JPS61177632A - Production of magnetic recording film coated medium - Google Patents

Production of magnetic recording film coated medium

Info

Publication number
JPS61177632A
JPS61177632A JP1717985A JP1717985A JPS61177632A JP S61177632 A JPS61177632 A JP S61177632A JP 1717985 A JP1717985 A JP 1717985A JP 1717985 A JP1717985 A JP 1717985A JP S61177632 A JPS61177632 A JP S61177632A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
layer
orientation
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1717985A
Other languages
Japanese (ja)
Inventor
Akio Otsubo
秋雄 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1717985A priority Critical patent/JPS61177632A/en
Publication of JPS61177632A publication Critical patent/JPS61177632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To attain sufficient vertical orientation on the surface of a medium by performing AC degaussing just after vertical orientation to erase a demagnetizing field Hd which causes orientation break and preventing a vertically oriented and magnetized low-viscosity coated liquid from going out of the magnetic field to rotate particles with their own demagnetizing field Hd due to surface magnetic charge. CONSTITUTION:A magnetic recording film coated medium has double-layered constitution, and single magnetic domain particles having uniaxial magnetic anisotropy are oriented vertically in the outer layer and are orientated lenghthwise in the deep layer. This coated film passes successively between vertical magnetic field orienting electromagnets 11 and 12 of a coated film line 7. The gap part between magnetic poles of electromagnets 11 and 12 is constituted of an AC magnetic field orienting part 3 and an AC degaussing part 4 excited by AC power sources 21 and 22. AC degaussing is performed by the degaussing part 4 just after vertical orientation in the orienting part 3 to erase the demagnetizing field Hd which causes orientation break. Thus, the vertically oriented low-viscosity paint is prevented from going out of the magnetic field to rotate particles with their own demagnetizing field Hd due to surface magnetic charge, thereby attaining sufficient vertical orientation on the surface.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は高密度で広帯域用の
磁気記録塗膜媒体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method of manufacturing high density, broadband magnetic recording coated media.

[従来技術] 従来磁気記録は、リングヘッドと長手配
向針状粒子塗膜媒体の組合せで行われておシ、長波長お
よび中波長成分は長手方向に効率よく記録されている。
[Prior Art] Conventionally, magnetic recording is performed using a combination of a ring head and a longitudinally oriented acicular particle coating medium, and long wavelength and medium wavelength components are efficiently recorded in the longitudinal direction.

 ところが記録の高密度化に伴う短波長成分は、垂直モ
ードの残留磁化パターンで、少し残っている垂直配向成
分を利用して表層に記録されているのが実情である。最
近の解析によれば、長手配向、垂直配向および等方性の
三種類の塗膜媒体の比較では、長波長再生出力について
は1等方〉長手ン垂直、高密度性の指数であるD5o 
については、垂直〉等方〉長手 の順になることが示さ
れている。 (電子通信学会研究会資料MR83−41
、1983)従って同一塗膜媒体で、長波長出力とD5
o がともに大の広帯域特性のものを実現するには9表
層は垂直配向にして垂直パターンで短波長成分を深層は
長手配向にして、長手パターンで長波長成分を記録すれ
ばよいことになる。またこの構成にすることによシ、リ
ングヘッドの円孤状磁界にそって、垂直と長手の両層を
使って、はぼ等方媒体的に効率のよい記録ができる。
However, the short wavelength component that accompanies higher recording densities is actually recorded on the surface layer in a perpendicular mode residual magnetization pattern using a small amount of remaining perpendicularly oriented component. According to recent analysis, when comparing three types of coating media: longitudinally oriented, vertically oriented, and isotropic, the long wavelength reproduction output is 1 isotropic>longitudinal perpendicular, and D5o, which is an index of high density.
It is shown that the order is vertical, isotropic, and longitudinal. (IEICE study group material MR83-41
, 1983) Therefore, for the same coating medium, the long wavelength output and D5
To achieve broadband characteristics with large o values, the surface layer should be oriented vertically and short wavelength components should be recorded using a vertical pattern, while the deep layers should be oriented longitudinally and long wavelength components should be recorded using a longitudinal pattern. . Furthermore, this configuration allows efficient recording as a substantially isotropic medium by using both the vertical and longitudinal layers along the arc-shaped magnetic field of the ring head.

