JPS5894136A - Magnetic transferring recorder - Google Patents

Magnetic transferring recorder

Info

Publication number
JPS5894136A
JPS5894136A JP19221681A JP19221681A JPS5894136A JP S5894136 A JPS5894136 A JP S5894136A JP 19221681 A JP19221681 A JP 19221681A JP 19221681 A JP19221681 A JP 19221681A JP S5894136 A JPS5894136 A JP S5894136A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
magnetic layer
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19221681A
Other languages
Japanese (ja)
Inventor
Taiji Higashiyama
東山 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19221681A priority Critical patent/JPS5894136A/en
Publication of JPS5894136A publication Critical patent/JPS5894136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/0057Intermediate mediums, i.e. mediums provided with an information structure not specific to the method of reproducing or duplication such as matrixes for mechanical pressing of an information structure ; record carriers having a relief information structure provided with or included in layers not specific for a single reproducing method; apparatus or processes specially adapted for their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/86Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
    • G11B5/865Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers by contact "printing"

Abstract

PURPOSE:To record a signal with its unevennesses whose dimensions in both directions of the width of the track and the wavelength coincide with a magnetized pattern in a magnetic recording and reproducing device, by irradiating a laser beam upon a magnetic layer through a special optical system. CONSTITUTION:A laser beam from a laser oscillator 11 is irradiated, after the laser beam is modulated by an optical modulator 12 in accordance with a signal 13 to be recorded, upon a magnetic layer 3 or a non-magnetic layer, on which the magnetic layer is to be formed, of a magnetic recording medium 1 through an optical system containing a cylindrical lens 15 and an optical filter 14 which evens the strength distribution of the laser beam at least in the direction of the width of the track on the magnetic layer 3 or the non-magnetic layer within the width of the track, and an unevenness is formed according to the signal 13. The magnetic recording medium 1, on which the signal 13 is recorded by the unevenness, is used as a medium for transferring the recorded information to other magnetic recording media by impressing the magnetic field upon the other media while the medium 1 is in contacted with the other media.

Description

【発明の詳細な説明】 発明の技術分野 この発明は、第1の磁気記録媒体に凹凸の形で記録あれ
た信号t@2の磁気記録媒体に磁気的に転写する装置に
係り、特に第1の磁気記録媒体C:おける凹凸の形成手
段に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an apparatus for magnetically transferring a signal t@2 recorded on a first magnetic recording medium in the form of unevenness to a magnetic recording medium, and particularly to The present invention relates to a means for forming unevenness in a magnetic recording medium C:.

発明の技術的背最とその間融点 磁気ヘッドを用いて磁気記録媒体にビデオ信号、オーデ
ィオ信号等を記録し再生する方式は。
The technical backbone of the invention is a method for recording and reproducing video signals, audio signals, etc. on a magnetic recording medium using a melting point magnetic head.

現在広く普及しているが、記録密度χよび8/Nの点で
、必らずしも十分でない。
Although it is currently widely used, it is not necessarily sufficient in terms of recording density χ and 8/N.

これに対し、近年、レーザビームや電子ビームを用いて
信号を凹凸の形で記録し、機械的。
In contrast, in recent years, laser beams or electron beams have been used to record signals in the form of convexes and convexes, and mechanical methods have been developed.

または静電的または光学的に再生するビデオディスクの
開発が盛んI:行なわれてχす、既に実用段階に達して
いる。最近のレーザビーム加工技術g:よると、サブミ
グロンオーダの凹凸を容易に形成できることから、この
ようなビデオディスクにgいては極めて高密度、A6S
/Nの記録、再生を行なうことができる。ところがこの
ようなビデオディスクでは、記録されない信号Y再生す
るのにそれぞれ特殊な再生装置が必要であり、それらは
現在昔及している磁気記録再生装置と比較して高価であ
る。
Also, video discs that can be reproduced electrostatically or optically are being actively developed and have already reached the stage of practical use. According to recent laser beam processing technology, it is possible to easily form irregularities on the order of submigron.
/N recording and playback can be performed. However, such video disks require special playback devices to play back the unrecorded signal Y, and these are more expensive than the magnetic recording and playback devices that have been used in the past.

