JPS61176412A - Setup method in control of different peripheral speed rolling - Google Patents

Setup method in control of different peripheral speed rolling

Info

Publication number
JPS61176412A
JPS61176412A JP1655885A JP1655885A JPS61176412A JP S61176412 A JPS61176412 A JP S61176412A JP 1655885 A JP1655885 A JP 1655885A JP 1655885 A JP1655885 A JP 1655885A JP S61176412 A JPS61176412 A JP S61176412A
Authority
JP
Japan
Prior art keywords
rolling
speed
roll
speeds
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1655885A
Other languages
Japanese (ja)
Inventor
Toshio Endo
遠藤 俊夫
Kozo Nakai
耕三 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1655885A priority Critical patent/JPS61176412A/en
Publication of JPS61176412A publication Critical patent/JPS61176412A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/222Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a rolling-drawing process; in a multi-pass mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed
    • B21B2275/05Speed difference between top and bottom rolls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To set up rolling conditions at high speed in the control of different peripheral-speeds rolling, by operating a roll opening and each roll peripheral speed at the time of different peripheral speeds from the sheet thickness of a stock to be rolled, the sheet thickness after rolling and the aimed rolling load in the different peripheral speeds rolling, and setting respective values to the operated values. CONSTITUTION:The setup of different peripheral-speeds rolling for rolling a stock to be rolled by passing the stock between a pair of rolling rolls and driving the rolls at different peripheral speeds is performed in the following manner. That is, a rolling load P is represented by a correction term DELTAP including a rolling torque G* and a different speed ratio, at the time of equal speeds rolling as parameters. Further, rolling torques TL, TN are represented by correction terms DELTAGL, DELTAGN including the rolling torque G* and the different speed ratio, at the time of equal speeds rolling, as parameters. And a different speed ratio capable of obtaining a maximum volumetric speed is operated under the conditions that the rolling load and torque are in allowable ranges. Next, a roll opening is further operated from a rooling force obtained by said operation to set the roll peripheral speed and the roll opening obtained by said operation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、一対の圧延ロールのロール周速を異ならしめ
て圧延をおこなう、いわゆる異周速圧延制御のセットア
ツプに係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a set-up of so-called different circumferential speed rolling control, in which rolling is performed by varying the circumferential speeds of a pair of rolling rolls.

〔発明の背景〕[Background of the invention]

圧延機の運転は、従来、上下圧延ロールのロール周速を
等しくして圧延するのが通常であった。
Conventionally, rolling mills have conventionally been operated with the upper and lower rolling rolls having the same circumferential speed.

(以後、この圧延を等速圧延と呼び、異周速圧延と区別
する。)シかし、従来の等速圧延では数百ミクロンメー
トルの厚さに圧延するのが限界であった。近年、百ミク
ロンメートル以下の厚さに圧延することが要求され、上
下、圧延ロールの周速度を真速化し、上記要求を満す極
薄圧延が可能であることが理論的、実験的に明らかにさ
れてきた。
(Hereinafter, this rolling will be referred to as uniform speed rolling to distinguish it from different circumferential speed rolling.) However, the limit of conventional uniform speed rolling was that it could be rolled to a thickness of several hundred micrometers. In recent years, there has been a demand for rolling to a thickness of 100 micrometers or less, and it is theoretically and experimentally clear that it is possible to achieve ultra-thin rolling that satisfies the above requirements by increasing the circumferential speed of the upper, lower, and rolling rolls. It has been.

しかし、このような圧延における制御方法は確立されて
おらず従来の等速圧延の場合と同等の計算制御システム
を確立するためには、圧延機設定制御、圧延中の板厚、
張力制御あるいは適応修正制御などの制御方法を開発し
実用化しなければならない。
However, a control method for this kind of rolling has not been established, and in order to establish a calculation control system equivalent to that of conventional constant speed rolling, it is necessary to control rolling mill settings, plate thickness during rolling,
Control methods such as tension control or adaptive correction control must be developed and put into practical use.

