JPS61177304A - Apparatus for measuring dropping locus of charge in blast furnace - Google Patents
Apparatus for measuring dropping locus of charge in blast furnaceInfo
- Publication number
- JPS61177304A JPS61177304A JP1535485A JP1535485A JPS61177304A JP S61177304 A JPS61177304 A JP S61177304A JP 1535485 A JP1535485 A JP 1535485A JP 1535485 A JP1535485 A JP 1535485A JP S61177304 A JPS61177304 A JP S61177304A
- Authority
- JP
- Japan
- Prior art keywords
- blast furnace
- gas
- charge
- furnace
- starting materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/24—Test rods or other checking devices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
げ)差業上の利用分野
本発明はS高炉における装入原料の落下軌跡を測定する
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION G) Different Fields of Application The present invention relates to a device for measuring the falling locus of charged material in an S blast furnace.
(ロ)従来の技術
高炉装入物の分布は高炉の操業安定性、エネルギー効率
などに大きな影響をあたえるためF頂の装入装置には様
々な分布調整手段が工夫され実用化されている。しかし
これらの調整手段を使って一定の装入物分布を得ようと
しても原料の性状、例えば粒径、粒子形状比重、付着水
分などによって落下軌跡が変動するため、設備の使用条
件が一定であっても装入物分布は大きく変動することに
なる。また実操業においては設備が磨耗したりして変化
を受けることになる。これら原料性状の変化1設備の磨
耗などによる落下軌跡の変化を知ることは高炉装入物の
分布調整手段を適確に使うために非常に有益なものであ
る。従来装入物の落下軌跡の測定手段として例えば1特
開昭56−33412号公報に示されているように、試
料採取器により洛下する装入物を直接採取することによ
プ原料落下流内の粒子存在密度分布と粒度分布を測定す
る方法。(b) Conventional technology Since the distribution of blast furnace charge has a great effect on the operational stability and energy efficiency of the blast furnace, various distribution adjustment means have been devised and put into practical use in the F-top charging device. However, even if these adjustment methods are used to obtain a constant charge distribution, the falling trajectory will vary depending on the properties of the raw material, such as particle size, particle shape specific gravity, attached moisture, etc., and the usage conditions of the equipment may not be constant. However, the charge distribution will vary greatly. In addition, during actual operation, equipment is subject to changes due to wear and tear. Knowing these changes in the falling locus due to changes in raw material properties, such as equipment wear, etc., is very useful in order to use blast furnace charge distribution adjustment means appropriately. Conventionally, as a method for measuring the falling trajectory of a charge, for example, as shown in Japanese Unexamined Patent Publication No. 1 Sho 56-33412, the falling flow of the raw material is measured by directly sampling the falling charge with a sample collector. A method to measure the density distribution and particle size distribution of particles within.
また特開昭56−3606号公報に示されているように
、装入物の落下荷重を圧電素子を内蔵したセルで検知す
ることにより落下軌跡を測定する方法がある。Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 56-3606, there is a method of measuring the falling trajectory by detecting the falling load of the charge with a cell containing a piezoelectric element.
什→発明が解決しようとする問題点
前記従来の公知側技術では落下する装入物を採取するた
めに採取箱を構成する区切板に装入物が当り跳ねて位置
が狂う・あるいは採取した物の重量を測るために人手と
時間がか\る問題点がある。また高炉内は粉じんが多く
高温多湿であるために圧電素子の性能を維持するための
保護が容易でないなどの問題点があった。Problem → Problem to be solved by the invention In the conventional known technology mentioned above, in order to collect the falling charges, the charges hit the partition plates that make up the collection box and bounce, causing the position of the charges to go out of order, or the collected objects to be collected. There is a problem that it takes manpower and time to measure the weight. In addition, the interior of the blast furnace has a lot of dust and is hot and humid, so it is difficult to protect the piezoelectric element to maintain its performance.
に)問題点を解決するための手段
本発明は前述のような問題点を有利に解決するため従来
と全く測定原理の異なる装置を提供するものであり・そ
の構成は気体噴出ノズルを等間隔で複数配設したプロー
ブを、炉壁より炉内中心に同って原料落下部へ挿入し、
前記各ノズルに通ずるそれぞれの気体供給導管に圧力変
化検出機構を設けたことを特徴とする高炉装入物の落下
軌跡測定装置にある◇ノズル口はなるべく水平に近い角
度で同じ向きで取付けることがよい。装入物の落下に伴
い、ノズルの先端に装入物が落下してくればガスの噴出
が抑えられ圧力が上昇するので各ノズルの圧力変化を連
続測定すれば装入物の落下範囲が検出でき落下軌跡が測
定できるものである。In order to advantageously solve the above-mentioned problems, the present invention provides a device with a completely different measurement principle from the conventional one. Insert multiple probes from the furnace wall into the raw material falling area at the same time in the center of the furnace.
