JPS6117618A - Fender - Google Patents

Fender

Info

Publication number
JPS6117618A
JPS6117618A JP59135858A JP13585884A JPS6117618A JP S6117618 A JPS6117618 A JP S6117618A JP 59135858 A JP59135858 A JP 59135858A JP 13585884 A JP13585884 A JP 13585884A JP S6117618 A JPS6117618 A JP S6117618A
Authority
JP
Japan
Prior art keywords
fender
elastic modulus
elastic
reaction force
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59135858A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hara
義明 原
Tadashi Wakabayashi
正 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP59135858A priority Critical patent/JPS6117618A/en
Publication of JPS6117618A publication Critical patent/JPS6117618A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/26Fenders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Abstract

PURPOSE:To raise the characteristic of a fender by a method in which a fender is made up of plural rubbery elastic components having different elasticity modulus by arranging the components in such a way as to vary the apparent elasticity modulus in the axial direction of the fender. CONSTITUTION:A fender 10 is made up of rubbery elastic components 11 and 12 having different elasticity modulus by arranging the components 11 and 12 in such a way as to vary the apparent elasticity modulus in the axial direction of the fender 10. The elasticity modulus of the components 11 and 12 is set up to N1>N2. The component 12 is set on the periphery of a cylindrical core A formed of the component 11 and they are integrally vulcanized and bonded to each other. By varying the apparent elasticity modulus in the axial direction by using the same shape of molds in this way, desired reaction characteristics curves can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は防舷材に関し、さらに詳しくは、特に、船舶が
接舷する際に受ける衝撃をゴム状弾性体により成形され
た防舷材本体の座屈変形により緩衝するようにした防舷
材の改良に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fender, and more particularly, to a fender main body formed of a rubber-like elastic material that absorbs the impact received when ships come alongside. This invention relates to the improvement of fenders that buffer against buckling deformation.

〔従来の技術〕[Conventional technology]

一般に岸壁等には、船舶が接舷する際に受ける衝撃を緩
衝するために防舷材が取り付けられている。
BACKGROUND ART Generally, fenders are attached to quay walls and the like in order to buffer the impact that ships receive when coming alongside.

防舷材の一つの型式として、第10図(al及び第11
図(a)に示すように、ゴムを主成分としたゴム状弾性
体を中空筒状に形成した防舷材本体10の両端部に、取
付部材20をそれぞれ埋設して一体的に加硫接着し、そ
の受衝側に受衝板(図示しない)を取り付けると共に、
岸壁側に取り付けた岸壁取付用底板(図示しない)を介
して岸壁等に取り付け、船舶が接舷する際に受ける衝撃
を、中空筒状に形成された前記防舷材本体10の座屈変
形を利用して緩衝するようにした、いわゆる座屈型防舷
材が開発され使用されている。
One type of fender is shown in Figures 10 (al and 11).
As shown in Figure (a), mounting members 20 are embedded in both ends of the fender main body 10, which is made of a rubber-like elastic body mainly composed of rubber and formed into a hollow cylinder shape, and are integrally vulcanized and bonded. and attach an impact receiving plate (not shown) to the impact receiving side,
It is attached to a quay wall etc. via a quay wall mounting bottom plate (not shown) attached to the quay side, and the fender main body 10, which is formed in a hollow cylindrical shape, is prevented from buckling deformation by the impact received when a ship comes alongside. So-called buckling fenders have been developed and are in use.

(なお第11図(alに示す防舷材は、前記防舷材本体
10の表面を耐候性に優れた表層ゴムSで被覆したもの
である) ところが、この種の従来の防舷材は、所定の弾性率を有
する一種類のゴム状弾性体からなる構成部材により構成
されている関係上、軸線方向の見掛けの弾性率が、第1
0図(b)及び第11図(b)に示すように、防舷材本
体10の軸線方向全体に亙って殆ど一定となる。
(The fender shown in FIG. 11 (al) is one in which the surface of the fender main body 10 is coated with a surface layer rubber S having excellent weather resistance. However, this type of conventional fender is Since the component is made of one type of rubber-like elastic body having a predetermined elastic modulus, the apparent elastic modulus in the axial direction is the first.
As shown in FIG. 0(b) and FIG. 11(b), it is almost constant over the entire axial direction of the fender main body 10.

従って、一種類のゴム状弾性体では見掛けの弾性率が変
化せずそのため、防舷材本体10の外形形状を変化させ
ることにより、反力特性曲線を変化させていた。
Therefore, the apparent elastic modulus of one type of rubber-like elastic body does not change, and therefore, the reaction force characteristic curve has been changed by changing the external shape of the fender main body 10.

