JPS61177440A - Liquid crystal display element and its production - Google Patents

Liquid crystal display element and its production

Info

Publication number
JPS61177440A
JPS61177440A JP1651785A JP1651785A JPS61177440A JP S61177440 A JPS61177440 A JP S61177440A JP 1651785 A JP1651785 A JP 1651785A JP 1651785 A JP1651785 A JP 1651785A JP S61177440 A JPS61177440 A JP S61177440A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
films
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1651785A
Other languages
Japanese (ja)
Inventor
Tamihito Nakagome
中込 民仁
Yasuhiko Shindo
神藤 保彦
Shinji Hasegawa
真二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1651785A priority Critical patent/JPS61177440A/en
Publication of JPS61177440A publication Critical patent/JPS61177440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent the generation of uneven display by using polyimide films each having the thickness ranging 20-100Angstrom as the oriented org. films to be formed on the opposed surfaces of two sheets of electrode substrates. CONSTITUTION:Dot electrodes 3 and a common electrode 4 consisting of transparent conductive films are deposited and formed to respective prescribed pattern sizes on the opposed surfaces of the upper and lower substrates 1, 2 consisting of, for example, light transparent glass plates. The polyimide is deposited and formed on the electrodes 3, 4 and thereafter the oriented org. films 5 subjected to a rubbing treatment on the surface are formed on the electrodes 3, 4. The substrates 1 and 2 are spaced at a prescribed distance from each other and the peripheral part thereof is sealed by a sealant 6 contg. spacers to form a liquid crystal cell. A liquid crystal 7 is sealed therein. The effect of high stability is obtd. by maintaining the film thickness with in the 20-100Angstrom range. The generation of the uneven display arising from the dependency of the liquid crystal on the frequency of the threshold voltage is thus prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液晶の閾値電圧が低周波側で大きく変動すると
とによる表示むらの発生を防止するに好適な液晶表示素
子およびその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a liquid crystal display element suitable for preventing the occurrence of display unevenness due to large fluctuations in the threshold voltage of the liquid crystal on the low frequency side, and a method for manufacturing the same. be.

〔発明の背景〕[Background of the invention]

近年、液晶表示素子は、薄形、低消費電力という特徴を
有することから、時計、電卓等をはじめとしてカメラ、
計測器および自動車等の情報表示装置さらには将来は壁
掛はテレビジョン等に到るまでその利用範囲が拡大され
つつあるが、最終的に壁掛はテレビジョンに到達するま
でには幾多の技術的なハードルを越えなければならない
状況にある。
In recent years, liquid crystal display elements have been used in watches, calculators, cameras, etc. due to their thinness and low power consumption.
The scope of use of wall-mounted devices is expanding to include measuring instruments, information display devices for automobiles, and even televisions in the future. We are in a situation where we have to overcome hurdles.

このような液晶表示素子は、時計、電卓等に用いる場合
には小さな表示面積で十分であるが、技術の進歩によυ
、次第に表示面積が大きくすることが可能となるにつれ
、情報産業分野においては、A4サイズ程度の大きさの
液晶表示素子が要求されるようになった。このような大
形の画面を表示するためには、ドツト数として128(
縦)X 480(横)あるいは200(縦)X640(
横)程度のタイプが必要とされる。さらにこれらを駆動
するためには128ドツトの場合1/64デユーテイ、
200ドツトの場合1/100デユーテイで駆動するの
が一般的である。
When such liquid crystal display elements are used in watches, calculators, etc., a small display area is sufficient, but as technology advances, υ
As it has become possible to gradually increase the display area, liquid crystal display elements of approximately A4 size have come to be required in the information industry field. In order to display such a large screen, the number of dots must be 128 (
vertical) x 480 (horizontal) or 200 (vertical) x 640 (
horizontal) type is required. Furthermore, in order to drive these, in the case of 128 dots, the duty is 1/64,
In the case of 200 dots, it is common to drive at a duty of 1/100.

