JPS61177041A - Photodetecting circuit - Google Patents

Photodetecting circuit

Info

Publication number
JPS61177041A
JPS61177041A JP60017357A JP1735785A JPS61177041A JP S61177041 A JPS61177041 A JP S61177041A JP 60017357 A JP60017357 A JP 60017357A JP 1735785 A JP1735785 A JP 1735785A JP S61177041 A JPS61177041 A JP S61177041A
Authority
JP
Japan
Prior art keywords
output
voltage
circuit
peak value
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60017357A
Other languages
Japanese (ja)
Inventor
Atsuo Hori
保里 淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60017357A priority Critical patent/JPS61177041A/en
Publication of JPS61177041A publication Critical patent/JPS61177041A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electronic Switches (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To execute optical transmission stably by a simple circuit constitution without requiring external adjustment by including a peak value holding circuit for inputting an output from a photodetecting circuit, an LPF for inputting the output of the peak value holding circuit and a means for adjusting the bias current of a photodetector on the basis of the output of the LPF. CONSTITUTION:When an input optical current ip to a pre-amplifier 8 is excessive, the waveform of an output voltage V1 is distorted as shown in Fig.C and the output V1 is turned to an output voltage V2 shown in (b) by the peak value holding circuit 12. The discharge time constant of a capacitor 10 is increased sufficiently larger than the period of an optical pulse signal P and the capacity is selected so that the change of the holding voltage can be neglected at the detection of the rise of the pulse. The output V2 is passed through the LPF17 consisting of a resistor 13(R4), a capacitor 14(C2) and an operational amplifier 15 and having the frequency characteristic of (fc=1/2piR4 C2)-20dB/decade about frequency exceeding fc and outputted as a smoothed voltage V3 regarded as a steady DC voltage for the period of the signal P. The bias current of the photodetector 2 can be adjusted by the voltage V3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光送受信モジュールの組み合せにエフ実現さ
れる光フアイバ一方式・光空間伝播方式等の光伝送系の
受信回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a receiving circuit for an optical transmission system such as an optical fiber one-way system or an optical space propagation system, which is realized by a combination of optical transmitting/receiving modules.

〔従来の技術〕[Conventional technology]

最近、耐電磁誘導性に優れ、グランド・ループを除去し
、絶縁性が高いといった光7アイバー伝送の長所を有し
、尚その上低価格でシステム構成が可能であり、光学技
術者でなくても取O扱いが容易であるという汎用的特徴
を兼ね備え几プラスチック、ファイバー光伝送がFA・
自動車部品・簡易LANといった分野で注目されている
。そして、このプラスチック・ファイバー光伝送に使用
される光送受信モジ為−ルの性能に対して、伝送距離が
Om近辺〜数十m、伝送速度がD−C〜数M)1)S又
はそれ以上とbりた市場要求がある。
Recently, optical 7-eye fiber transmission has the advantages of excellent resistance to electromagnetic induction, eliminates ground loops, and has high insulation properties.In addition, it is possible to configure a system at a low cost, and it requires no optical engineer. It also has the general-purpose characteristics of being easy to handle.
It is attracting attention in fields such as automobile parts and simple LAN. Regarding the performance of the optical transceiver module used for this plastic fiber optical transmission, the transmission distance is around Om to several tens of meters, and the transmission speed is D-C to several M) 1) S or more. There are tremendous market demands.