そしてこのような二層構成テープの考案の原形は、上述
のような明快な解析にもとづいたものではないが、米国
特許第3,052,567号(1962年)明細書に記
述されている通シ公知である。 しかしこの特許による
高密度広螢域テープが実現していないのは、従来の長手
磁場配向の方法を垂直に変えただけの垂直配向法では、
平滑で垂直角形比SQR,上の高い垂直層が出来なかっ
だからである0 求されるような十分高いSQR工と平滑度を表層がもっ
てお!D 、 (ii)かつ高密度用狭ギヤツプ録再兼
用リングヘッドを使う場合の長波長記録効率をよくする
ために、ヘッドから長子層迄の距離に相当する垂直配向
表層の厚みが薄くできるような。
The original design of such a two-layer tape was not based on the clear analysis mentioned above, but it was based on the general idea described in the specification of U.S. Pat. No. 3,052,567 (1962). It is publicly known. However, the high-density, wide-area tape according to this patent has not been achieved using a vertical alignment method that simply changes the conventional longitudinal magnetic field alignment method to vertical.
This is because a vertical layer with a smooth and high vertical squareness ratio SQR could not be formed. D. (ii) In order to improve the long-wavelength recording efficiency when using a high-density narrow gap recording/reproducing ring head, it is possible to reduce the thickness of the vertically aligned surface layer corresponding to the distance from the head to the first layer. .

約 磁気へ二層構成の塗膜媒体の製造法を提供することであ
る。
It is an object of the present invention to provide a method for producing a coating medium having a two-layer structure to about magnetic fields.

[問題を解決するための手段]および「作用]従来の直
流磁場による垂直配向に於て2表面で磁場Hdで粒子が
配向戻シ回転をしてしまうからで、この現象は特にHd
の大きい表面で著しい。
[Means for solving the problem] and "effects" This is because in the conventional perpendicular alignment caused by a DC magnetic field, the particles are reoriented and rotated by the magnetic field Hd on two surfaces, and this phenomenon is particularly
noticeable on large surfaces.

本発明者は先願(特願−昭59−057106号)に於
て、垂直配向直後にAC消磁して配向戻シの原因のHd
を消すことによ)、この問題を解決した。
In a previous application (Japanese Patent Application No. 59-057106), the present inventor conducted AC demagnetization immediately after vertical alignment to eliminate Hd, which is the cause of alignment return.
), this problem was solved.

(第1図参照) もう一つの問題であった垂直磁場配向
時に起る表面粗れについても、磁場配向条件を控え目に
して配向の繰返しで配向度を蓄積するとと\、それでも
成程度は現われる粗れに対しては、配向の間の無磁場期
間に表面張力を利用して平滑化することとによって解決
した。この方法によって先願に於ては垂直単層塗膜を実
現できたが、これを本発明の二層構成の垂直層に取り入
れることによシ、前述の目的(i)を達成しようとする
ものである。
(See Figure 1) Regarding surface roughness that occurs during vertical magnetic field orientation, which was another problem, if the magnetic field orientation conditions are kept modest and the degree of orientation is accumulated through repeated orientation, the degree of surface roughness that appears will still vary. This problem was solved by smoothing using surface tension during the non-magnetic field period during orientation. By this method, a vertical single-layer coating film could be realized in the previous application, and by incorporating this into the vertical layer of the two-layer structure of the present invention, the above-mentioned objective (i) is achieved. It is.

次に目的(IOの垂直層を薄くつくることであるが、前
述の米国特許では二層の塗シ工程でそれぞれ長手と垂直
配向をしているので、現在のコーティング技術の塗シ厚
限度から、垂直層を1.5ミクロン以下に薄くすること
は困難である。
Next, the purpose (to make a thin vertical layer of IO) is that in the above-mentioned U.S. patent, the two-layer coating process is oriented longitudinally and vertically, so due to the coating thickness limit of current coating technology, It is difficult to thin the vertical layers below 1.5 microns.