このような従来のビデオディスク等の問題点1解決する
ため1発明者らは第1の磁気記録媒体に信号l凹凸の形
で記録し、この第1の磁気記録媒体(二第2の磁気記録
媒体を当接してこれら第1.s2の磁気記録媒体に磁界
を加えることにより、第1の磁気記録媒体に記録された
信号を第2の磁気記録媒体に磁気的に転写する方式V提
案している。(特願昭54−82609号等)、この方
式によれば第1の磁気記録媒体に記録される信号に応じ
た凹凸をサブミクロンオーダで形成できるため、第2の
磁気記録媒体に転写記録された信号の記録密度も極めて
高密度であり、しかも@2の磁気記録媒体での信号の記
録方式自体は磁気的であるから、その再生は原理的に従
来の磁気記録再生装置で行なうことが可能である。
In order to solve problems 1 with such conventional video discs, etc., the inventors recorded signals in the form of concavities and convexities on a first magnetic recording medium. A method V is proposed in which a signal recorded on a first magnetic recording medium is magnetically transferred to a second magnetic recording medium by applying a magnetic field to these 1.s2 magnetic recording media by bringing the medium into contact with the medium. (Japanese Patent Application No. 54-82609, etc.). According to this method, unevenness can be formed on the submicron order according to the signal recorded on the first magnetic recording medium, so it is possible to form irregularities on the submicron order. The recording density of the recorded signals is also extremely high, and since the signal recording method in @2's magnetic recording medium itself is magnetic, in principle, the reproduction should be performed using a conventional magnetic recording and reproducing device. is possible.

ところで、従来の磁気記録Nti装置CNける磁気記録
媒体上の記録パターンつまり磁化パターンは、ビデオデ
ィスク等C糞ける凹凸による記録パターンと異なり、例
えば!方式のVTRを例にとると、波長方向に約α8μ
m、)ラック幅方向に約29.2μmの細長いパターン
となっている。従って、このような磁化パターンを最も
効率よく再生できるように装置が設計されていること!
考えると、前記第2の磁気記録媒体に転写記録された信
号の磁化パターンも1通常の磁気方式にどける磁化パタ
ーンと同様な細長いパターンであることが望ましい、そ
のためには、前記!@lの磁気記録媒体に配録される信
号に応じた凹凸も、上記磁化パターンと同様な細長いパ
ターンであることが必要である。
By the way, the recording pattern, that is, the magnetization pattern on the magnetic recording medium in the conventional magnetic recording Nti device CN is different from the recording pattern due to unevenness on a video disk, for example! For example, in a VTR of this type, approximately α8μ in the wavelength direction.
m,) It has an elongated pattern of about 29.2 μm in the rack width direction. Therefore, the device must be designed to most efficiently reproduce such magnetization patterns!
Considering this, it is desirable that the magnetization pattern of the signal transferred and recorded on the second magnetic recording medium is also an elongated pattern similar to the magnetization pattern in the normal magnetic system. The unevenness corresponding to the signal recorded on the magnetic recording medium @l also needs to be an elongated pattern similar to the magnetization pattern described above.

そこで発明者らは、前述の細長い凹凸パターンン第1の
磁気記録媒体に形成し得る磁気転写記録*tとして、第
1の磁気記録媒体の磁性体1lllまたはこの磁性体層
が形成される非ふ性体層に、記録Tべき信号により変調
されたレーザビームをνリンドラカルレンズにより長橢
円ビームに変換して照射することによって、細長い形状
の凹凸を形成するようにした装置を既に提案している(
特願昭56−42910号)。
Therefore, the inventors have proposed a magnetic transfer recording*t that can be formed on the first magnetic recording medium with the above-mentioned elongated concavo-convex pattern, or a non-fiber layer on which this magnetic layer is formed. We have already proposed a device in which elongated irregularities are formed by irradiating a magnetic layer with a laser beam modulated by a recording T signal, which is converted into an elongated circular beam using a ν-lindracal lens. ing(
(Japanese Patent Application No. 56-42910).

しかしながら、この方式はレーザビームの強度分布が平
担であれば問題ないが、実際にはレ−fと−Aの強度分
布が平担でないため、凹凸の形状は大体細長いパターン
とはなっても、その寸法1丁なわちトラック幅方向gよ
び波長方向の寸法ン磁気記録再生装置にSける磁化パタ
ーンのそれと一致させることが離しい0例えば、レーザ
ビームの強度分布ががクス分布の場合、ビーム中心部の
パワーが強いため、これによって形成される凹凸は波長
方向の幅がトラック幅方向中央部とトラック幅方向両端
部で同一とならず、これt磁気記録再生装置1:おける
磁化パターンのそれと一致させることは非常に困難であ
る。
However, there is no problem with this method if the intensity distribution of the laser beam is flat, but in reality, the intensity distribution of the laser beams -f and -A is not flat, so even though the shape of the unevenness is generally an elongated pattern, , its dimensions in the track width direction g and in the wavelength direction are difficult to match with those of the magnetization pattern in the magnetic recording/reproducing device. Because the power in the center is strong, the width of the unevenness formed by this is not the same in the wavelength direction at the center in the track width direction and at both ends in the track width direction, and this is different from that of the magnetization pattern in the magnetic recording/reproducing apparatus 1:. It is very difficult to match.