しかしながら、高デユーテイとなると、必然的に時分割
時におけるマージンが狭くなるために表示品質が著しく
低下するという問題があった。
However, when the duty becomes high, the margin during time division inevitably becomes narrower, resulting in a problem in that the display quality deteriorates significantly.

すなわち、液晶表示素子を時分割駆動する場合、一般に
駆動方式は電圧平均化法が用いられておシ、これには1
フレ一ム時間内(全走査線を1回走査する時間)で極性
反転し交流化するもの(以下A方式と称す)と、2フレ
一ム時間で極性反転し交流化するもの(以下B方式と称
す)との2種類の方式がある。これらの駆動方式につい
ては例えば日経エレクトロニクス1980年8月16日
号150頁〜174頁に詳細に論じられている。
In other words, when driving a liquid crystal display element in a time-division manner, a voltage averaging method is generally used as a driving method, and this method involves
One method inverts the polarity and converts to AC within one frame time (the time it takes to scan all the scanning lines once) (hereinafter referred to as A method), and the other method inverts the polarity and converts to AC in two frame times (hereinafter referred to as B method). There are two types of methods. These drive systems are discussed in detail, for example, in the August 16, 1980 issue of Nikkei Electronics, pages 150 to 174.

液晶表示素子の時分割駆動方式は、前記文献にも述べら
れているが、時分割数が増大するのに伴なってB方式駆
動が主として用いられている。
The time-division driving method for liquid crystal display elements is also described in the above-mentioned literature, but as the number of time divisions increases, the B-method driving is mainly used.

しかしながら、B方式駆動での最低駆動周波数は、フレ
ーム周波数の半分であシ、極めて低い周波数で駆動され
る場合がある。一方、液晶表示素子において、第1図に
示すように電圧−透過率特性□□□示面の法線から10
度方向で被視、温度25℃)における透過率が9(lと
なる電圧、すなわち液晶の閾値電圧vthは、第2図に
示すように周波数依存性を有し、この液晶の閾値電圧v
thが低周波数側で大きく変動する場合には前述したB
方式駆動を用いた場合、点灯パターンによっては濃淡の
激しい表示むらが表われる。例えば、液晶が、第2図に
示すような閾値電圧vthが低周波数側で低下する特性
を有している場合、第3図に示すように信号電極Y1.
Y鵞、Y1.〜Y1?と走査電極Xl 。
However, the lowest driving frequency in B-method driving is half the frame frequency, and there are cases where driving is performed at an extremely low frequency. On the other hand, in a liquid crystal display element, as shown in Figure 1, the voltage-transmittance characteristic □□□
The voltage at which the transmittance is 9 (l) when viewed in the 25°C direction, that is, the threshold voltage vth of the liquid crystal, has frequency dependence as shown in Figure 2, and the threshold voltage vth of the liquid crystal
If th fluctuates greatly on the low frequency side, the above-mentioned B
When method driving is used, depending on the lighting pattern, display unevenness with severe shading appears. For example, if the liquid crystal has a characteristic that the threshold voltage vth decreases on the low frequency side as shown in FIG. 2, the signal electrode Y1.
Y Goose, Y1. ~Y1? and scanning electrode Xl.