なお一方、受光素子にエリ発生した受光電流を増幅する
のには、第4図で示すように、電源(+V)を抵抗20
t−介して与える受光素子2で受は九光信号にもとづく
電N、iを利得の充分大きい反転増幅器3と帰還抵抗5
より構成されるトランス・インピーダンス型の増幅系で
増幅するものが入力インピーダンスの高さと広帯域動作
といつ元利点から最も多く使われてhる。このトランス
・インピ−ダンス型の前i!増幅器で増幅され良信号が
その後、適当な処理部で増幅される。この光受信モジエ
ールの前置増幅器の特性が光伝送システムの最小量4g
レベルと周波数帯域を最も左右することになる。そして
、帰還抵抗5の値R?は前置増巾器の感度と周波数帯域
上決定する。しかしながら、帰還量が多いと周波数帯域
は広いが感度が悪く、感度が良いと周波数帯域が狭くな
り、両者の最大性能を同時に引き出すことは不可能であ
る。このため、相反する2つの性能の兼ね合いを考慮し
て帰還抵抗5の値几Fは決定される。
On the other hand, in order to amplify the light receiving current generated in the light receiving element, as shown in Fig. 4, the power supply (+V) is connected to a resistor 20.
The light receiving element 2 receives the electric current N,i based on the optical signal through an inverting amplifier 3 with a sufficiently large gain and a feedback resistor 5.
A trans-impedance type amplification system consisting of the following is most commonly used due to its high input impedance, wideband operation, and other advantages. Before this trans-impedance type i! A good signal is amplified by an amplifier and then amplified by an appropriate processing section. The characteristics of the preamplifier of this optical receiver module are the minimum amount of 4g for optical transmission systems.
It will have the most influence on the level and frequency band. And the value R of feedback resistor 5? is determined by the sensitivity and frequency band of the preamplifier. However, when the amount of feedback is large, the frequency band is wide but the sensitivity is poor, and when the sensitivity is good, the frequency band is narrow, and it is impossible to bring out the maximum performance of both at the same time. Therefore, the value F of the feedback resistor 5 is determined in consideration of the balance between the two conflicting performances.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

一般的には、工9長距離の伝送を可能にするため、帰還
抵抗5の値Rアに大きい値が選択され、感度を高めるこ
とを優先する几め、近距離に於ける使用では前置増幅器
の入力電流は過大入力となり、増幅器を構成する素子は
飽和動作となり、特に高速パルス動作では出力波形の歪
みあるいは波形整形不可能などの事態が生じてい友。
Generally, in order to enable long-distance transmission, a large value is selected for the value R of the feedback resistor 5. The input current of the amplifier becomes excessive, and the elements that make up the amplifier operate in saturation, which can lead to situations such as distortion of the output waveform or the inability to shape the waveform, especially in high-speed pulse operation.

このような伝送系の距離にもとづく増幅感度を調節する
手段として次のような方法が行なわれていた。
The following method has been used to adjust the amplification sensitivity based on the distance of such a transmission system.

(1)  送受信モジエールの感度等に応じて使用可能
な伝送距1IIlを限定する。
(1) The usable transmission distance 1IIl is limited depending on the sensitivity of the transmitter/receiver module.

(2)発光素子の駆動電流量を伝送距離に応じて手動で
調整する。
(2) Manually adjust the amount of driving current for the light emitting element according to the transmission distance.

(3)  光可変減衰器’に一1!!用して、伝送距離
に応じて光の強さを調節する。
(3) One-in-one optical variable attenuator! ! to adjust the intensity of the light according to the transmission distance.

(4)前置増幅器としてAGC機能をもっ几増幅器を使
用し、伝送距離に応じて増幅感度を決める。
(4) A preamplifier with an AGC function is used, and the amplification sensitivity is determined according to the transmission distance.

の工うな4つの方法である。There are four ways to do this.

上述した従来の解決法には各々以下の欠点がある。Each of the above-mentioned conventional solutions has the following drawbacks.

(1)の方法は動作安定の点で最も確実な方法であるが
、融通性に欠は汎用部品として通用しな−。
Method (1) is the most reliable method in terms of operational stability, but lacks flexibility and cannot be used as a general-purpose component.