この発明では、−回の塗シ工程で先ず塗液の全厚を垂直
配向し2次に塗液の表層の粘度を深層に比べて高くする
。(第2図A) 粘性流体中の粒子の配向回転の時定数
τrは粘度に対し急激に増通過する時間(間隔)Δtに
対し。
In this invention, in the second coating step, first, the entire thickness of the coating liquid is vertically oriented, and second, the viscosity of the surface layer of the coating liquid is made higher than that of the deep layer. (Figure 2A) The time constant τr of orientation rotation of particles in a viscous fluid is relative to the time (interval) Δt at which the viscosity rapidly increases.

τ「(表層)鯵Δt)τr(深層)の関係が成立する時
点で長手配向磁場を通るようにすれば、深層だけが長手
配向に変化する。厚み方向の粘度分布の時間変化と長手
配向の時点との最適条件を求めれば、垂直表層を薄((
0,1〜0.5ミクロン)残す(つくる)ことができ目
的の二層構成を実現できる。
If the relationship τ (surface layer) Δt) τr (deep layer) is passed through a longitudinally oriented magnetic field, only the deep layer will change in the longitudinal direction. If we find the optimal conditions for the vertical direction, we can make the vertical surface layer thin ((
0.1 to 0.5 micron) can be left (created) and the desired two-layer structure can be realized.

る。 第1図は塗膜の製造ラインを示す。 低粘度塗液
は先ず垂直磁場配向用の電磁石(11,12)の磁極間
を順次通過する。 fヘルツ(50或は60)の交流電
源(21,22)で励磁される電磁石の磁極間隙部は、
AC磁場垂直配向部(3)とAC消磁部(4)とからな
っている。 垂直配向磁場は。
Ru. Figure 1 shows a coating production line. The low-viscosity coating liquid first passes sequentially between the magnetic poles of electromagnets (11, 12) for vertical magnetic field alignment. The magnetic pole gap of the electromagnet excited by the AC power source (21, 22) of f hertz (50 or 60) is
It consists of an AC magnetic field perpendicular orientation section (3) and an AC demagnetization section (4). Vertical alignment magnetic field.

磁性粒子の保磁力Hc、塗液のHd及び粒子間相互作用
の局所磁場等にくらべ十分大きい値、この例では最高値
で5にエルステッドとする。 AC消磁部の磁極の形状
は、塗膜面に対し磁極間隙が対称的になだらかに拡って
おシ、塗膜の進行方向をX、速度をVとすると、その拡
シの形状(AC消磁部距離ΔXacL)は次のように決
められる。
The value is sufficiently large compared to the coercive force Hc of the magnetic particles, Hd of the coating liquid, local magnetic field of interaction between particles, etc. In this example, the maximum value is set to 5 Oersteds. The shape of the magnetic poles in the AC demagnetization section is such that the magnetic pole gap gradually expands symmetrically with respect to the coating surface.If the direction of travel of the coating film is X and the speed is V, then the shape of the expansion (AC demagnetization The distance ΔXacL) is determined as follows.

となシ、その△XacLの値は次のAC消磁の条件から
決まる。
The value of ΔXacL is determined from the following AC demagnetization conditions.

f x (X’−x’)/v > (必要AC消磁サイ
クルル数=5 とすると a Xa(1= X’ −X
“=04mとなる。 垂直配向粒子離ΔXorは する。 粒子に異方性分散があるので、実際のAなるが
1便宜上第3図でa Xo r = X’c −X’ 
 とする。
f x (X'-x')/v > (Number of AC degaussing cycles required = 5, then a Xa (1 = X'-X
"=04m. The vertically oriented particle separation ΔXor is. Since the particles have anisotropic dispersion, the actual value of A is 1, but for convenience, in Figure 3, a Xor = X'c - X'
shall be.