x、 、 Xs 、〜XISとの間に選択的に電圧を印
加して数字25を点灯表示した場合、縦方向のドツト配
列群Al m Am e As内の斜線部分で示すドラ
)Bは、ドツト配列群CI、Cs部分の点灯ドラ)Dよ
シも表示色が淡いが、ドツト配列群cl、 C,部分の
非点灯ドツトEよりも濃くなシ、丁度形のように淡黒く
着色された表示状態となる。これはトッド配列群AI 
+ A意s A1部分のラインの液晶に印加される駆動
電圧の周波数成分がドツト配列群C1+C!部分のライ
ンの液晶に比べて低くなるため、第2図に示す液晶の閾
値電圧の周波数特性と考え合わせてみた場合、閾値電圧
を基準に考えると、ドツト配列群AI + A2 v 
A3部分にはドツト配列群CI rC:部分よシも実質
的に大きな駆動電圧が印加されていることになシ、シた
がってドツト配列群A、、Am、A、部分がドツト配列
群CI、 C,部分の非点灯ドツトEよシも黒く点灯し
てしまうという現象が発生する。すなわち、第2図にお
いて、液晶に加わる駆動電圧Vieとその周波数におけ
る閾値電圧vthとの電位差v1 t ”!については
Vt>Vsとなシ、ドツト配列群Al r At j 
Am部分にはドツト配列群C1,c、部分よシも実質的
に大きな駆動電圧が印加されたことになシ、ドツト配列
群AI。
When a voltage is selectively applied between x, , The display color of the illuminated dots (D) in the array groups CI and Cs is also light, but it is darker than the non-lit dots E in the dot array groups CL, C, and the display is colored pale black just like the shape. state. This is Todd array group AI
+ A meaning The frequency component of the driving voltage applied to the liquid crystal of the line in the A1 portion is the dot array group C1+C! Therefore, when considering the frequency characteristics of the threshold voltage of the liquid crystal shown in Fig. 2, when considering the threshold voltage as a reference, the dot array group AI + A2 v
A substantially large driving voltage is applied to the A3 portion as well as the dot array group CI rC: Therefore, the dot array group A, Am, and the A portion are the dot array group CI, A phenomenon occurs in which the non-lit dots E and the other dots C and E also light up black. That is, in FIG. 2, for the potential difference v1 t "! between the driving voltage Vie applied to the liquid crystal and the threshold voltage vth at that frequency, Vt>Vs, and the dot array group Al r At j
A substantially large drive voltage is applied to the dot array groups C1 and C in the portion Am, and to the dot array group AI.

Am、A、部分はドツト配列群cl、c、部分に比べて
黒く点灯してしまうことになる。
The portions Am and A will be lit blacker than the portions cl and c of the dot array group.

このような現象は、デユーティ数が高くなるのに伴表っ
て駆動周波数領域が次第に拡大されることに起因してお
シ、例えば、”/64デエーテイでは(3011〜1.
92KHz)し100デユーテイでは(30Hz〜3K
Hz)程度までの周波数領域内で駆動させる必要がある
This phenomenon occurs because the driving frequency range gradually expands as the duty number increases. For example, in the case of "/64 duty" (3011 to 1.
92KHz) and 100 duty (30Hz~3K
It is necessary to drive within a frequency range up to about 100 Hz.

第4図は各駆動周波数における閾値電圧vthの変動を
、通常の駆動周波数範囲の中心周波数(500Hz)に
おける閾値電圧Vth(500Hz )で除算した値で
で示し丸ものである。同図に系すように一般に液晶表示
素子は駆動周波数によって閾値電圧vthの変化を示す
ために駆動周波数領域が広くなるのに伴なって、閾値電
圧の最大値閾値電圧の最小値の差が大きくなるため表示
むらが発生する。
FIG. 4 shows the fluctuation of the threshold voltage Vth at each driving frequency divided by the threshold voltage Vth (500 Hz) at the center frequency (500 Hz) of the normal driving frequency range, and is shown as a circle. As shown in the figure, since liquid crystal display elements generally exhibit changes in threshold voltage vth depending on the driving frequency, as the driving frequency range becomes wider, the difference between the maximum threshold voltage and the minimum threshold voltage increases. This causes display unevenness.