換言すれば、従来、同一形状のモールドでは反力特性曲
線を変化させることができないのが現状である。
In other words, it is currently impossible to change the reaction force characteristic curve with molds having the same shape.

〔発明の目的〕[Purpose of the invention]

本発明は上述した問題点を解消すべく検討の結果、導か
れたものである。
The present invention was developed as a result of studies to solve the above-mentioned problems.

従って本発明の目的は、防舷材の内部構造を工夫するこ
とにより、防舷材の外形形状を変化せしめることなく、
つまり、同一形状のモールドを使用して、軸線方向の見
掛けの弾性率を変化させることによって、所望の反力特
性曲線を得ることができる優れた防舷材を提供すること
にある。
Therefore, an object of the present invention is to improve the internal structure of the fender without changing the external shape of the fender.
That is, the objective is to provide an excellent fender material that can obtain a desired reaction force characteristic curve by changing the apparent modulus of elasticity in the axial direction using a mold of the same shape.

〔発明の構成〕[Structure of the invention]

すなわち本発明は、防舷材本体を弾性率の異なる二種類
以上のゴム状弾性体からなる構成部材により構成し、こ
の弾性率の異なる各構成部材を、防舷材本体の軸線方向
の見掛けの弾性率が変化するよう配置したことを特徴と
する防舷材を、その要旨とするものである。
That is, in the present invention, the fender main body is composed of constituent members made of two or more types of rubber-like elastic bodies having different elastic moduli, and each of the constituent members having different elastic moduli is connected to the fender main body in the axial direction. The gist is a fender characterized by being arranged so that its modulus of elasticity changes.

〔実施例〕〔Example〕

以下本発明を実施例により図面を参照して具体的に説明
する。
Hereinafter, the present invention will be specifically described by way of examples with reference to the drawings.

第1図〜第9図は本発明の各実施例からなる防舷材を示
し、第1図(a)は第1実施例の断面説明図、第1図(
b)は同上見掛けの弾性率を示す線図、第2図(alは
第2実施例の断面説明図、第2図(blは同上見掛けの
弾性率を示す線図、第3図(alは第3実施例の断面説
明図、第3図(b)は同上見掛けの弾性率を示す線図、
第4図は第2図(a)に示す第2実施例と第11図+a
lに示す従来例との反力特性曲線図、第5図は第3図(
a)に示す第3実施例と第11図(a)に示す従来例と
の反力特性曲線図、第6図は第4実施例の断面説明図、
第7図は第5実施例の断面説明図、第8図は第6実施例
の断面説明図、第9図は第7実施例の断面斜視説明図で
ある。
1 to 9 show fenders made of each embodiment of the present invention, FIG. 1(a) is a cross-sectional explanatory diagram of the first embodiment, and FIG.
b) is a diagram showing the apparent elastic modulus of the same as above, FIG. 2 (al is a cross-sectional explanatory diagram of the second embodiment, FIG. A cross-sectional explanatory diagram of the third embodiment, FIG. 3(b) is a diagram showing the apparent elastic modulus of the same as above,
Figure 4 shows the second embodiment shown in Figure 2(a) and Figure 11+a.
Figure 5 is a reaction force characteristic curve diagram with the conventional example shown in Figure 3 (
A reaction force characteristic curve diagram of the third embodiment shown in a) and the conventional example shown in FIG. 11(a), FIG. 6 is a cross-sectional explanatory diagram of the fourth embodiment,
FIG. 7 is an explanatory cross-sectional view of the fifth embodiment, FIG. 8 is an explanatory cross-sectional view of the sixth embodiment, and FIG. 9 is a perspective cross-sectional explanatory view of the seventh embodiment.

図においてE1〜E7はそれぞれ本発明の実施例からな
る防舷材で、防舷材本体10を弾性率の異なる二種類以
上のゴム状弾性体からなる構成部材lL12.・・・に
より構成し、この弾性率の異なる各構成部材IL 12
・・・を、防舷材本体10の軸線方向の見掛けの弾性率
が変化するよう配置することにより構成されている。
In the figure, E1 to E7 are respective fenders according to embodiments of the present invention, and the fender main body 10 is made up of two or more types of rubber-like elastic bodies having different moduli of elasticity. Each constituent member IL 12 is composed of ... and has a different modulus of elasticity.
... are arranged so that the apparent modulus of elasticity in the axial direction of the fender main body 10 changes.