発明の目的 この発明の目的は、I!lの磁気記録媒体の磁性体層に
レーザビームな用いてトラック幅方向gよび波長方向の
両方の寸法が磁気記録再生装置に8ける磁化パターンの
それと一致した凹凸として信号を記録できる磁気転写記
録装置を提供Tることである。
OBJECT OF THE INVENTION The object of this invention is that I! A magnetic transfer recording device capable of recording signals on a magnetic layer of a magnetic recording medium by using a laser beam as unevenness whose dimensions in both the track width direction g and the wavelength direction match those of a magnetization pattern in a magnetic recording and reproducing device. It is to provide the following.

発明の概要 この発明は、第1の磁気記録媒体の磁性層またはこの磁
性体層が形成される非磁性層C:記録すべき信号により
変調されたレーザビーム1kVリントリカルレンズと、
このレーザビームの上記磁性体層上または非磁性体層上
での少なくともトラック幅方向の強度分布を少なくとも
トラック幅四で平担化せしめる光学フィルタとを含む光
学系を介して照射して、上記信号に応じた凹凸l形成す
るようにしたこと!特徴としている。
Summary of the Invention This invention provides a magnetic layer of a first magnetic recording medium or a non-magnetic layer C on which this magnetic layer is formed: a 1 kV lintrical lens with a laser beam modulated by a signal to be recorded;
The laser beam is irradiated through an optical system including an optical filter that flattens the intensity distribution in at least the track width direction on the magnetic layer or the nonmagnetic layer at least with a track width of 4, and the signal is The unevenness is formed according to the shape! It is a feature.

発明の実施例 第1因はこの発明の一実施例における転写プロセス!示
したものであり、lはベース層zの上に信号が凹凸の形
で記録された磁性体層1v設けたIIlの磁気記録媒体
、4はベース層5の上に平担な磁性層#Y設けた!2の
磁気記録媒体である。
Embodiment of the Invention The first factor is the transfer process in an embodiment of this invention! In the figure, l is a magnetic recording medium IIl having a magnetic layer 1v on which signals are recorded in an uneven form on a base layer z, and 4 is a flat magnetic layer #Y on a base layer 5. Set it up! This is the second magnetic recording medium.

転写記録時には、磁性体層Iの表面ζ二値性体層−の表
flv当接し、さらにこれら第1#第2の磁気記録媒体
1.4f挾んで磁゛石7 、81に一異磁極どうしが対
向するように配置して、その厚み方向に直流磁界を加え
る。そして、!$1.M2の磁気記録媒体1’m4を磁
石7.8に対しトラック方向f1.lOc相対的シー移
動させる。こうすると第2の磁気記録媒体4の磁性体層
6はjllの磁気記録媒体lの磁性体層3の凹凸に応じ
て興なる強さで磁化される。すなわち、磁性体層−に磁
性体層1の凹凸に対応した磁化パターンが形成され、磁
気転写記録が行なわれる。
At the time of transfer recording, the surface flv of the ζ binary material layer of the magnetic material layer I is brought into contact with the surface flv, and the magnets 7 and 81 are placed between different magnetic poles with these first and second magnetic recording media 1.4f in between. are placed so that they face each other, and a DC magnetic field is applied in the thickness direction. and,! $1. M2 magnetic recording medium 1'm4 is placed in the track direction f1.8 with respect to the magnet 7.8. Move lOc relative sea. In this way, the magnetic layer 6 of the second magnetic recording medium 4 is magnetized with a varying strength depending on the unevenness of the magnetic layer 3 of the magnetic recording medium l of jll. That is, a magnetization pattern corresponding to the unevenness of the magnetic layer 1 is formed on the magnetic layer 1, and magnetic transfer recording is performed.

この場合、第2の磁気記録媒体4の磁性体層6を予め磁
石1.8による磁界と逆向きの磁界で一様に磁化して8
き、転写記録時に第1I7)a気軸録媒体lの磁性体層
1の凹凸に応じて磁性体層−の磁化の向きt反転させて
もよい。
In this case, the magnetic layer 6 of the second magnetic recording medium 4 is uniformly magnetized in advance with a magnetic field in the opposite direction to the magnetic field generated by the magnet 1.8.
At the time of transfer recording, the direction of magnetization of the magnetic layer 1 may be reversed depending on the unevenness of the magnetic layer 1 of the magnetic recording medium L.