一方、駆動方式が高デユーテイとなるのに伴なって点灯
ドラ)Dに印加される電圧と非点灯ドツトEに印加され
る電圧との差が小さくなる、すなわちマージン(裕度)
が小さくなる。低デユーティ駆動時は非点灯ドツトの領
域はほとんど無視でき、液晶表示素面を大きく視角方向
に傾けて初めて点灯しているように見える程度であシ、
はとんど問題とはならないが、高デユーテイ駆動の場合
、裕度が極めて小さくなるために液晶表示面を正面から
見てもクロストークが全表示面にわたって出現しておシ
、このクロストーク表示面に所望のドツトを点灯させて
いる状態となっている。このために互いに隣接するドツ
ト配列間で閾値電圧が異なる場合はよシ一層明確に見え
ることになる。
On the other hand, as the duty of the drive system becomes higher, the difference between the voltage applied to the lighting dot (D) and the voltage applied to the non-lighting dot E becomes smaller, that is, the margin (tolerance)
becomes smaller. During low-duty driving, the area of non-lit dots can be almost ignored, and only appears to be lit when the liquid crystal display element is tilted in the viewing direction.
However, in the case of high-duty drive, the tolerance becomes extremely small, so crosstalk appears over the entire display surface even when the LCD screen is viewed from the front, and this crosstalk display The desired dot is lit on the screen. For this reason, if the threshold voltages differ between adjacent dot arrays, it will be more clearly visible.

〔発明の目的〕[Purpose of the invention]

したがって本発明は前述した従来の問題に鑑みてなされ
たものであシ、その目的とするところは、閾値電圧の周
波数依存性によって生じる表示むらの発生を防止した液
晶表示素子およびその製造方法を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a liquid crystal display element that prevents the occurrence of display unevenness caused by the frequency dependence of a threshold voltage, and a method for manufacturing the same. It's about doing.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明は、対向配置さ
れる2枚の電極基板の各対向面上に形成される有機配向
膜として、膜厚が20〜100Xのの範囲のポリイミド
膜を用いるものである。
In order to achieve such an object, the present invention uses a polyimide film with a film thickness in the range of 20 to 100X as an organic alignment film formed on each opposing surface of two electrode substrates arranged oppositely. It is something.

〔発明の実施例〕[Embodiments of the invention]

次に図面を用いて本発明の詳細な説明する。 Next, the present invention will be explained in detail using the drawings.

第5図は本発明による液晶表示素子の一実施例を示す要
部断面図である。同図において、透光性ガラス板からな
る上、下基板1,2の各対向面上には透明導電膜から表
るドツト電極3.コモン電極4がそれぞれ所定のパター
ン寸法を有して被着形成され、さらにこれらの電極3,
4上には、ポリイミド、例えばポリイミドイソインドロ
キナゾリンジオン、(1例として日立化成商品名PIQ
 )を被着形成した後、その表面にラビング処理を施し
た有機配向膜5が形成されている。そして、これらの上
、下基板1,2の相互間を所定距離離間してその周辺部
を、スペーサを含有したシール材6で封着して液晶セル
を形成し、その内部に例えばロシュ社製のRO−TN−
132(商品名)液晶Tが封入されて構成されている。
FIG. 5 is a sectional view of essential parts showing an embodiment of a liquid crystal display element according to the present invention. In the figure, dot electrodes 3 are formed from transparent conductive films on the opposing surfaces of upper and lower substrates 1 and 2 made of transparent glass plates. Common electrodes 4 are deposited and formed with predetermined pattern dimensions, and these electrodes 3,
4 is coated with polyimide, such as polyimide isoindoquinazolinedione (for example, Hitachi Chemical's trade name PIQ).
), an organic alignment film 5 is formed on the surface thereof by rubbing. Then, a liquid crystal cell is formed by separating the upper and lower substrates 1 and 2 by a predetermined distance from each other and sealing their peripheral parts with a sealing material 6 containing a spacer. RO-TN-
132 (trade name) liquid crystal T is sealed.