特に異周速圧延では前記一対の、圧延ロールの速度設定
、圧下位置の設定は他のパラメーダとの相互干渉がある
ためにオペレータが試行錯誤的に微小量ずつの設定を繰
り返し最終目標位置に設定しているのが現状である。
Particularly in the case of different circumferential speed rolling, the speed setting and rolling position setting of the pair of rolling rolls have mutual interference with other parameters, so the operator repeats the settings minute by minute through trial and error until the final target position is reached. This is the current situation.

計算機制御をおこなう場合、設定操作がなかなか定まら
ないというのは大きな問題であって、計算機制御に適し
た設定制御方法の確立が望まれていた。
When performing computer control, it is a major problem that setting operations are difficult to determine, and it has been desired to establish a setting control method suitable for computer control.

セットアツプ方法として与えられた上ロール下ロールの
速度比における該圧延ロール間の荷重分布に基づいて低
速高速の各々の中立点位置(角)を演算し、高速側の中
立点(角)が零より大きくかつ低速側中立点(角)が低
速側接触角より小さいという条件のもとに圧延力を演算
し、与えられた出側圧延材速度と該中立点位置から該圧
延ロール各々のロール周速度を演算し、該演算されたロ
ール周速度、ロール開度の設定をおこなう方法がある。
Based on the load distribution between the rolls at the speed ratio of the upper roll and lower roll given as a setup method, calculate the neutral point position (angle) of each of the low and high speeds, and make sure that the neutral point (corner) on the high speed side is zero. The rolling force is calculated under the condition that the neutral point (angle) on the low speed side is larger than the contact angle on the low speed side, and the roll circumference of each of the rolling rolls is calculated from the given exit rolling material speed and the neutral point position. There is a method of calculating the speed and setting the calculated roll circumferential speed and roll opening degree.

上記方式において該圧延ロール間の荷重分布は、ロール
偏平量により変化し、ロール偏平量は、荷重分布を積分
して得られる圧延荷重に依存するので収束計算が必要と
なる。この収束計算のため、多くの処理時間を必要とす
る問題があった。
In the above method, the load distribution between the rolling rolls changes depending on the roll flattening amount, and the roll flattening amount depends on the rolling load obtained by integrating the load distribution, so convergence calculation is required. This convergence calculation has the problem of requiring a lot of processing time.

又、特公昭54−42761において、「金属の圧延に
おいて、圧延トルクが、2本の圧延ロールが伝達し得る
最大許容トルク範囲内にあるように、上記2本の作業ロ
ールの速度比を入側及び出側の板厚未満の範囲でできる
だけ大きく選び圧延することを特徴とする圧延法」が報
告されている。
In addition, in Japanese Patent Publication No. 54-42761, ``In metal rolling, the speed ratio of the two work rolls is adjusted on the entry side so that the rolling torque is within the maximum permissible torque range that can be transmitted by the two rolls. ``A rolling method characterized in that rolling is performed by selecting as large a material as possible within a range less than the sheet thickness at the outlet side'' has been reported.

入側板厚、出側板厚、入側張力、出側張力等に一定なし
ておいて、2本の圧延ロールの周速比を変えた時の圧延
トルクを第2図に示す、第2図から明らかなように、真
速比が大きくなるに従い、高速側圧延ロールの圧延トル
クは急激に増加し、一方低速側圧延ロールの圧延トルク
もその絶対値が急激に増加する。従って、真速比が大き
くなればなるほど、圧延速度を下げて、モーター・定格
の範囲内にする必要があった。
Figure 2 shows the rolling torque when the peripheral speed ratio of the two rolling rolls is changed while keeping the input side plate thickness, exit side plate thickness, input side tension, exit side tension, etc. constant. As is clear, as the true speed ratio increases, the rolling torque of the high-speed rolling rolls increases rapidly, and on the other hand, the absolute value of the rolling torque of the low-speed rolling rolls also increases rapidly. Therefore, as the true speed ratio increases, it is necessary to lower the rolling speed to within the range of the motor rating.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこの点に鑑みてなされたものであって、
異周速圧延制御における高速セットアツプ方法を提供す
るにある。
The purpose of the present invention has been made in view of this point,
An object of the present invention is to provide a high-speed setup method for controlling rolling at different circumferential speeds.