なお、この転写プロセスは種々変形が可能であり、例え
ば転写のための磁界は、交流磁界あるいは、直流によび
交流磁界の合成磁界でも良く、その加える方向も面方向
あるいは厚み方向と面方向の両方でも良い、さらCl!
!1の磁気記録媒体lの磁性体層1v予め磁化してgき
、転写効率を高めることも可能である。
Note that this transfer process can be modified in various ways. For example, the magnetic field for transfer may be an alternating current magnetic field or a composite magnetic field of direct current and alternating current magnetic fields, and the direction of application may also be in the planar direction or both the thickness direction and the planar direction. But that's okay, Sara Cl!
! It is also possible to increase the transfer efficiency by magnetizing the magnetic layer 1v of the magnetic recording medium 1 in advance.

82図は第1の磁気記録媒体lに信号!凹凸の形で記録
するための装置の構成を示したものである。なお、この
例で説明するレーザ光は。
Figure 82 shows a signal to the first magnetic recording medium l! This figure shows the configuration of an apparatus for recording in the form of unevenness. Note that the laser beam explained in this example is as follows.

TEM−ゆ光とTる。第2図にgいて、レーデ発振器1
1から出力されるレーデビームは光変調@1!に導かれ
、ここで記録すべき信号11(二より変調される0丁な
わち、信号1gに応じてレーザビームの強弱が変化する
TEM-Tru with Yuko. In Figure 2, the radar oscillator 1
The radar beam output from 1 is optically modulated @1! The intensity of the laser beam changes according to the signal 11 to be recorded (that is, the signal 1g, which is modulated by two).

こうして光変調器12で変調されたレーデビームは、ま
ず透過率が位置によって異なる所定の透過特性を持つ光
学フィルタ14により、直径方向の強度分布が平担なレ
ーザビームとなる。
The Rade beam thus modulated by the optical modulator 12 is first turned into a laser beam with a flat intensity distribution in the diameter direction by an optical filter 14 having a predetermined transmission characteristic in which the transmittance varies depending on the position.

この光学フィルタ141に透過したレーザビームは、半
筒形のVワントリカルレンズ15≦二より円ビームから
畏橢円ビームに変換された後、集光レンズJigで集光
されて、矢印11の方向へ相対的に移動しているIJI
の磁気記録媒体lの磁性層1g:照射される。これ(二
より磁性体層3に信号11に応じた凹凸が形成される。
The laser beam transmitted through this optical filter 141 is converted from a circular beam to an extremely circular beam by a semi-cylindrical V-one trigonal lens 15≦2, and then condensed by a condensing lens Jig, as indicated by an arrow 11. IJI moving relatively in the direction
Magnetic layer 1g of magnetic recording medium 1: irradiated. As a result of this, irregularities corresponding to the signal 11 are formed on the magnetic layer 3.

第3図(a) (b)はそれぞれ82図に2けるレンズ
系vVヲンドリカレンズ15の円筒面に平行な方向Sよ
びこれと直角の方向から見た因であり、このレンズ系の
焦点はシリンドリカルレンズ15の円筒面に平行な方向
では、P、となり。
Figures 3(a) and 3(b) are views of the lens system vV linear lens 15 in Figure 82 as viewed from the direction S parallel to the cylindrical surface and from the direction perpendicular to this, respectively, and the focal point of this lens system is the cylindrical lens 15. In the direction parallel to the cylindrical surface of 15, P.

直角の方向では、Plより遠いP、となる。レンズ系の
光軸に直角で、かつPBmPH’lそれぞれ通るdjA
、Bのいずれの近傍に8いても、レーザビームは細長い
形状となるので、第1の磁気記録媒体1%’面Aまたは
面Bの近傍に置くことにより、磁性体層1に細長い凹凸
Y形成Tることかできる。但し、面A近傍と面B近傍と
では、ビームの長径方向が90異なるO)で、このビー
ムの長径方向に応じて第lの磁気記録媒体lの移動方向
を変える必要がある。
In the orthogonal direction, P is farther than Pl. djA perpendicular to the optical axis of the lens system and passing through PBmPH'l respectively
, B, the laser beam will have an elongated shape. Therefore, by placing the first magnetic recording medium 1%' near surface A or surface B, elongated unevenness Y is formed on the magnetic layer 1. I can do T. However, since the major axis direction of the beam differs by 90° between the vicinity of the surface A and the vicinity of the plane B, it is necessary to change the moving direction of the first magnetic recording medium l depending on the major axis direction of the beam.

次に第4図〜第6図1用いて光学フィルター−の構成と
作用を説明する。
Next, the structure and operation of the optical filter will be explained using FIGS. 4 to 6.