一方、従来の有機配向膜として、例えばポリイミドイソ
インドロキナゾリンジオンを数百大程度の厚さに塗布し
た後、その表面にラビング処理を施して形成した液晶セ
ル内に、下記表1に示すような通常用いられる各種の液
晶材料を封入した場合、はとんどの材料が前述したvt
h (30Hρ/vth(500H! )が0.97以
下である。一般的にとのvth(30Hz )/vth
(500Hz )の値が0.97以上であれば実用上問
題はなく、好ましくは0.98以上であれば表示むらは
全く無視できる。従って、表1に示したこれらの材料は
ほとんど使用不可能な状況下にあった。
On the other hand, as a conventional organic alignment film, for example, polyimide isoindoquinazolinedione is coated to a thickness of about several hundred thick, and then the surface is rubbed to form a liquid crystal cell, as shown in Table 1 below. When encapsulating various commonly used liquid crystal materials, most of the materials have the above-mentioned VT
h (30Hρ/vth (500H!) is 0.97 or less. Generally, vth (30Hz)/vth
(500Hz) is 0.97 or more, there is no practical problem, and preferably, if it is 0.98 or more, display unevenness can be completely ignored. Therefore, these materials shown in Table 1 were almost unusable.

したがって本発明による液晶表示素子は、第5図に示す
有機配向膜5の膜厚を、第6図に示すように約250λ
以下の種々の値に形成し、vth(a。
Therefore, in the liquid crystal display element according to the present invention, the thickness of the organic alignment film 5 shown in FIG. 5 is approximately 250λ as shown in FIG.
Form the following various values and vth(a.

HE )/vth(500Hz )が0.97以上とな
る膜厚を求めた。その結果、有機配向膜5の膜厚を約1
00A以下の厚さに形成しなければならないことが明ら
かとなった。この場合、使用した液晶材料は前述した表
1に示す従来構成においてはVth(30Hz ) /
Vth(500Hz)の最も小さいE液晶である。また
、同様K(有機配向膜の膜厚100Aの素子に)表1に
示した各種の液晶材料をそれぞれ封入した結果、Vth
(30Hz )/Vth(500Hz )が通常の周波
数領域で0.98〜1.0の範囲に入シ、駆動周波数3
0〜5001itの範囲における閾値電圧の変動を約2
チ以下に抑えることができた。
The film thickness at which HE )/vth (500Hz) was 0.97 or more was determined. As a result, the thickness of the organic alignment film 5 was reduced to about 1
It became clear that it had to be formed to a thickness of 00A or less. In this case, the liquid crystal material used is Vth (30Hz) /
It is the E liquid crystal with the smallest Vth (500Hz). Similarly, as a result of encapsulating various liquid crystal materials shown in Table 1 (into an element with an organic alignment film of 100 A), Vth
(30Hz)/Vth(500Hz) falls within the range of 0.98 to 1.0 in the normal frequency range, and drive frequency 3
The fluctuation of the threshold voltage in the range of 0 to 5001 it is approximately 2
I was able to keep it below .

なお、前述した実施例において、有機配向膜15の膜厚
を約1001とした場合について説明したが、本発明は
これに限定されるものではなく、との膜厚を20X未満
とすると、液晶の配向劣化を起し易くなり、また膜厚を
100λ以上とすると、周波数領域が拡大して表示むら
が発生し易くなる。したがって、との膜厚は20〜1O
OXの範囲が好ましく、さらにその範囲を20〜50に
とすることによシ、安定度の高い効果が得られる。
In addition, in the above-mentioned embodiment, the case where the film thickness of the organic alignment film 15 was about 1001 was explained, but the present invention is not limited to this, and if the film thickness is less than 20X, the liquid crystal Orientation deterioration is likely to occur, and if the film thickness is set to 100λ or more, the frequency range is expanded and display unevenness is likely to occur. Therefore, the film thickness of is 20~1O
A range of OX is preferable, and by setting the range to 20 to 50, a highly stable effect can be obtained.

次に本発明による液晶表示素子の製造方法について説明
する。
Next, a method for manufacturing a liquid crystal display element according to the present invention will be explained.