又、(2)、 (3)の方法は使用する際に外部w4整
が必要であり尋問知識を持たなh一般利用者にとってに
使用方法が難しくなる。さらに、光可変減衰器は精密部
品であるため高価であり、又無駄なスペース金とられて
しまう。最後に、(4)の方法については、AGC機能
に大きな利得可変幅を所有させるために回路は非常に複
雑となり、光可変減衰器同様高価についてしまうといっ
た問題点がある。
Furthermore, methods (2) and (3) require external setup when used, making them difficult to use for general users who do not have interrogation knowledge. Furthermore, since the optical variable attenuator is a precision component, it is expensive and takes up wasted space and money. Finally, method (4) has the problem that the AGC function has a large variable gain range, which makes the circuit extremely complex and, like the variable optical attenuator, expensive.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光受信回路は、光信号電気信号に変換する受光
素子と、受光素子にエフ生じた受光電流を増幅する前置
増幅器と、前置増幅器の出力ピーク値ヲ検出かつ保持す
るピーク値ホールド回路と、ピーク値ホールド回路の出
力値を平滑化して直流電圧トするローパス・フィルタと
、ローパス・フィルタの直流出力電圧に工って受光累子
ノバイアス電R,ヲ調節して受光素子の受光電流に負帰
還をかける手段とを有する受光回路とを有している。
The optical receiving circuit of the present invention includes a light receiving element that converts an optical signal into an electrical signal, a preamplifier that amplifies the light receiving current generated in the light receiving element, and a peak value hold that detects and holds the output peak value of the preamplifier. a low-pass filter that smoothes the output value of the peak value hold circuit to increase the DC voltage; and a low-pass filter that adjusts the DC output voltage of the low-pass filter to adjust the light-receiving element's bias current R and the light-receiving current of the light-receiving element. and a light receiving circuit having means for applying negative feedback to the light receiving circuit.

〔実施列〕[Implementation row]

次に、本発明について図面を参照して工り詳細I/cd
兄明する。
Next, with reference to the drawings, we will explain the manufacturing details I/cd of the present invention.
I'll tell you my brother.

第1図は本発明の一実施例を示すブロック図であり、受
光素子2Kg2図(a)で示される工うな光パルス1百
号Pの入射があっ几場合、第2図(b)で示されるよう
な光電流i が流れる。光電流五〇は前述し友ところの
トランス・インピーダンス型反転増幅器3.4′f:2
段直接接続した前置増幅器8にJ:す、電流電圧変換及
び同相増幅が実行され、その出力電圧vlは、帰還抵抗
5(几り、抵抗6(Rs)、帰還抵抗7(凡3°)によ
り決定され、以下の工うになることが知られている・尚
:Avl、Ay2は各々反転増幅器の電圧増幅軍、Ay
は両者の積である。
FIG. 1 is a block diagram showing an embodiment of the present invention. When the light receiving element 2Kg2 is incident on the light pulse No. 100 shown in FIG. 2(a), as shown in FIG. A photocurrent i flows such that The photocurrent 50 is the trans-impedance type inverting amplifier 3.4'f:2 which was mentioned earlier.
Current-voltage conversion and common-mode amplification are performed in the preamplifier 8 directly connected to the stage, and the output voltage vl is determined by the feedback resistor 5 (reduced), the resistor 6 (Rs), and the feedback resistor 7 (approximately 3 degrees). It is known that the following formula is determined by ・It should be noted that Avl and Ay2 are the voltage amplification arm of the inverting amplifier, Ay
is the product of both.

仮に前置増幅器8への入力が過大であり九場合には、出
力電圧v1の波形は歪んでしまい、第2図(C)で示す
ような波形となり、この出力はダイオード9とコンデン
サ10(CI)と演算増幅器11から構成される装置増
幅器8の出力信号の最大値を検出して保持するピーク値
ホールド回路12により第2図(d)の工うな出力電圧
v鵞となる。ここで、ピーク値ホールド回路12への入
力信号がピーク値以下になり九ときにコンデンサ10の
充電電荷はダイオード9及び演算増幅器11を構成する
トランジスタのリーク等により放電されるが、この放電
時定数はメルフ16号の周期工0充分大きくしておき、
次のパルスの立ち上りを検出するときに保持電圧の変化
が無視できる工うにコンデンサ10の容量C1t−選定
する。
If the input to the preamplifier 8 is excessive, the waveform of the output voltage v1 will be distorted, resulting in a waveform as shown in FIG. ) and an operational amplifier 11, the peak value hold circuit 12 detects and holds the maximum value of the output signal of the device amplifier 8, resulting in the output voltage v shown in FIG. 2(d). Here, when the input signal to the peak value hold circuit 12 becomes less than the peak value, the charge in the capacitor 10 is discharged due to leakage of the transistor constituting the diode 9 and the operational amplifier 11, but this discharge time constant Make the periodic operation 0 of Melf No. 16 sufficiently large,
The capacitance C1t of the capacitor 10 is selected so that the change in the holding voltage can be ignored when detecting the rise of the next pulse.