レーデ発振器11から出力されたレーザビームの直径方
向の強度分布は、例えば@4図(a) E:つ 示すようなガタ1分布!している。このガラス分布のま
まのレーザビームを磁性体#1に照射して凹凸を形成す
ると、lF7]述したように凹凸のトラック幅方向中央
部での波長方向の幅が広くなってしまう、そこでW&5
図Iに示すような透過特性、丁なわち透過率が中心部で
鍛小となり、つ 直径方向外方はど増加するようなガ(ス分布l示す光学
フィルター4にこのレーザビームを通すと、$4図(b
)に示すような直径方FiiJ(二等方豹に平担の強度
分布となる。すなわち、S性体層1上にgいて波長方向
のみならずトラック幅方向においてもトラック幅内で平
担な強度分布となる。これにより磁性体層1に形成さ為
る凹凸は、トラック幅方向のどの部分に3いても波長方
向の幅が一定となる。従って、従来の磁気紀i再生¥j
tlにおける磁化パターンσ)寸法1ニ一致した凹凸l
形成することが、可能となる。@6因は光学フィルタ1
4の具体的な構成の−flj’i’示したもので、この
例では円板状C:形成され。
The intensity distribution in the diameter direction of the laser beam output from the Rade oscillator 11 is, for example, a backlash 1 distribution as shown in Figure 4 (a). are doing. When the laser beam with this glass distribution is irradiated onto magnetic material #1 to form unevenness, the width of the unevenness in the wavelength direction at the center in the track width direction becomes wider as described above.
When this laser beam is passed through an optical filter 4 showing a gas distribution such that the transmission characteristics, that is, the transmittance decreases in the center and increases outward in the diametrical direction, as shown in Figure I, Figure $4 (b
) as shown in the diametric direction FiiJ (bi-isotropically flat intensity distribution. In other words, the intensity distribution is flat within the track width not only in the wavelength direction but also in the track width direction. As a result, the unevenness formed on the magnetic layer 1 has a constant width in the wavelength direction no matter where it is located in the track width direction.
Magnetization pattern at tl
It becomes possible to form. @6 The reason is optical filter 1
-flj'i' of the specific configuration of No. 4 is shown, and in this example, a disc-shaped C: is formed.

その透過率が中心部で最小となり、外方Iヨと増加して
いるものとする。
It is assumed that the transmittance is minimum at the center and increases outward.

なお、レーザビームの強度分布Yどの強度レベルで平担
にするかは、凹凸が形成される第1の磁気記録媒体lの
磁性体層3σ)材質と磁気記録再生装置に寞ける磁気パ
ターンのトラック幅方向の寸法と一致させるべき凹凸(
7) )ラック幅方向の寸法によって、光学フィルタ1
4σ)透過率とシリンドリカルレンズ15の焦点距離と
Note that the intensity distribution Y of the laser beam, at which intensity level it should be flattened, depends on the material of the magnetic layer 3σ) of the first magnetic recording medium l on which the unevenness is formed and the magnetic pattern track of the magnetic recording/reproducing device. Irregularities that should match the width dimension (
7)) Depending on the rack width direction, the optical filter 1
4σ) transmittance and focal length of the cylindrical lens 15.

レンズ系の光軸上にgける$1の磁気記録媒体lの位置
!適当に選んでやればよい。
The position of the $1 magnetic recording medium l on the optical axis of the lens system! You just have to choose appropriately.

この発明は種ギ変形して実施が可能であIJ、例えば上
記冥施例では光学フィルタ14Yシリンドリカルレンズ
15の前にtしまた力l、シリンドリカルレンズ15と
集光レンズ16との間。
This invention can be implemented in various modifications, for example, in the above embodiment, the optical filter 14 is placed in front of the cylindrical lens 15, and the force l is placed between the cylindrical lens 15 and the condenser lens 16.

あるいは集光レンズ11と第1の磁気記録媒体lとの間
に置いてもよい。
Alternatively, it may be placed between the condenser lens 11 and the first magnetic recording medium l.

また、上記実施例では、光学フィルタ14として透過率
が中心から等方向にガウス分布を示すように変化Tるも
のを用いて、レーザビームの直径方向の強度分布1等方
向に平担化したが。
Further, in the above embodiment, an optical filter 14 whose transmittance changes T so as to exhibit a Gaussian distribution in an isodirection from the center is used to flatten the intensity distribution in the diametrical direction of the laser beam in an isodirection. .