The apparatus for measuring the falling trajectory of blast furnace charge is characterized in that each gas supply conduit leading to each nozzle is provided with a pressure change detection mechanism.◇The nozzle ports should be installed in the same direction at an angle as close to horizontal as possible. good. As the charge falls, if the charge falls to the tip of the nozzle, the gas blowout will be suppressed and the pressure will increase, so by continuously measuring the pressure change of each nozzle, the falling range of the charge can be detected. The fall trajectory can be measured.
(ホ)作用
測定プローブのノズルから常に7レツシユなガスが噴出
しているのでプローブの機能が侵されることなく測定で
きる。そして装入物の形状、粒径などが変化して落下軌
跡が変化しても素早く検知できるため、プローブを炉内
円周方向に数点設置すればベル式装入装置の高炉におい
ては、ムーバルアーマノツチの調整、ベルレス式装入装
置の高炉においては、旋回シュートの傾動角度の調整を
行うことにより落下軌跡を元の状態に戻すことができ、
装入物の装入分布の最適調整が可能となるものである。(e) Since 7 liters of gas is always ejected from the nozzle of the action measuring probe, measurements can be made without affecting the function of the probe. Even if the falling trajectory changes due to changes in the shape and particle size of the burden, it can be quickly detected. In blast furnaces with bell-less charging equipment, the fall trajectory can be returned to its original state by adjusting the luer notch and adjusting the tilting angle of the rotating chute.
This makes it possible to optimally adjust the charging distribution of the charging material.
(へ)実施例
本発明装置を実施例によって詳細に説明すると、第1図
においてベルレス装入方式の場合、高炉1の内部炉頂部
において旋回シュート2を旋回させながら鉱石類、およ
びコークスを円周上に装入される。本発明の測定プロー
ブ3を高炉1の炉壁外部よフ炉内中心部に向って略水平
方向に装入する。(F) Example To explain the apparatus of the present invention in detail with reference to an example, in the case of the bellless charging method shown in FIG. loaded on top. The measurement probe 3 of the present invention is inserted in a substantially horizontal direction from the outside of the furnace wall of the blast furnace 1 toward the center of the inside of the blast furnace.
この測定プローブ3の詳細は第2図に示すように適宜間
隔で水平方向に気体噴出ノズル4を複数個設ける0(本
実施例では7個)噴出気体の供給はヘッダー5より分岐
して導管6で各ノズル4に接続する。各導管6の途中に
圧力検出器7を設ける。供給気体は高炉操業に支障を来
たさないものであればよく、本実施例ではN2ガスを用
いた。また供給気体を一定にすることが必要で第1図に
示すようにヘッダー5に圧力検出器8を設け、圧力調整
器9でコントロール弁10を作動させて一定に保つよう
にしたー測定プローブ3の挿入長は気体噴出ノズル群番
が装入物落下流位置まで挿入し、炉壁からの挿入長と、
圧力変化を記碌装置11により読み取って装入物の落下
流軌跡を測定するようにしたものであるOこのような測
定装置で測定した結果を第3図に示す。The details of this measurement probe 3 are as shown in FIG. 2, in which a plurality of gas jet nozzles 4 are provided in the horizontal direction at appropriate intervals (seven in this embodiment). Connect to each nozzle 4 with. A pressure detector 7 is provided in the middle of each conduit 6. The supplied gas may be any gas that does not interfere with blast furnace operation, and in this example, N2 gas was used. In addition, it is necessary to keep the supplied gas constant, so as shown in Figure 1, a pressure detector 8 is installed on the header 5, and a pressure regulator 9 operates a control valve 10 to keep the supply gas constant.Measurement probe 3 The insertion length is the insertion length from the furnace wall when the gas jet nozzle group number is inserted to the charge falling flow position,
The pressure change is read by the recording device 11 and the trajectory of the falling flow of the charge is measured. The results of measurement using such a measuring device are shown in FIG.
該第3図において、装入物が落下したノズルの気体圧力
は、他の気体圧力の上昇より顕著に上昇し、第2図で示
したノズル群番のA3ノズルの位置が落下流のほぼ中心
であることが検知できた〇
(ト)発明の効果
以上の如く本発明の測定装置によれば、機構が簡単にし
て竪ヤであるため高炉内の悪環境で装置の機能が侵され
ることなく長期に安定して測定できるため、装入物の性
状変化に起因する装入物分布の変動、それに伴う高炉の
炉況変動を回避することができる高炉操業に役立つ優れ
た発明である。In Fig. 3, the gas pressure at the nozzle where the charge fell rose more markedly than the rise in other gas pressures, and the position of the A3 nozzle in the nozzle group number shown in Fig. 2 was almost at the center of the falling flow. (G) Effects of the Invention As described above, the measuring device of the present invention has a simple mechanism and is vertical, so that the function of the device is not affected by the harsh environment inside the blast furnace. This is an excellent invention that is useful for blast furnace operation, since it can be measured stably over a long period of time, thereby avoiding fluctuations in the charge distribution due to changes in the properties of the charge and accompanying fluctuations in blast furnace conditions.