次に垂直磁場配向で生じた表面粗れ平滑化のため、第1
図のプロセスに示す無磁場中の平滑化期間c’、cl′
をおく。 その時間々隔は平滑化粘性流動の時定数によ
って決まるが、十分の数秒程度。
Next, in order to smooth the surface roughness caused by vertical magnetic field orientation, the first
Smoothing periods c', cl' in the absence of magnetic field shown in the process shown in the figure
put The time interval is determined by the time constant of the smoothed viscous flow, and is approximately a few tenths of a second.

距離で数’%cmである。 必要5QRLを得るだめの
、プロセスでの配向(A)−消磁(B)−平滑化(C)
のセットの繰返しの必要数は1〜5回、この例では2回
とした。
The distance is several percent centimeters. Orientation (A) - Demagnetization (B) - Smoothing (C) in the process to obtain the required 5QRL
The required number of repetitions of the set was 1 to 5 times, and in this example, 2 times.

表層部の粘度は、溶媒の表面からの蒸発のため第2図(
A)に示すように深層よシ大であるが、その差を顕著に
するため、プロセスABCABC後赤外線(5)を短時
間照射する。(D)  その結果薄い表層部だけ温度従
って溶媒蒸発速度が上シ。
The viscosity of the surface layer is due to evaporation of the solvent from the surface, as shown in Figure 2 (
As shown in A), the depth is greater, but in order to make the difference more noticeable, infrared rays (5) are irradiated for a short time after the process ABCABC. (D) As a result, only the thin surface layer has a higher temperature and therefore solvent evaporation rate.

両層間で粘度従って”r:rに第2図Bに示すような著
しい差を生じさせることができる。
Significant differences in viscosity and therefore "r:r" can be produced between the two layers, as shown in FIG. 2B.

(薄さ)の表層のTr(表)が Tr(表)>4t>て
r(深) となるように、赤外線照射の照射量。
The amount of infrared irradiation is such that the Tr (front) of the surface layer (thinness) is Tr (front) > 4t > r (deep).

時間等をきめる。またてr(深)が上の条件を満す燥、
カレンダリング、硬化等の通常のテープ製造プロセスが
続くが公知であるので省略する。
Decide on time etc. Also, when r (depth) satisfies the above conditions,
Conventional tape manufacturing processes such as calendering and curing follow, but are well known and will therefore be omitted.

各プロセスに対応した第1図(A’) (A“)(B”
)(C”)(D) (E)に、その時の粒子配向、スピ
ンの向き。
Figure 1 (A') (A") (B") corresponding to each process
) (C”) (D) (E) shows the particle orientation and spin direction at that time.

表面磁荷9表面粗さ、および塗液各層の厚みを示した。Surface magnetic charge 9 Surface roughness and thickness of each coating layer are shown.

 (A’)(A“)は交流磁界の最大値の位相時の状態
を示す。
(A') (A") shows the state at the phase of the maximum value of the alternating magnetic field.

この発明によるテープの出来上シの配向状態が(E)図
であシ9表層垂直配配向層長手配向を示している。 実
際には厚み方向のてr変化は急激とは言え連続なため9
両配向層間に連続時な中間遷移層が存在するが、その存
在はむしろ波長特性の単調化に役立つであろう。
The orientation state of the completed tape according to the present invention is shown in FIG. 9E, which shows the longitudinal orientation of the surface vertical orientation layer. In reality, the change in r in the thickness direction is continuous, although it is rapid.9
There is a continuous intermediate transition layer between both alignment layers, but its presence would rather serve to make the wavelength characteristics monotonic.

この製造法で最も大事でデリケートな技術は。What is the most important and delicate technique in this manufacturing method?

