method and apparatus for detecting foreign matter
JPS6122626A (en) Projecting exposure
JP2626078B2 (en) Position detection device
JPH0593851A (en) Focus detection device
JP4994905B2 (en) Imaging device
JP2001311869A (en) Focus detector
JPH03123812A (en) Surface wavy sensor
KR200144702Y1 (en) Lens focus compensator for semiconductor manufacturing equipment
TW202338491A (en) Apparatus for measuring overlay