第1〜3図は実施例図であシ、第1図は装置全体構成図
、第2図は測定プローブの詳細側断面図、第3図は各ノ
ズルの圧力変化図である。
l・・・・・・高炉
2・・・・・ ・装入シュート
3・・・・・・測定プローブ
4・・・・・・ノズル群
5・・・・・・ヘッダー
6・・・・・・導管
7.8・ ・・・圧力検出器
9・・・・・・圧力調節器
10・・・・・コントロール弁
11・・・・・記録装置1 to 3 are illustrations of an embodiment, FIG. 1 is a diagram of the overall configuration of the apparatus, FIG. 2 is a detailed side sectional view of the measurement probe, and FIG. 3 is a pressure change diagram of each nozzle. l...Blast furnace 2...Charging chute 3...Measurement probe 4...Nozzle group 5...Header 6... - Conduit 7.8... Pressure detector 9... Pressure regulator 10... Control valve 11... Recording device
Claims (1)
壁より炉内中心に向つて原料落下部へ挿入し、前記各ノ
ズルに通ずるそれぞれの気体供給導管に圧力変化検出機
構を設けたことを特徴とする高炉装入物の落下軌跡測定
装置。A probe having a plurality of gas jet nozzles arranged at equal intervals is inserted into the raw material falling part from the furnace wall toward the center of the furnace, and a pressure change detection mechanism is provided in each gas supply conduit leading to each nozzle. Features: A falling trajectory measuring device for blast furnace charge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1535485A JPS61177304A (en) | 1985-01-31 | 1985-01-31 | Apparatus for measuring dropping locus of charge in blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1535485A JPS61177304A (en) | 1985-01-31 | 1985-01-31 | Apparatus for measuring dropping locus of charge in blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61177304A true JPS61177304A (en) | 1986-08-09 |
Family
ID=11886459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1535485A Pending JPS61177304A (en) | 1985-01-31 | 1985-01-31 | Apparatus for measuring dropping locus of charge in blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61177304A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998032882A1 (en) * | 1997-01-29 | 1998-07-30 | Paul Wurth S.A. | Device for directly monitoring the charging process on the inside of a shaft furnace |
JP2015120964A (en) * | 2013-12-24 | 2015-07-02 | 新日鐵住金株式会社 | Method of measuring falling trajectory of charged material in blast furnace |
-
1985
- 1985-01-31 JP JP1535485A patent/JPS61177304A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998032882A1 (en) * | 1997-01-29 | 1998-07-30 | Paul Wurth S.A. | Device for directly monitoring the charging process on the inside of a shaft furnace |
US6261513B1 (en) | 1997-01-29 | 2001-07-17 | Paul Wurth, S.A. | Device for directly monitoring the charging process on the inside of a shaft furnace |
JP2015120964A (en) * | 2013-12-24 | 2015-07-02 | 新日鐵住金株式会社 | Method of measuring falling trajectory of charged material in blast furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9791360B2 (en) | Method and apparatus for measuring aerosol particles suspended in gas | |
CN106197517A (en) | A kind of Dual-Phrase Distribution of Gas olid simulating test device and relative concentration method of calibration | |
JPS61177304A (en) | Apparatus for measuring dropping locus of charge in blast furnace | |
WO2002018910A1 (en) | A device for determining the size distribution of aerosol particles | |
CN106053531B (en) | A kind of biomass bundling fuel combustion experimental bench | |
US6285730B1 (en) | Dust/particle monitor | |
Ciliberti et al. | Performance of rotary flow cyclones | |
US4979403A (en) | Procedure for the quantification of dust collectability | |
CN109632879A (en) | A kind of visualization macroscopic view thermogravimetric analyzer for Combustion of Mould Coal | |
US6261513B1 (en) | Device for directly monitoring the charging process on the inside of a shaft furnace | |
KR100380334B1 (en) | Continuous measuring device of fuel size for sintering | |
JPH0339477Y2 (en) | ||
JP4358383B2 (en) | Charge amount measuring device | |
JPS5832207B2 (en) | Charge deposition layer thickness detection sonde | |
JPS62192511A (en) | Method for estimating falling position of raw material charged into rotary chute type blast furnace | |
JPS6040484B2 (en) | Method for understanding charging and falling status of blast furnace raw materials | |
JPH05186811A (en) | Method for operating blast furnace | |
JPS63753Y2 (en) | ||
SU1520397A1 (en) | Method and apparatus for determining the zone and coefficient of entrapment when particles are settling on obstacle | |
Kreichelt et al. | Roof Monitor Emissions: Test Methodology | |
SU1404827A1 (en) | Device for measuring flow rate of solid particles | |
JPS6191519A (en) | Continuous type flow rate measuring method and apparatus for granular body | |
SU661349A1 (en) | Electrostatic probe | |
Vojnovich | DESIGN OF REFRACTORIES FOR RESISTANCE TO HIGH TEMPERATURE EROSION/CORROSION | |
Holton et al. | Some Notes on Dust-Sampling Equipment and Technique |