媒体ノイズの原因となる垂直表層の厚みの不均一が起ら
ないようにすることで、そのためには表層粘度上昇(D
)と長手配向(E)のプロセスに於る塗液の対流を防ぐ
ことである。 (D)と(B)の間隔をつめること、急
蒸発による粗れのない限度゛で表層が粘度急上昇するよ
う照射強度1時間2通風の条件を設定すること2表層は
薄く設定すること等、要は対流の起こるひまがないよう
に、また起きにくいようにすればよい。
By preventing non-uniformity in the thickness of the vertical surface layer, which causes media noise, it is possible to increase the viscosity of the surface layer (D
) and the process of longitudinal direction (E) to prevent convection of the coating liquid. Shortening the distance between (D) and (B), setting the irradiation intensity for 1 hour and 2 ventilation conditions so that the viscosity of the surface layer rises rapidly without causing roughness due to rapid evaporation, 2 setting the surface layer to be thin, etc. The key is to make sure that there is no time for convection to occur, and that it is difficult for it to occur.

塗膜の磁性粒子としては、高出力のメタル鉄で。High-power metal iron is used as the magnetic particles in the coating.

媒体ノイズの小さいよう長軸サイズ0.1ミクロンのも
の、そしてその軸比は3/1の米粒状、 Hcは940
06のものを用いる。 米粒状としたのは。
The long axis size is 0.1 micron to reduce media noise, and the axial ratio is 3/1, like a grain of rice, and Hc is 940.
06 is used. I made it into rice grains.

著しい針状ではカレンダリングで垂直配向粒子が面内に
倒れやすぐ、かつHcが大となって技術的に困難なセン
ダストヘッドをフェライトの代シに使わねばならないか
らである。 高密度記録性に関しては2表層垂直記録な
のでHcがそれ程高くなくても十分達成できる。 メタ
ル塗液の製法については、従来の長手テープと同様であ
シ周知なので省略する。
This is because if the grains are extremely acicular, the vertically oriented grains will easily collapse in the plane during calendering, and the Hc will become large, requiring the use of a technically difficult sendust head instead of ferrite. As for high-density recording, since it is two-surface perpendicular recording, it can be sufficiently achieved even if Hc is not so high. The manufacturing method for the metal coating liquid is the same as that for conventional longitudinal tape and is well known, so the description will be omitted.

[実施例−2、特許請求の範囲第(3)項の実施例釦つ
いて述べる。 この発明の二層を構成することに於て、
垂直表層を実効的に薄くすることを二層塗り工程でも実
現することができる。 即わち二層塗勺を利用して深層
の磁性体にはHcのよシ低いもの1例えば400エルス
テツドの針状7−Fe2C)3を用いることによシ、リ
ングヘッドの記録磁界領域が深くなり、実効的には表層
が薄くなったのと同じような長波長長手記録効率の向上
が得られる。 製造法は従来の長手二層塗膜媒体になら
って、先ず長手配向低保磁力深層をつくり1次に米粒状
鉄粒子(Hc〜900エルステッド)の塗液で表層を形
成する。 表層の垂直配向は前述の方法による。
[Embodiment 2, the embodiment button of claim (3) will be described. In configuring the two layers of this invention,
Effective thinning of the vertical surface layer can also be achieved with a two-layer coating process. That is, by using a two-layer coating and using a material with a lower Hc (for example, acicular 7-Fe2C) of 400 oersteds as the deep magnetic material, the recording magnetic field region of the ring head can be deep. Therefore, the long wavelength longitudinal recording efficiency can be effectively improved in the same way as when the surface layer is made thinner. The manufacturing method is based on the conventional longitudinal two-layer coating medium, in which a longitudinally oriented, low coercive force deep layer is first formed, and then a surface layer is formed with a coating liquid of rice granular iron particles (Hc ~ 900 Oe). The vertical alignment of the surface layer is performed by the method described above.

この実施例のメリントは9表層厚み制御の精度を高くで
きることであるが2表層の実効的薄さく長波長効率)の
問題も薄塗り塗付技術の進歩と深層専用広ギャップへノ
ドの併用で軽減されるであろう。
The advantage of this example is that the accuracy of surface layer thickness control can be increased (9), but the problem (2) of effective thinness of the surface layer (long wavelength efficiency) is also alleviated by the advancement of thin coating technology and the combination of a wide gap gutter for deep layers. will be done.