〔発明の概要〕[Summary of the invention]

本発明の特徴は少なくとも一対の圧延ロールを有し該一
対のロール間を被圧延材を通過させて圧、 延をおこな
う圧延であって該一対の圧延ロールの各々を異周速で駆
動して圧延する真速圧延のセットアツプ方法において、
圧延荷重Pを等速性延時の圧延荷重P′と、真速比をパ
ラメータとする補正項ΔPで表わし、圧延トルクT、、
、 T、を、等速性延時の圧延トルクG1″ と、真速
比をパラメータとする補正項一〇L、AGIlで表わし
、圧延荷重、圧延トルクが許容範囲内で最大の体積速度
が得られる真速比を演算し、該演算された真速比より圧
延力を演算し、該演算された圧延力よりロール開度を演
算し、該演算されたロール周速度、ロール開度の設定を
おこなうことに特徴がある。
The feature of the present invention is a rolling process that includes at least a pair of rolling rolls and rolls and rolls a material to be rolled by passing the material between the pair of rolls, and each of the pair of rolling rolls is driven at a different circumferential speed. In the setup method for true speed rolling,
The rolling load P is expressed by the rolling load P' during uniform rolling and the correction term ΔP with the true speed ratio as a parameter, and the rolling torque T,
, T, is expressed by the rolling torque G1'' during uniform rolling and the correction term 10L, AGIl, which uses the true speed ratio as parameters, and the maximum volume speed can be obtained while the rolling load and rolling torque are within the allowable range. Calculate the true speed ratio, calculate the rolling force from the calculated true speed ratio, calculate the roll opening from the calculated rolling force, and set the calculated roll circumferential speed and roll opening. There are certain characteristics.

〔発明の実施例〕[Embodiments of the invention]

はじめに異周速圧延における基礎的な事項について述べ
る。
First, we will discuss the basics of rolling at different circumferential speeds.

異周速圧延時における圧延ロール直下の圧延状況を第3
図に示す。1は一対の作業ロールのうちの上ロール、2
は下ロールを示す。■は先進域、■はせん新城、■は後
進域といい、この3つの領域を有している。各領域の境
界を中立点と称し、先進域とぜん新城の境界は、上下圧
延ロールの高速回転側のロール周速度とその点の圧延材
速度が一致し、後進域とせん新城の境界点では低速側の
ロール周速度とその点の圧延材速度が一致する。
The rolling situation directly below the rolling roll during rolling at different circumferential speeds is shown in the third table.
As shown in the figure. 1 is the upper roll of a pair of work rolls, 2
indicates the bottom roll. ■ is an advanced area, ■ is called a new castle, and ■ is a backward area, and it has these three areas. The boundary between each area is called the neutral point, and at the boundary between the advanced area and the new area, the roll circumferential speed on the high-speed rotation side of the upper and lower rolling rolls and the rolling material speed at that point match, and at the boundary point between the backward area and the new area, the rolling material speed at that point is the same. The peripheral speed of the roll on the low speed side and the rolling material speed at that point match.

この中立点の位置を圧延完了点(圧延材出口)からのロ
ール角度で表わし、それぞれφ、、φ1とする。
The position of this neutral point is expressed by the roll angle from the rolling completion point (rolled material exit), and is defined as φ, φ1, respectively.

垂直応力pは下式で表わされる。The vertical stress p is expressed by the following formula.

p=A (B+C)         ・・・・・・(
1)ただし、A、Bはロール角度θい (又はθヨ)、
出口厚みり、ロール半径RL、R,,摩擦係数μ。
p=A (B+C) ・・・・・・(
1) However, A and B are roll angles θ (or θ yo),
Outlet thickness, roll radius RL, R,, friction coefficient μ.