まず、上基板lの表面に通常の手段によυドツト電極3
を形成した後、この上基板1のドット電極3形成面上に
、NMP(N−メチルピロリドン)に溶解したポリイミ
ドイソインドロキナゾリンジオン0.2〜0.3重量%
溶液を滴下し、スピンナ上で3200〜3800r、p
lmで回転塗布する。次にこの上基板1を200〜30
0℃で約1〜2時間程度焼成してポリイミド膜を作製す
る。また下基板2上にも前述と同様の方法で形成する。
First, the υ dot electrode 3 is placed on the surface of the upper substrate l by a normal means.
After forming, on the dot electrode 3 forming surface of the upper substrate 1, 0.2 to 0.3% by weight of polyimide isoindoquinazolinedione dissolved in NMP (N-methylpyrrolidone) is applied.
Add the solution dropwise and heat on a spinner at 3200-3800r, p
Spin coat with lm. Next, add 200 to 300
A polyimide film is produced by baking at 0° C. for about 1 to 2 hours. It is also formed on the lower substrate 2 in the same manner as described above.

次に両電極基板1,2上に形成したポリイミドイソイン
ドロキナゾリンジオン膜の表面にそれぞれ所兜の方向に
ラビング処理を施した後、基板1,2のいずれか一方の
周辺部にシール材6を印刷塗布し、それぞれ電極3.4
側を対向させて接着して液晶セルを形成する。
Next, the surfaces of the polyimide isoindoquinazoline dione films formed on both electrode substrates 1 and 2 are rubbed in the respective directions, and then a sealing material 6 is applied to the peripheral area of either of the substrates 1 and 2. 3.4 electrodes each.
A liquid crystal cell is formed by adhering the two sides facing each other.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、2枚の電極基板対
向面上に形成する有機配向膜に、膜厚が20〜100λ
の範囲のポリイミド膜を設けたことにより、液晶の閾値
電圧の周波数依存性によって生じる表示むらの発生を防
止することができるので、品質、信頼性の高い液晶表示
素子が得られる。また本発明による有機配向膜の製造方
法によれば、有機配向膜が極めて容易に形成することが
できる。
As explained above, according to the present invention, the organic alignment film formed on the opposing surfaces of two electrode substrates has a film thickness of 20 to 100λ.
By providing a polyimide film in the range of 20 to 30, it is possible to prevent display unevenness caused by the frequency dependence of the threshold voltage of the liquid crystal, and thus a liquid crystal display element with high quality and reliability can be obtained. Further, according to the method for manufacturing an organic alignment film according to the present invention, an organic alignment film can be formed extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液晶表示素子を時分割駆動したときの透過率と
電圧との関係を示す図、第2図は液晶の閾値電圧の周波
数依存性を示す図、第3図は液晶表示素子に数字25の
点灯パターンを表示した場合に生ずる表示むらの発生を
説明する図、第4図は液晶表示素子の駆動周波数領域を
示す図、第5図は本発明による液晶表示素子の一実施例
を説明するための断面図、第6図は有機配向膜の膜厚に
対するVth(30Hz )/Vth(500Hz )
の関係を示す図、である。 1・・・拳上基板、2φ・拳・下基板、3Φ・・・ドツ
ト電極、4・assコそン電極、5e・・・有機配向膜
、6・・・・シール材、T・・・代理人 弁理士 小 
川 勝 男′−二−第1図 第2図 fIi秋f(Hz) 第3図 別!史我(Hz)
Figure 1 is a diagram showing the relationship between transmittance and voltage when driving a liquid crystal display element in a time-division manner, Figure 2 is a diagram showing the frequency dependence of the threshold voltage of the liquid crystal, and Figure 3 is a diagram showing the relationship between the transmittance and voltage when the liquid crystal display element is driven in a time-division manner. FIG. 4 is a diagram illustrating the driving frequency range of the liquid crystal display element, and FIG. 5 is a diagram illustrating an embodiment of the liquid crystal display element according to the present invention. Figure 6 shows the Vth (30Hz)/Vth (500Hz) with respect to the film thickness of the organic alignment film.
FIG. DESCRIPTION OF SYMBOLS 1... Fist upper substrate, 2φ, fist, lower substrate, 3φ... Dot electrode, 4, Ass main electrode, 5e... Organic alignment film, 6... Seal material, T... Agent Patent Attorney Small
Katsu Kawa O'-2-Figure 1 Figure 2 fIi Autumn f (Hz) Figure 3 Separate! History (Hz)