そしてこのピーク値ホールド回路12からの出力は、抵
抗13(几4)とコンデンサ14(Cz)と演算増幅器
15と可変電源19から成り、fot−越える周veK
一対しては、(、f、=1/2πR<Cz)〜20 d
 B/fケートの周波数特性を有するローパス・フィル
タ17t−通ることに工り、パルス信号の周期と比鮫す
れば定常直流電圧とみなして差しつかえのない平滑化さ
れ比電圧■3として第2図(e)のように出力される。
The output from this peak value hold circuit 12 is composed of a resistor 13 (几4), a capacitor 14 (Cz), an operational amplifier 15, and a variable power supply 19, and the output exceeds fot
For a pair, (, f, = 1/2πR<Cz) ~ 20 d
It passes through a low-pass filter 17t having a frequency characteristic of B/f, and if it is compared with the period of the pulse signal, it can be regarded as a steady DC voltage and is smoothed as a specific voltage 3 as shown in Figure 2. The output is as shown in (e).

この出力電圧v3がPチャンネルFET1のゲートに抵
抗17t−介して与えられて、受光素子2のバイアスI
E流を調節する。尚、ここで、可変電源19はFET1
t−遮断状態にしない工すに平滑化され比電圧v3の電
位を調節する。
This output voltage v3 is applied to the gate of the P-channel FET 1 through a resistor 17t, and the bias I of the light receiving element 2 is
Adjust the E flow. Incidentally, here, the variable power supply 19 is FET1
t- Adjust the potential of the specific voltage v3 which is smoothed when not in the cut-off state.

そして、このエラな電位V3[)ランジスタのバンド・
ギャップを用いて容易に作り込むことが可能である。
And this error potential V3[) transistor band
It can be easily created using a gap.

かくして、光wL流i、に比例した定電圧v3が得られ
、この電圧は受光素子2がホト・ダイオードであうt場
合、ホト・ダイオードのカソードと抵抗18との間にド
レイン・ソースを接続されたPチャンネルFETIのゲ
ートに帰還される。尚、抵抗17は急激な光信号強度変
化に対してPET 1への帰還量変化をなだらかにする
効果を持ち、又抵抗18は電源サージにするFET1.
ある論は受光素子2の静電破壊を阻止する効果を持つ。
In this way, a constant voltage v3 proportional to the light flow i is obtained, and when the light receiving element 2 is a photodiode, the drain and source are connected between the cathode of the photodiode and the resistor 18. It is fed back to the gate of P-channel FETI. The resistor 17 has the effect of smoothing the change in the amount of feedback to the PET 1 in response to a sudden change in optical signal intensity, and the resistor 18 has the effect of smoothing the change in the amount of feedback to the PET 1 in response to a sudden change in optical signal intensity.
One theory is that it has the effect of preventing electrostatic damage to the light receiving element 2.

今、FETIのソース電位金■5とするとゲート・ソー
ス間電圧V。8は次式で与えられる。
Now, if the source potential of FETI is 5, the gate-source voltage is V. 8 is given by the following equation.

V、5=V3−V、=AVtp−V、   −・−・−
123さらにFETIのコンダクタンス2ロヲ知ること
にエラ、ドレイン・ソース間を流れる電流”D8は次式
で与えられる。
V, 5=V3-V, =AVtp-V, -・-・-
123 Furthermore, knowing the conductance of the FETI, the current "D8" flowing between the drain and source is given by the following equation.

Ins=gmVes=gm(Avip−v3)  ++
H+HH(3Jここに於いて、工。、は受光電fit、
  の許容量・く を表わすものであ’%  ”1) −ID、−cあル、
従って、前置増幅器80入力が飽和するi maxを知
ることにエリ、(3)式にてl p 1718 X ”
 i p” I D6と考えると、 ipmax=gm(Avipmax−V3)・”・・ 
(4)(4)式をipmaxについて解くと、 ipm
ax =となり、(5)式を満足するエラなgm を決
定することにエリ、前置増幅器8への入力はip<ip
rmxに制限することが可能となる。
Ins=gmVes=gm(Avip-v3) ++
H+HH (3JHere, ENG., is photoreceptor fit,
It represents the allowable amount of '%'1) -ID, -c al,
Therefore, in order to know i max at which the input of the preamplifier 80 is saturated, in equation (3), l p 1718
Considering ip” I D6, ipmax=gm(Avipmax-V3)・”・・
(4) Solving equation (4) for ipmax yields ipm
ax = and to determine an error gm that satisfies equation (5), the input to the preamplifier 8 is ip<ip
It becomes possible to limit it to rmx.