μ8およびせん断降伏応力にτ 、方向係数α、βの関
数であり、Cは積分定数である。積分定数Cは各領域の
境界条件より定まる。
μ8 and shear yield stress are functions of τ, orientation coefficients α and β, and C is an integration constant. The integral constant C is determined by the boundary conditions of each region.

各圧延領域における分布荷重曲線(1)式及び。Distribution load curve (1) equation in each rolling region and.

中立点位置φ、、φ、は、入側厚みH1入側単位張力t
b、出側厚みh、出側単位張力1.および上明細書の浄
書(内容に変更なし) 下ロール速度比を与えることにより一義的に決定される
The neutral point position φ,, φ, is the entrance thickness H1 and the entrance unit tension t.
b, exit side thickness h, exit side unit tension 1. and the reprint of the above specification (no change in content) Uniquely determined by giving the lower roll speed ratio.

さらに、φ■、φLよりさらに高速側先進率fR1低速
側先進率ft、を次式で与えることが出来る。
Furthermore, the high-speed side advancement rate fR1 and the low-speed side advancement rate ft can be given by the following equation further than φ■ and φL.

さらに、分布荷重曲線が決定されれば、全圧延力Pは、
垂直応力pを各領域で積分することによシ与えられる。
Furthermore, once the distributed load curve is determined, the total rolling force P is
It is given by integrating the normal stress p over each region.

すなわち ただし、全接触角φ1は(5)式によシ決定される。i.e. However, the total contact angle φ1 is determined by equation (5).

明細書の浄書(内容に変更なし) 圧下位置S、全圧延力F、出口厚みhの関係は公知のフ
ックの法則てよシ関係づけられる。
Reprint of specification (no change in content) The relationship among the rolling position S, the total rolling force F, and the exit thickness h is based on the well-known Hooke's law.

h=s+P/M  So       −・”(6)た
だし1M:ミル剛性係数 So:圧下零調値 全圧延力Pは、(7)式で表わされる。
h=s+P/M So -.'' (6) where 1M: Mill stiffness coefficient So: Zero adjustment value of reduction Total rolling force P is expressed by equation (7).

P=P傘 (He  h、   tb、   tt  
)−ΔP(ルh、 tb、 tf、Gll )    
 ・・団・(7)ただし* P ” :等速性延時の全
圧延力(従来、公知の式で計算される。) ΔP:異速真速性の全圧延力補正項 又、高速側(又は低速側)の圧延トルクGM(又はGL
)は、 (8)(9)式で表わされる。
P=P umbrella (He h, tb, tt
)−ΔP(le h, tb, tf, Gll)
...Group (7) However, *P'': Total rolling force during uniform rolling (calculated using a conventionally known formula) ΔP: Total rolling force correction term for different true speeds Also, on the high speed side ( or low speed side) rolling torque GM (or GL
) is expressed by equations (8) and (9).

Gs、 =G孝(ルht tb+ tf )−ΔGt、
 (H,h、 tb、 tt、 G−)    −−(
8)Gi = (G傘  (H,h、   tb、  
 tt )+40m (ルhe t、、 t、、 Qv
 )    ・・・・・・(9)ただしTh e” :
等速性延時の圧延トルクΔGL、ΔGH:真速性延時の
低速ロール側、高明細書の浄書(内容に変更なし) 速ロール側の圧延トルク補正項 本発明の実施列について、詳細に説明する。
Gs, =G filial (ru ht tb + tf) - ΔGt,
(H, h, tb, tt, G-) --(
8) Gi = (G umbrella (H, h, tb,
tt )+40m (le he t,, t,, Qv
) ......(9) However, The":
Rolling torques ΔGL, ΔGH during uniform speed rolling: low speed roll side during true speed rolling, high spec. .