Claims (1)

【特許請求の範囲】 1、対向配置された2枚の電極基板の各対向面上に有機
配向膜を設け、該電極基板間に液晶を封入してなる液晶
表示素子において、前記有機配向膜として膜厚が20〜
100Åの範囲のポリイミド膜を用いたことを特徴とす
る液晶表示素子。 2、対向配置された2枚の電極基板の各対向面上に有機
配向膜を設け、該電極基板間に液晶を封入してなる液晶
表示素子において、前記有機配向膜は電極基板上にポリ
イミド溶液を回転塗布した後に焼成して形成することを
特徴とした液晶表示素子の製造方法。
[Claims] 1. In a liquid crystal display element in which an organic alignment film is provided on each opposing surface of two electrode substrates arranged oppositely, and a liquid crystal is sealed between the electrode substrates, as the organic alignment film. Film thickness is 20~
A liquid crystal display element characterized by using a polyimide film having a thickness of 100 Å. 2. In a liquid crystal display element in which an organic alignment film is provided on each opposing surface of two electrode substrates arranged oppositely, and a liquid crystal is sealed between the electrode substrates, the organic alignment film is formed by disposing a polyimide solution on the electrode substrates. A method for manufacturing a liquid crystal display element, which comprises spinning and baking the liquid crystal display element.
JP1651785A 1985-02-01 1985-02-01 Liquid crystal display element and its production Pending JPS61177440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1651785A JPS61177440A (en) 1985-02-01 1985-02-01 Liquid crystal display element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1651785A JPS61177440A (en) 1985-02-01 1985-02-01 Liquid crystal display element and its production

Publications (1)

Publication Number Publication Date
JPS61177440A true JPS61177440A (en) 1986-08-09

Family

ID=11918462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1651785A Pending JPS61177440A (en) 1985-02-01 1985-02-01 Liquid crystal display element and its production

Country Status (1)

Country Link
JP (1) JPS61177440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346975B2 (en) 1998-08-04 2002-02-12 International Business Machines Corporation Liquid crystal display having alignment layer using ion bombarded amorphous material 100Å thickness or less

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346975B2 (en) 1998-08-04 2002-02-12 International Business Machines Corporation Liquid crystal display having alignment layer using ion bombarded amorphous material 100Å thickness or less

Similar Documents

Publication Publication Date Title
KR100447768B1 (en) Liquid crystal display device with charge holding capacity
US5299041A (en) Active matrix, high definition, liquid crystal display structure
US6727882B1 (en) Method and apparatus for matrix addressing of an electrophoretic display device
JP2006330609A (en) Liquid crystal display device
JPH10293286A (en) Driving method for liquid crystal display device
KR100242147B1 (en) Wafer based active matrix
JP3713922B2 (en) Driving device for liquid crystal display device, liquid crystal display device, electronic apparatus, and driving method for liquid crystal display device
JPH06118447A (en) Liquid crystal panel
JPS61177440A (en) Liquid crystal display element and its production
JP2616976B2 (en) Active matrix and its manufacturing method
JPH08327978A (en) Active matrix type liquid crystal display device
US20030117553A1 (en) Liquid crystal display device
JP3006411B2 (en) Liquid crystal display
JP2000193938A (en) Driving method for liquid crystal display device
WO2005040904A1 (en) Liquid crystal display of using dual select diode
JP2803786B2 (en) Liquid crystal display device
JPS63292114A (en) Active matrix type liquid crystal display device
CN110361901B (en) Pixel array substrate and driving method thereof
JPH0337626A (en) Liquid crystal display device
JP2003114655A (en) Liquid crystal display device
JPS6097385A (en) Thin film transistor substrate for liquid crystal display
KR100917003B1 (en) Liquid crystal display
JPH06208124A (en) Liquid crystal display element
JPH07248498A (en) Liquid crystal display device
JPH0943638A (en) Liquid crystal display element