わかりやすくするために、受光素子2への入射光iPと
前置増@器への入力電流iinの相関関係を第3図に与
える。点線が従来方法に於ける受信回路の例、実線が本
発明に関するものである。
For ease of understanding, the correlation between the incident light iP on the light receiving element 2 and the input current iin to the preamplifier is shown in FIG. The dotted line shows an example of a receiving circuit in the conventional method, and the solid line shows an example of the receiving circuit according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した工うに、本発明はプラスチック・ファイバ
ーに代表される光伝送について、簡単な回路構成で、受
光回路の帯域特性や感度を損なうことなく、過大入力電
流を制限することにエリ、極近距離から遠距離までの光
伝送を外部的調整を必要とせずに、安定且つ確実に行い
得る効果がある。又、本発明による回路はモノリシック
化が容易であり、プラスチック・ファイバー光伝送に適
用した場合に、中・近距離用として多大な商品価値が見
込まれる。さらに、副次的効果として発光素子の出力劣
化をも吸収する効果が期待できる。
As explained above, the present invention is very effective in limiting excessive input current with a simple circuit configuration for optical transmission typified by plastic fibers, without impairing the band characteristics or sensitivity of the light receiving circuit. This has the effect of stably and reliably transmitting light from one distance to another without requiring external adjustment. Further, the circuit according to the present invention can be easily made monolithic, and when applied to plastic fiber optical transmission, it is expected to have great commercial value for medium and short distances. Furthermore, as a side effect, the effect of absorbing output deterioration of the light emitting element can be expected.

また、本発明は上記実施例に限定されるものでになく、
PチャンネルFETはパイ・ポーラ秤正トランジスタに
て代用が可能であり、前置増幅器の出力波形が逆相の場
合は後段のピーク値ホールド回路をミニマム値ホールド
回路に、PチャンネルFETt−NチャンネルFETに
することにL9同一の効果が期待できる。
Furthermore, the present invention is not limited to the above embodiments, but
The P-channel FET can be replaced with a pi-polar balance transistor, and if the output waveform of the preamplifier is in reverse phase, the peak value hold circuit in the latter stage is changed to the minimum value hold circuit, and the P-channel FETt-N-channel FET is used. You can expect the same effect as L9 if you do this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による光受信回路の回路構成
図、i!2図(a)〜(e)は第1図の光受信回路の各
部の波形図、第3図は本発明による幼果を端的に表わす
九めの入射光iPと入力受光電流iinの相関図である
。第4図は従来の光受信回路の回路構成図である。 1・・・・・・PチャンネルPET、2・・・・・・受
光素子、3.4・・・・・・反転増幅器、5,6.7・
・・・・・抵抗器、8・・・・・・前置増幅器、9・・
・・・・ダイオード、10・・・・・・コンデンサ、1
1・・・・・・演算増幅器、12・・・・・・ピーク値
ホールド回路、13・・・・・・抵抗器、14・・・・
・・コンデンサ、15・・・・・・演算増幅器、16・
・・・・・ローパス・フィルタ、17,18・・・・・
・抵抗器、19・・・・・・可変電源、20・・・・・
・信号処理系。
FIG. 1 is a circuit configuration diagram of an optical receiving circuit according to an embodiment of the present invention, i! 2(a) to 2(e) are waveform diagrams of various parts of the optical receiver circuit in FIG. 1, and FIG. 3 is a correlation diagram between the ninth incident light iP and the input light receiving current iin, which clearly represents the young fruit according to the present invention. It is. FIG. 4 is a circuit diagram of a conventional optical receiving circuit. 1... P-channel PET, 2... Light receiving element, 3.4... Inverting amplifier, 5, 6.7...
...Resistor, 8...Preamplifier, 9...
...Diode, 10...Capacitor, 1
1...Operation amplifier, 12...Peak value hold circuit, 13...Resistor, 14...
... Capacitor, 15 ... Operational amplifier, 16.
...Low pass filter, 17, 18...
・Resistor, 19...Variable power supply, 20...
・Signal processing system.