波長方向のレーザビームの強度分布は必らずしも平担化
しなくともよい、すなわち、前述した通り従来の磁気記
録再生装置にSける磁化パターンは1例えばβ方式のV
TRの場合、波長方向に約0.8μm、)ラック幅方向
に約29.2μmの細長いパターンとなっているので、
レーザビームの波長方向集光幅を例えば0.8μm以下
となるように光学系Y設針丁れば、凹凸の波長方従って
、第7図(a) 、 (b)監:示すよう(ニドラック
幅方向のみ透過率がガウス分布を示し、波長方向では透
過率が一定の光学フィルタ!用いて。
The intensity distribution of the laser beam in the wavelength direction does not necessarily have to be flattened. That is, as mentioned above, the magnetization pattern in the conventional magnetic recording/reproducing device is 1, for example, V of the β method.
In the case of TR, it has an elongated pattern of approximately 0.8 μm in the wavelength direction and approximately 29.2 μm in the rack width direction.
If the optical system Y needle is set so that the condensing width of the laser beam in the wavelength direction is, for example, 0.8 μm or less, the wavelength direction of the unevenness is determined as shown in Fig. 7 (a) and (b). Using an optical filter whose transmittance shows a Gaussian distribution only in the direction, but whose transmittance is constant in the wavelength direction!

レーザビームの強度分布t−1118図(1) # (
b) C示すようにトラック幅方向でのみ平担で、波長
方向ではガウス分布のままとしてもよい、$9図は第7
図の透過フィルタの具体的構成例であり、短形板状に形
成され、その長辺方向(トラック幅方向)glでは透過
率が中心部で最小で、外方はど増加し、短辺方向(波長
方向)yzでは透過率一定となっている。
Laser beam intensity distribution t-1118 diagram (1) # (
b) As shown in C, it may be flat only in the track width direction and remain Gaussian distributed in the wavelength direction.
This is a specific configuration example of the transmission filter shown in the figure, which is formed into a rectangular plate shape, and in the long side direction (track width direction) gl, the transmittance is minimum at the center, increases outward, and increases in the short side direction. (Wavelength direction) The transmittance is constant in yz.

また、この発明(二gける@1 、第2の磁気記録媒体
は、ディスク状、シート状、テープ状のいずれの形態で
あってもよいことは勿論である。
Further, it goes without saying that the second magnetic recording medium of the present invention may be in any form of disk, sheet, or tape.

さらに、前記実施例では、$1の磁気記録媒体の磁性体
層にレーザビームY直接照射して凹凸l形成したが、フ
ォトレジストあるいは、テルルのような金属膜からなる
非磁性層を被看した基板に、レーザ光を照射して凹凸!
形成した後、上記非磁性体層&:蒸看等の化学処理ン経
て磁性体層!形成して第1の磁気記録媒体!得てもよい
Furthermore, in the above example, the magnetic layer of the $1 magnetic recording medium was directly irradiated with the laser beam Y to form the unevenness L, but it was also possible to form the unevenness L by directly irradiating the magnetic layer of the $1 magnetic recording medium. Irradiate the substrate with laser light to create irregularities!
After forming the above-mentioned non-magnetic layer &: chemical treatment such as steaming, the magnetic layer is formed! Forming the first magnetic recording medium! You may get it.

発明の詳細 な説明したように、この発明によれば@lの磁気記録媒
体の磁性体層に4M号を細長い凹凸のトラック幅方向の
波長方向の寸法をトラック幅方向に3いて均一とするこ
とができるので。
As described in detail, according to the present invention, the magnetic layer of the @l magnetic recording medium is coated with 4M to make the size of the elongated unevenness in the wavelength direction in the track width direction uniform by 3 in the track width direction. Because you can.

従来の磁気配録!W生装置にg、ける磁化パターンと凹
凸のトラック幅方向糞よび波長方向の両方の寸法を容易
に一致させることが可能である。
Traditional magnetic recording! It is possible to easily match the magnetization pattern applied to the W generator with the dimensions of the unevenness in both the track width direction and the wavelength direction.

これによって、第2の磁気記録媒体(二信号を細長い磁
化パターンとして転写記録下ることが可′能であるとと
もC:、その転写記録した信号!従来のVTRその他の
既存の磁気記録再生装置でそのまま効率よく再生できる
という効果が得られる。さらに、この発明では、第1の
磁気記録媒体の磁性体層または非磁性体層に光学フィル
タ、シリンドリカルレンズ!含む光学系!介してレーザ
ビームを照射することによって、磁性体層に信号に応じ
た凹凸を形成することから。
This makes it possible to transfer and record the two signals as an elongated magnetization pattern on the second magnetic recording medium. The effect of efficiently reproducing data as it is can be obtained.Furthermore, in the present invention, a laser beam is irradiated onto the magnetic layer or non-magnetic layer of the first magnetic recording medium through an optical system including an optical filter and a cylindrical lens! This is because unevenness is formed in the magnetic layer according to the signal.

磁気記録!!依装置に8ける再生用a気ヘッドの幅が異
なっても、シリンドカルレンズの焦点距離の変更、光学
フィルタの透過率の変更等によって容易に対応できると
い5利点もある。
Magnetic recording! ! Another advantage is that even if the width of the reproducing air head in the dependent device differs, it can be easily accommodated by changing the focal length of the cylindrical lens, changing the transmittance of the optical filter, etc.