[実施例−3] 実施例−1および2において。[Example-3] In Examples-1 and 2.

垂直配向磁場およびA−C消磁用磁場を交流電源と電磁
石を用いて発生したが、永久磁石のセットでこれらに代
えることができる。 第4図Ck)にその磁場分布を、
(B)に永久磁石の配置を示す。
Although the vertical alignment magnetic field and the A-C demagnetizing magnetic field were generated using an AC power source and an electromagnet, they can be replaced with a set of permanent magnets. Figure 4 Ck) shows the magnetic field distribution.
(B) shows the arrangement of the permanent magnets.

全体のラインは、第1図においてAC電磁石をこの永久
磁石のセットで置き換えたものである。
The overall line is that of FIG. 1 with this set of permanent magnets replacing the AC electromagnets.

実施例−1および2に於ける垂直配向部は1次のAC消
磁と同一の電磁石を便宜的に利用しているのでAC配向
であったが、永久磁石を使う場合為C型の軟鉄ヨーク(
9)で閉磁路を形成している。
The vertical alignment part in Examples 1 and 2 was AC alignment because it conveniently used the same electromagnet as for the primary AC demagnetization, but when using permanent magnets, a C-shaped soft iron yoke (
9) forms a closed magnetic circuit.

配向磁場間隔ΔXorは量産ラインの■=2M/sec
を想定してΔXor二0.2 Mとする。 一般に小型
の試作塗付器(V〜0.2 M/、)では、AC電流を
使う電磁石が簡便であったが、量産ライン用にはジュー
ル熱の除去と電力コストが問題になるので、永久磁石方
式が有利である。
The orientation magnetic field interval ΔXor is ■=2M/sec on the mass production line
Assuming that, ΔXor2 is set to 0.2 M. In general, electromagnets that use AC current are convenient for small prototype applicators (V ~ 0.2 M/,), but for mass production lines, Joule heat removal and electricity costs are issues, so it is necessary to use permanent magnets. Magnetic methods are advantageous.

AC消磁部は、数組(例えば5組)の永久磁石対(8,
8,8,8,・・・)を、磁場勾配がつくようにしなが
ら順次反転設置したものである。
The AC demagnetization section includes several (for example, 5) permanent magnet pairs (8,
8, 8, 8, . . . ) were installed in reverse order in order to create a magnetic field gradient.

AC消磁部距離ムXadに関しては、電源周波数的制約
がなく、かつ粒子内スピン反転は非常に速い磁界を有限
の磁極間隙(3〜5mm)に発生することが困難になる
ので、結局AXad w O,2Mとする。
As for the AC demagnetization part distance (Xad), there is no power frequency restriction, and intra-particle spin reversal makes it difficult to generate a very fast magnetic field in a finite magnetic pole gap (3 to 5 mm), so in the end, AXad w O , 2M.

その他は、平滑化プロセスc’、c“や長手配向時間々
隔乙t に対応する距離をそれぞれVに比例して増す以
外は実施例−1と同じである。
The rest is the same as in Example-1 except that the smoothing processes c', c'' and the distances corresponding to the longitudinal direction time intervals t are respectively increased in proportion to V.

[発明の効果] 高密度化広帯域化を目的とした従来の
表層垂直配向深層長手配向の二層塗膜の考案に於いて、
高度の高密度垂直記録を実現するに必要な表層の高いS
QR上と、スペーシングロスを減らす表面平滑性とは、
 垂直配向−AC消磁−平滑イモの方法を取シ入れて、
最も大事な表面でHdをゼロにすること52表面粗れを
解決すること\によシ初めて可能になった。 またこの
垂直表層を薄く作って長手深層への長波長中波長成分の
記録の効率を高めることも2表層と深層の′1:rの差
を利用して、最初の垂直配向を薄い表層だけ残して深層
を長手配向に変える方法で実現した。
[Effect of the invention] In devising a conventional two-layer coating film with vertical orientation on the surface layer and longitudinal orientation on the deep layer for the purpose of high density and wide band expansion,
High S surface layer required to achieve high density perpendicular recording
What is QR and surface smoothness that reduces spacing loss?
Incorporating the vertical orientation-AC demagnetization-smoothing method,
It became possible for the first time to reduce Hd to zero on the most important surface52 by solving surface roughness. It is also possible to make this vertical surface layer thinner to increase the efficiency of recording long and medium wavelength components into the long and deep layers. This was achieved by changing the deep layer to a longitudinal direction.