全圧延力P′f!:、、入側厚H9出側厚り、前方、後
方単位張力’t*”bt変化させながらオフラインで計
算し、真速性延時の全圧延力Pと等速性延時の全圧延力
P傘の差が、真速比G、に関する5次式で近似できるこ
とがわかった。これを第4図に示す。又1等速圧延時の
全圧延力P傘は、公知の式を用いた。以上【よシ、全圧
延力Pを求める計算が高速に実施できるようになつ念。
Total rolling force P'f! :,, Calculated off-line while changing the entry thickness H9, exit thickness, front and rear unit tension 't*'bt, and calculate the total rolling force P during true speed rolling and the total rolling force P during constant speed rolling. It was found that the difference in can be approximated by a quintic equation regarding the true speed ratio G. This is shown in Fig. 4. Also, a known formula was used for the total rolling force P during constant speed rolling. [Okay, I hope this will allow you to quickly calculate the total rolling force P.

又、このことは、圧延トルク、先進率を求める式につい
ても同様で、真速性延時の値と等速性延時の差が、真速
比G7に関する5次式で近似できた。
The same holds true for the formulas for determining the rolling torque and advance ratio, and the difference between the values during true speed rolling and the constant speed rolling could be approximated by a quintic equation regarding the true speed ratio G7.

父、(3)式で表わされる低速側ロールに対する先進率
ft、をオフライン的に計算しておくことにより、!1
試で表わされる。
Father, by calculating the advance rate ft for the low-speed side roll expressed by equation (3) off-line,! 1
Expressed in trials.

ft、=ft、” ()L h・1−.1.)+dfL
傘 (H,h、  tb、tt、G−)    ・・・
・・・αまただし、f、* :等速性延時の先進率第1
図は圧延スタンドが1台の時の設定制御における真速圧
延−設定値演算順序の一例である。
ft,=ft,” ()L h・1−.1.)+dfL
Umbrella (H, h, tb, tt, G-)...
...α, f, *: Advancement rate 1st during uniform rolling
The figure is an example of the true speed rolling-setting value calculation order in setting control when there is only one rolling stand.

ステップ41で圧延スケジュール(入側厚H9出側厚り
、板巾b)入側、出側単位張力1..1゜圧延ロール半
径at、、Rmfc入力する。
In step 41, rolling schedule (inlet thickness H9 outlet thickness, plate width b) inlet and outlet unit tensions 1. .. Input the 1° rolling roll radius at, , Rmfc.

ステップ42で、圧延荷重が許容範囲となる真速比の最
小’tEGvwa1mを(7)式を用いて決定する。
In step 42, the minimum true speed ratio 'tEGvwa1m at which the rolling load is within the allowable range is determined using equation (7).

ステップ43で、高速側ロール、低速側ロールの圧延ト
ルクが許容範囲となる真速比の最大値G v east
を(8)、 (9)式を用いて決定する。
In step 43, the maximum true speed ratio G v east at which the rolling torque of the high-speed side roll and the low-speed side roll falls within an allowable range is determined.
is determined using equations (8) and (9).

ステップ44で、真速比G、における圧延トルクGL、
Gl及び低速ロール側の先進率fX、は、(8)、 (
9)、 01式で求められ、モータパワーの制限よシこ
の真速比における圧延可能出側板速Voがα1式で求め
られる。
In step 44, the rolling torque GL at the true speed ratio G,
Gl and the advance rate fX on the low speed roll side are (8), (
9), is determined by the formula 01, and the rolling exit plate speed Vo at this true speed ratio, which is limited by the motor power, is determined by the formula α1.

・・・・・値υ ただし、FF%axM g FPmaxL i許容量a
x モータパヮ明細化−の浄書(内容に変更なし) −出側阪速か・役大の時1本圧延機による単位時間当り
の圧延量が最大となる。
...Value υ However, FF%axM g FPmaxL i Allowable amount a
x Motor power specification - engraving (no change in content) - When the output side is low speed or high speed, the amount of rolling per unit time by one rolling mill is maximum.