【図面の簡単な説明】 第1図はこの発明に宸ける6気転写プロセスを説明する
ための断面図、M21/はこの発明の一実施例ytaけ
る第1の磁気記録媒体に信号を凹凸の形で記録Tる装置
の構成を示す図、@3因は$2因におけるレンズ系を詳
細に示す図、第4図(1) (b)は光学フィルタ通過
前および通過後のレーザビームの直径方向の強度分布を
示T因。 115図は同光学フィルタの透過特性の一例を示す図、
@6図は同光学フィルタの具体的構成図を示す図、弗7
図伽)(b)はこの発明で用いる光学フィルタの他σ)
例のトラック幅方向および波長方向の透過特性を示TI
/、第81Jは(4)(b)は同光学フィルタ通過後の
レーザビームのトラック幅方向Sよび波長方向の強度分
布ン示す図、第9図は同光学フィルタの具体的構成例を
示す因で−ある。 1−・第1のa気配録媒体、4・・・@2の磁気記録媒
体、7.8−磁石、11・・・レーザ発振器、12−光
度Im器、 1 j−・・記録丁べき信号、14−光学
フィルタ、ts−Vリントリカルレンズ、第璽図 第2図     □ 13図 、1s   +6 1 1゜ 1  。 1g4図        第5図 (語’;、、xm>
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a cross-sectional view for explaining the six-layer transfer process according to the present invention, and M21/ is a cross-sectional view for explaining the six-layer transfer process according to the present invention. Figure 4 (1) (b) shows the diameter of the laser beam before and after passing through the optical filter. Indicates the intensity distribution in the direction T factor. Figure 115 is a diagram showing an example of the transmission characteristics of the same optical filter.
@Figure 6 is a diagram showing a specific configuration diagram of the same optical filter, 弗7
Figure 3) (b) shows the optical filter used in this invention as well as σ)
The transmission characteristics in the track width direction and wavelength direction are shown for example TI
/, No. 81J (4) (b) is a diagram showing the intensity distribution of the laser beam in the track width direction S and wavelength direction after passing through the optical filter, and FIG. 9 is a factor showing a specific example of the configuration of the optical filter. There it is. 1--First a-like recording medium, 4--@2 magnetic recording medium, 7.8-Magnet, 11--Laser oscillator, 12--Intensity Im device, 1-J---Recording signal , 14-Optical filter, ts-V lintrical lens, Figure 2 □ Figure 13, 1s +6 1 1°1. Figure 1g4 Figure 5 (word';,, xm>

Claims (1)

【特許請求の範囲】[Claims] 磁性体層に信号が凹凸の形で記録された第1の磁気記録
媒体に第2の磁気記録媒体l当接してこれら!J1.第
1.磁気記録媒体i:磁界?加えること6二より、第1
の磁気記録媒体に凹凸の形で記録された信号V第2の磁
気記録媒体に磁気的に転写記録する装置に8いて、第1
の磁気記録媒体の磁性体層またはこの磁性体層が形成さ
れる非磁性体層に、記録丁べきイg号により変調された
レーザビーム!シリンドリカルレンズと、このレーザビ
ームの上記d柱体層上または非磁性体層上での少なくと
もトラック幅方向の強度分布を少なくともトラック幅内
で平担化せしめる光学フィルタとを含む光学系Y介して
照射して、上記信号に応じた凹凸を形成するようにした
ことt特徴とする磁気!ム与記録装置。
When the second magnetic recording medium l comes into contact with the first magnetic recording medium in which signals are recorded in the form of unevenness on the magnetic layer, these! J1. 1st. Magnetic recording medium i: magnetic field? From addition 62, 1st
The signal V recorded in the form of unevenness on the magnetic recording medium of
A laser beam modulated by a recording signal is applied to the magnetic layer of the magnetic recording medium or the non-magnetic layer on which this magnetic layer is formed! Irradiation is performed through an optical system Y that includes a cylindrical lens and an optical filter that flattens the intensity distribution of the laser beam on the d-column layer or non-magnetic layer at least in the track width direction at least within the track width. Magnetism is characterized by forming unevenness according to the above signal. Muyo recording device.
JP19221681A 1981-11-30 1981-11-30 Magnetic transferring recorder Pending JPS5894136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19221681A JPS5894136A (en) 1981-11-30 1981-11-30 Magnetic transferring recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19221681A JPS5894136A (en) 1981-11-30 1981-11-30 Magnetic transferring recorder

Publications (1)

Publication Number Publication Date
JPS5894136A true JPS5894136A (en) 1983-06-04

Family

ID=16287587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19221681A Pending JPS5894136A (en) 1981-11-30 1981-11-30 Magnetic transferring recorder