広い波長範囲の記録の必要なオーディオアナログ記録テ
ープ、オーディオアナログトラックも含むビデオテープ
等では、高密度化(小型化)広帯域忠実度化が強く要請
されているので、この発明の寄与する所は大である。 
また音声深層F’M記録のVH8−HiPi方式に対し
ても同様に有効である。
For audio analog recording tapes that require recording in a wide wavelength range, video tapes that also include audio analog tracks, there is a strong demand for higher density (miniaturization) and wider band fidelity, so the contribution of this invention is significant. It is.
It is also similarly effective for the VH8-HiPi method of audio deep F'M recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁石等を側面図で示しだ製造ラインの説明図。  下段の(A’) (A“)はAC垂直磁場配向。 (的はAC消磁、(C”)は平滑化、(D)は赤外線蒸
発法による表層高粘度化、(E)は長手配向の各プロセ
スでの塗液の状態をそれぞれ示す。 第2図は塗液の表
層および深層の粘度’/ (A)と粒子の配向回転時定
数′r:r(B)の時間的変化を示すグラを用いた垂直
配向部およびAC消磁部の磁場分布のグラフ(A)と磁
石の配置図(B)011および12はAC電磁石の磁極
、3はその垂直、9はヨーク。 81元144 洒百 人       十 邊ヨl 壬
、し +缶第2圏          才3目 芳4 図 H(koe) 8pJl  、″6″
FIG. 1 is an explanatory diagram of a manufacturing line showing magnets etc. in a side view. Lower row (A') (A") is AC vertical magnetic field orientation. (The mark is AC demagnetization, (C") is smoothing, (D) is surface layer viscosity increase by infrared evaporation method, (E) is longitudinal orientation. The state of the coating liquid in each process is shown in Figure 2. Figure 2 shows the temporal changes in the viscosity of the coating liquid at the surface and deep layers '/ (A) and the particle orientation rotation time constant 'r: r (B). Graph (A) of the magnetic field distribution of the vertical alignment part and AC demagnetization part using magnets (A) and the magnet arrangement diagram (B) 011 and 12 are the magnetic poles of the AC electromagnet, 3 is the perpendicular thereof, and 9 is the yoke. 81 Yuan 144 Shu Hyaku Person 10, 1, 2 + can 2nd area Sai 3 Yoshi 4 Figure H (koe) 8pJl, ``6''

Claims (3)