Claims (1)

【特許請求の範囲】[Claims] 光信号を電気信号に変換する受光素子と、該受光素子か
らの電流を入力する受光回路と、該受光回路の出力電圧
を入力するピーク値ホールド回路と、該ピーク値ホール
ド回路の出力電圧を入力するローパス・フィルタと、該
ローパス・フィルタの出力電圧により前記受光素子に流
れるバイアス電流を調節する手段とを含むことを特徴と
する光受信回路。
A light receiving element that converts an optical signal into an electrical signal, a light receiving circuit that inputs the current from the light receiving element, a peak value hold circuit that inputs the output voltage of the light receiving circuit, and an input voltage of the peak value hold circuit. 1. An optical receiving circuit comprising: a low-pass filter; and means for adjusting a bias current flowing to the light-receiving element according to an output voltage of the low-pass filter.
JP60017357A 1985-01-31 1985-01-31 Photodetecting circuit Pending JPS61177041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017357A JPS61177041A (en) 1985-01-31 1985-01-31 Photodetecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017357A JPS61177041A (en) 1985-01-31 1985-01-31 Photodetecting circuit

Publications (1)

Publication Number Publication Date
JPS61177041A true JPS61177041A (en) 1986-08-08

Family

ID=11941790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017357A Pending JPS61177041A (en) 1985-01-31 1985-01-31 Photodetecting circuit

Country Status (1)

Country Link
JP (1) JPS61177041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291661A (en) * 1992-04-15 1993-11-05 Fujitsu Ltd Semiconductor laser driving circuit
JP2004128676A (en) * 2002-09-30 2004-04-22 Hitachi Cable Ltd Optical receiver
JP2005216178A (en) * 2004-01-30 2005-08-11 Optoelectronics Co Ltd Optical information reading apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291661A (en) * 1992-04-15 1993-11-05 Fujitsu Ltd Semiconductor laser driving circuit
JP2004128676A (en) * 2002-09-30 2004-04-22 Hitachi Cable Ltd Optical receiver
JP2005216178A (en) * 2004-01-30 2005-08-11 Optoelectronics Co Ltd Optical information reading apparatus
JP4527411B2 (en) * 2004-01-30 2010-08-18 株式会社オプトエレクトロニクス Optical information reader

Similar Documents

Publication Publication Date Title
KR100900205B1 (en) Wide dynamic range transimpedance amplifier
US6359517B1 (en) Photodiode transimpedance circuit
JPH09130157A (en) Pre-amplifier
US7030702B2 (en) Optical receiver with wide dynamic range transimpedance amplifier
US4075576A (en) Sensitive high speed solid state preamp
JPH11103219A (en) Light receiving amplifier
JPH10511453A (en) Ultra low noise optical receiver
US20050052247A1 (en) Triode region mosfet current source to bias a transimpedance amplifier
JP3062543B2 (en) Optical receiver
JP2013102558A (en) Signal amplifier for light-receiving circuit
CN209787128U (en) Transimpedance amplifier and transimpedance amplifier circuit
US5130667A (en) Differential transimpedance amplifier
JPH08288757A (en) Digital receiving circuit
US7221229B2 (en) Receiver circuit having an optical reception device
JPS61177041A (en) Photodetecting circuit
US20050046482A1 (en) Receiver circuit
JP3021913B2 (en) Optical receiver
JPH05136633A (en) Input stage of optical receiver
JPH01192207A (en) Optical reception circuit
NL8520066A (en) DEVICE FOR INCREASING THE DYNAMIC AREA IN AN INTEGRATING OPTOELECTRIC RECEIVER.
JP2002290168A (en) Optical receiver
JP2003163544A (en) Feedback amplifier circuit and receiver using the same
JPS58165020A (en) Photoelectric converter
WO2020177081A1 (en) Trans-impedance amplifier and trans-impedance amplifier circuit
JPS62217738A (en) Optical reception circuit