Country Status (1)

Country Link
JP (1) JPS5894136A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347016B1 (en) 1996-07-22 2002-02-12 Matsushita Electric Industrial Co., Ltd. Master information carrier, process for producing the carrier, and method and apparatus for recording master information signal on magnetic recording medium by using the carrier
US6529341B1 (en) 1997-11-12 2003-03-04 Matsushita Electric Industrial Co., Ltd. Magnetic recording/reproduction device using preformat information
US6611388B1 (en) 1998-03-23 2003-08-26 Matsushita Electric Industrial Co., Ltd. Master information magnetic recorder
US6714367B1 (en) 1998-10-29 2004-03-30 Matsushita Electric Industrial Co., Ltd. Master information medium and method of master information recording
US6858328B1 (en) 1998-03-20 2005-02-22 Matsushita Electric Industrial Co., Ltd. Master information support

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347016B1 (en) 1996-07-22 2002-02-12 Matsushita Electric Industrial Co., Ltd. Master information carrier, process for producing the carrier, and method and apparatus for recording master information signal on magnetic recording medium by using the carrier
US6567227B2 (en) 1996-07-22 2003-05-20 Matsushita Electric Industrial Co., Ltd. Master information carrier, method for producing the carrier, method and apparatus for writing information into magnetic record medium using the carrier
US6587290B2 (en) 1996-07-22 2003-07-01 Matsushita Electric Industrial Co., Ltd. Master information carrier, method for producing the carrier, and method apparatus for writing information into magnetic record medium using the carrier
US6590727B2 (en) 1996-07-22 2003-07-08 Matsushita Electric Industrial Co., Ltd. Master information carrier, method for producing the carrier, method and apparatus for writing information into magnetic record medium using the carrier
US6606208B2 (en) 1996-07-22 2003-08-12 Matsushita Electric Industrial Co., Ltd. Master information carrier, method for producing the carrier, method and apparatus for writing information into magnetic record medium using the carrier
US6606209B2 (en) 1996-07-22 2003-08-12 Matsushita Electric Industrial Co., Ltd. Master information carrier, method for producing the carrier, method and apparatus for writing information into magnetic record medium using the carrier
US6961196B2 (en) 1996-07-22 2005-11-01 Matsushita Electric Industrial Co., Ltd. Master information carrier, method for producing the carrier, method and apparatus for writing information into magnetic record medium using the carrier
US6529341B1 (en) 1997-11-12 2003-03-04 Matsushita Electric Industrial Co., Ltd. Magnetic recording/reproduction device using preformat information
US6858328B1 (en) 1998-03-20 2005-02-22 Matsushita Electric Industrial Co., Ltd. Master information support
US6611388B1 (en) 1998-03-23 2003-08-26 Matsushita Electric Industrial Co., Ltd. Master information magnetic recorder
US6714367B1 (en) 1998-10-29 2004-03-30 Matsushita Electric Industrial Co., Ltd. Master information medium and method of master information recording

Similar Documents

Publication Publication Date Title
EP0037426B1 (en) Magnetic transfer recording method
KR970002341B1 (en) Method for reproducing signal from magneto-optical
CA2135986A1 (en) Optical Information Recording/Reproducing Apparatus and Method with Function of Adjusting Reproducing Power
US6636371B1 (en) Magnetic transfer method and system
WO1999008262A1 (en) Magnetic recorder/reproducer and magnetic recording/reproducing method
JPS5894136A (en) Magnetic transferring recorder
US6867935B2 (en) Magnetic transfer apparatus
JPS5894137A (en) Magnetic transferring recorder
KR20030029025A (en) Manufacturing method for magnetic recording medium, and master information carrier used therefor
KR920001459A (en) Magneto-optical recording and reproducing method and magneto-optical recording and reproducing apparatus
JPS6217282B2 (en)
JPS57158038A (en) Magnetic transfer recorder
EP1143422A2 (en) Magnetic transfer method and system
JPS619850A (en) Guide track forming method of photomagnetic recording medium
JPS5816276B2 (en) Hikarijikikikirokuhoushiki
JPS59117703A (en) Photomagnetic disc device
JPS63302444A (en) Magneto-optical recording medium
JPS58222454A (en) Photoelectromagnetic recording medium
JPS5813450Y2 (en) magnetic recording medium
CA1172894A (en) Process for generating a latent magnetic image
JP2806347B2 (en) Magnetic disk drive
JPH0312043A (en) Disk-type optical information recording medium and its production
JPH01171137A (en) Magneto-optical recording medium
JPS5911557A (en) Magnetooptic reproducer
JP2600101B2 (en) Manufacturing method of light spot array element