【特許請求の範囲】[Claims] (1)一軸性磁気異方性を有する単磁区粒子が表層では
垂直配向、深層では長手配向している二層構成の磁気記
録塗膜媒体に於て、その垂直磁場配向処理を、交流消磁
を垂直磁場配向直後にするやり方によって行い、それと
長手磁場配向処理とを組合せて、二層を構成することを
特徴とする磁気記録塗膜媒体の製造法。
(1) In a magnetic recording coating medium with a two-layer structure in which single-domain grains with uniaxial magnetic anisotropy are vertically oriented in the surface layer and longitudinally oriented in the deep layer, the perpendicular magnetic field orientation treatment is performed by alternating current demagnetization. 1. A method for producing a magnetic recording coated medium, comprising: immediately after vertical magnetic field orientation, and combining this with a longitudinal magnetic field orientation treatment to form two layers.
(2)二層構成の磁場配向処理を、次のように行う特許
請求の範囲第(1)項記載の磁気記録塗膜媒体の製造法
。先に塗液全厚を垂直磁場配向処理し、次に表層側で高
い粘度勾配を保ちながらの塗液の粘度上昇過程で、表層
と深層に於ける粒子の回転時定数τ_r(表)およびτ
_r(深)と、ライン走行中の塗液の一点が長手配向磁
場間を通過する時間間陽Δtとの間に、τ_r(表)≫
Δt≫τ_r(深)の関係が成立する時点で長手配向磁
場処理を行う。
(2) A method for manufacturing a magnetic recording coated medium according to claim (1), wherein the magnetic field orientation treatment of the two-layer structure is carried out as follows. First, the entire thickness of the coating liquid is subjected to vertical magnetic field alignment treatment, and then, in the process of increasing the viscosity of the coating liquid while maintaining a high viscosity gradient on the surface layer side, the rotation time constant τ_r (table) and τ of particles in the surface layer and deep layer are calculated.
τ_r (table) ≫
At the time when the relationship Δt≫τ_r (depth) is satisfied, longitudinal magnetic field processing is performed.
(3)二層構成の磁場配向処理に於て、先に長手配向、
カレンダリングおよび硬化処理をした深層部の上に、表
層部となる塗液を重ね、その塗液を垂直配向する特許請
求の範囲第(1)項記載の磁気記録塗膜媒体の製造法。
(3) In the magnetic field orientation treatment of the two-layer structure, first the longitudinal orientation,
A method for producing a magnetic recording coated medium according to claim 1, wherein a coating liquid for a surface layer is layered on a deep layer that has been calendered and hardened, and the coating liquid is vertically oriented.
JP1717985A 1985-01-31 1985-01-31 Production of magnetic recording film coated medium Pending JPS61177632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1717985A JPS61177632A (en) 1985-01-31 1985-01-31 Production of magnetic recording film coated medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1717985A JPS61177632A (en) 1985-01-31 1985-01-31 Production of magnetic recording film coated medium

Publications (1)

Publication Number Publication Date
JPS61177632A true JPS61177632A (en) 1986-08-09

Family

ID=11936718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1717985A Pending JPS61177632A (en) 1985-01-31 1985-01-31 Production of magnetic recording film coated medium

Country Status (1)

Country Link
JP (1) JPS61177632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241023A (en) * 1988-03-22 1989-09-26 Sony Corp Production of magnetic recording medium
JPH02108238A (en) * 1988-10-18 1990-04-20 Sony Corp Production of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241023A (en) * 1988-03-22 1989-09-26 Sony Corp Production of magnetic recording medium
JPH02108238A (en) * 1988-10-18 1990-04-20 Sony Corp Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
US5053893A (en) Method of and device for demagnetizing magnetic recording medium
JP5539817B2 (en) Magnetic recording apparatus and magnetic recording method
US7492550B2 (en) Magnetic recording head and method for high coercivity media, employing concentrated stray magnetic fields
JPH06103553A (en) Perpendicular magnetic recording medium and its production
JPS61177632A (en) Production of magnetic recording film coated medium
JP2000149201A (en) Magnetic memory reproducing device
JP3947001B2 (en) Information recording medium and information storage device
Valstyn et al. The write field of a magnetic-film recording head
Plumer et al. Micromagnetic study of track edge and medium orientation effects in high areal density recording
Senanan et al. Effect of medium permeability on the perpendicular recording process
JPS5894136A (en) Magnetic transferring recorder
JP4442925B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPS61246924A (en) Production of vertical magnetic coated film medium
JP2812113B2 (en) Recording medium and its recording / reproducing method
JPS59167842A (en) Vertical magnetic recording medium
JP3544832B2 (en) Magnetic recording / reproducing method and apparatus
Dejouhanet et al. Theoretical study of integrated magnetic heads for high recording densities
JPS59139143A (en) Production of magnetic recording medium
KR0166760B1 (en) Vertical recording magnetic head
JPH0489623A (en) Production of perpendicular magnetic recording medium
JPH07235053A (en) Production of magnetic recording medium
Thornley et al. The effect of pole tip saturation on the performance of a recording head
JPH06309661A (en) Orienting method of magnetic recording medium
Morrison Recent Advances in Ma: Recording Materials
JPH0335420A (en) Method and device for oblique orientation