真速比がG v n l a〜G、□8の範囲内にあり
、αυ式で求めたスタンド出側敏速Voが、最大となる
真速比G、を求める。
The true speed ratio is within the range of Gvnl a to G, □8, and the true speed ratio G is determined such that the stand exit speed Vo determined by the αυ formula is the maximum.

ステップ45で、ステップ44で決定した真速比に対す
る(8)式よシ圧延荷重Pを算出する。
In step 45, the rolling load P for the true speed ratio determined in step 44 is calculated using equation (8).

ステップ46で、ステップ45で求めた圧延荷重を用い
(6)式より、圧下位置Sを算出する。
In step 46, the rolling force S determined in step 45 is used to calculate the rolling position S from equation (6).

ステップ47で、ステップ44で決定した真速比て対す
る低速側先進率fLをil1式で計算し、 na。
In step 47, the low speed side advance rate fL with respect to the true speed ratio determined in step 44 is calculated using the il1 formula, and na.

(131式でロール周速を計算する。(Calculate the roll circumferential speed using formula 131.

Vn * =Vmt、 −G、       =Q3た
だし、Vat、:低速側ロール周速 v■:高速側ロール周速 ステップ48で、ステップ46.47.e計算した圧下
位置S、ロール周速vIH,vILを設定出力する。
Vn*=Vmt, -G, =Q3 However, Vat: Low speed side roll circumferential speed v■: High speed side roll circumferential speed In step 48, step 46.47. e Set and output the calculated rolling down position S and roll circumferential velocities vIH and vIL.

明細書の浄書(内容に変更なし) 異周速圧延を実施する場合でも、被圧延材が、圧延され
る最初の時は、通板性を考慮して、等速圧延を実施する
Revision of specification (no change in content) Even when rolling at different circumferential speeds is performed, when the material to be rolled is first rolled, uniform speed rolling is performed in consideration of threadability.

この等速圧延状態についてのセットアツプ計算は、公知
の方法で実施でき、この時の圧下位置及び速度も設定出
力する。(詳細は省略する。)5等速圧延から異周速圧
延への移行過程の例を第5図に示す。本図の場合、等速
圧延では、目標板厚に圧延できず、真速圧延により目標
板厚に圧延できたことを示す。
Setup calculation for this constant speed rolling state can be performed by a known method, and the rolling position and speed at this time are also set and output. (Details are omitted.) An example of the transition process from 5-uniform speed rolling to different peripheral speed rolling is shown in FIG. In the case of this figure, it is shown that the plate could not be rolled to the target thickness by constant speed rolling, but could be rolled to the target plate thickness by true speed rolling.

本実施例は、1スタンドのみの圧延機について述べ次が
、複数スタンドの圧延機列に対しても。
This embodiment describes a rolling mill with only one stand, but also applies to a rolling mill row with multiple stands.

同様の異周速圧延のセットアツプ方法が適用できる。A similar setup method for rolling at different circumferential speeds can be applied.

〔発明の効果〕〔Effect of the invention〕

本発明くよると、異同速性延時のロール周速。 According to the present invention, the circumferential speed of the roll during rolling at different speeds.

圧下位置のセットアツプ計算が、従来方法に較べ高速に
処理できる。
Setup calculation of the rolling position can be processed faster than in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の制御演算手順の一例を、第2図は、
圧延トルクと真速比との関係を、第3図は本発明におけ
る圧延現象の分布図を、第4図は全圧力Pを(4)式、
(7)式で計算した一例を、第5図は等速圧延から真速
圧延への移行過程の一例を、それぞれ示す。 1.2・・・上ロール、下ロール。
Fig. 1 shows an example of the control calculation procedure of the present invention, and Fig. 2 shows an example of the control calculation procedure of the present invention.
Figure 3 shows the relationship between rolling torque and true speed ratio, Figure 3 shows the distribution of rolling phenomena in the present invention, and Figure 4 shows the total pressure P using equation (4).
An example of calculation using equation (7) is shown in FIG. 5, and FIG. 5 shows an example of the transition process from constant speed rolling to true speed rolling. 1.2...Top roll, bottom roll.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも一対の圧延ロールを有し該一対のロール
間を被圧延材を通過させて圧延をおこなう圧延であつて
該一対の圧延ロールの各々を異周速で駆動して圧延する
異周速圧延のセットアップ方法において、異周速圧延時
の圧延荷重を等速圧延時の圧延荷重と低速側圧延ロール
周速と高速側圧延ロール周速の比をパラメータとする圧
延荷重補正項との和とし、与えられた被圧延材の板厚、
圧延後の板厚、目標圧延荷重から異周速時におけるロー
ル開度、各ロール周速を演算し、演算された値に設定す
ることを特徴とする異周速圧延制御におけるセットアッ
プ方法。
1. Different circumferential speed rolling, which has at least one pair of rolls and performs rolling by passing the material to be rolled between the pair of rolls, in which each of the pair of rolls is driven at different circumferential speeds. In the rolling setup method, the rolling load during different peripheral speed rolling is the sum of the rolling load during uniform speed rolling and a rolling load correction term whose parameter is the ratio of the peripheral speed of the low-speed rolling roll and the peripheral speed of the high-speed rolling roll. , the thickness of the given rolled material,
A setup method for different circumferential speed rolling control, characterized in that the roll opening degree and each roll circumferential speed at different circumferential speeds are calculated from the sheet thickness after rolling, the target rolling load, and the circumferential speed of each roll, and set to the calculated values.
JP1655885A 1985-02-01 1985-02-01 Setup method in control of different peripheral speed rolling Pending JPS61176412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1655885A JPS61176412A (en) 1985-02-01 1985-02-01 Setup method in control of different peripheral speed rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1655885A JPS61176412A (en) 1985-02-01 1985-02-01 Setup method in control of different peripheral speed rolling

Publications (1)

Publication Number Publication Date
JPS61176412A true JPS61176412A (en) 1986-08-08

Family

ID=11919606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1655885A Pending JPS61176412A (en) 1985-02-01 1985-02-01 Setup method in control of different peripheral speed rolling

Country Status (1)

Country Link
JP (1) JPS61176412A (en)

Similar Documents

Publication Publication Date Title
US5531089A (en) Sheet crown control method and rolling equipment line for endless rolling
JPS60148608A (en) Set up method in control of different peripheral-speed rolling
JPS61176412A (en) Setup method in control of different peripheral speed rolling
JPS6335325B2 (en)
JPS62168607A (en) Shape controlling method for sheet rolling
JPS5855111A (en) Controller for plate shape in multistage cluster rolling mill
JPS623816A (en) High draft rolling method
US4593548A (en) Method of correcting distortions in a rolled strip product
JPS6316804A (en) Method for controlling shape of sheet for multistage cluster rolling mill
US4192164A (en) Rolling mills
JPS62230410A (en) Shape controlling method in temper rolling
JPS58116907A (en) Continuous rolling mill for seamless pipe
JPH052401B2 (en)
JPS639882B2 (en)
JPS60141304A (en) Continuous rolling installation
JPS6384708A (en) Flatness control method for rolled stock
JPS62179804A (en) Cold rolling method for steel sheet including control means for amount of edge drop
JPS55165209A (en) Controlling method for tension
SU839625A1 (en) Method of rolling wide strips and sheets
JPH10263650A (en) Method for controlling shape in cluster rolling mill
SU995941A1 (en) Apparatus for automatic control of strip shape at rolling in mills with individual drive of rolls
JPS63177910A (en) Shape control method for plate rolling
JPH11147122A (en) Plate shape controlling method by rolling mill
JPH04270005A (en) Method for rolling thick plate on pair cross rolling mill
SU829237A1 (en) Apparatus for automatic control of strip thickness in sheet rolling mill output