さらにこの構造を説明すると、本番実施例において、前
記防舷材本体10は、二種類の弾性率の異なるゴム状弾
性体からなる構成部材11及び12により構成されてお
り、構成部材11の弾性率をN1とし、構成部材12の
弾性率をN2とすると、弾性率N1と弾性率N2との関
係は、Nl >N2あるいはNl <N2 に設定されている。
To further explain this structure, in the actual embodiment, the fender main body 10 is composed of constituent members 11 and 12 made of two types of rubber-like elastic bodies with different elastic moduli, and the elastic modulus of the constituent member 11 is When N1 is the elastic modulus of the component 12, and N2 is the elastic modulus of the component 12, the relationship between the elastic modulus N1 and the elastic modulus N2 is set to Nl>N2 or Nl<N2.

本発明の第1実施例からなる防舷材E1は、弾性率をN
、>N2の関係に設定し、第1図(a)に示すように、
弾性率N1のゴム状弾性体からなる構成部材11により
形成された筒状芯体Aの外周側に、弾性率N2のゴム状
弾性体からなる構成部材12を配置し、これらの各構成
部材11及び12を一体的に加硫接着して構成されてい
る。
The fender E1 according to the first embodiment of the present invention has an elastic modulus of N
,>N2, as shown in Fig. 1(a),
A constituent member 12 made of a rubber-like elastic body having an elastic modulus of N2 is arranged on the outer circumferential side of a cylindrical core body A formed of a constituent member 11 made of a rubber-like elastic body having an elastic modulus of N1, and each of these constituent members 11 and 12 are integrally vulcanized and bonded.

従って、本実施例における防舷材E1は、軸線方向の見
掛けの弾性率を、第1図(b)に示すように、防舷材E
1の中央部に向かって減少せしめることができる。
Therefore, the fender E1 in this example has an apparent elastic modulus in the axial direction as shown in FIG. 1(b).
1 can be decreased toward the center.

本発明の第2実施例からなる防舷材E2は、弾性率をN
l >N2の関係に設定し、第2図fa)に示すように
、弾性率N1のゴム状弾性体からなる構成部材11によ
り形成された筒状芯体Aの外周側に、弾性率N2のゴム
状弾性体からなる構成部材121を配置すると共に、内
周側に、弾性率N2のゴム状弾性体からなる構成部材1
22を配置し、これらの各構成部材IL 12+ 、 
122を一体的に加硫接着して構成されている。
The fender E2 according to the second embodiment of the present invention has an elastic modulus of N
l>N2, and as shown in FIG. A constituent member 121 made of a rubber-like elastic body is disposed, and a constituent member 1 made of a rubber-like elastic body with an elastic modulus N2 is disposed on the inner peripheral side.
22, and each of these constituent members IL 12+ ,
122 are integrally vulcanized and bonded.

従って、本実施例における防舷材E2は、軸線方向の見
掛けの弾性率を、第2図(b)に示すように、防舷材E
2の中央部に向かって減少せしめることができる。
Therefore, the fender E2 in this example has an apparent elastic modulus in the axial direction as shown in FIG. 2(b).
It can be decreased towards the center of 2.

本発明の第3実施例からなる防舷材E3は、上述した第
1及び第2実施例とは逆に、弾性率をNl<N2の関係
に設定し、第3図(alに示すように、弾性率N1のゴ
ム状弾性体からなる構成部材11により形成された筒状
芯体Aの外周側に、弾性率N2のゴム状弾性体からなる
構成部材121を配置すると共に、内周側に、弾性率N
2のゴム状弾性体からなる構成部材122を配置し、こ
れらの各構成部材11.12+ 、 122を一体的に
加硫接着して構成されている。
In the fender E3 according to the third embodiment of the present invention, contrary to the first and second embodiments described above, the elastic modulus is set to the relationship Nl<N2, and as shown in FIG. , a component 121 made of a rubber-like elastic body having a modulus of elasticity N2 is disposed on the outer circumferential side of a cylindrical core A formed of a constituent member 11 made of a rubber-like elastic body having an elastic modulus N1, and a constituent member 121 made of a rubber-like elastic body having an elastic modulus N2 is disposed on the inner circumferential side. , elastic modulus N
Two constituent members 122 made of rubber-like elastic bodies are arranged, and these constituent members 11, 12+, 122 are integrally vulcanized and bonded.

従って、本実施例における防舷材E3は、上述した第1
及び第2実施例とは逆に、軸線方向の見掛けの、弾性率
を、第3図(b)に示すように、防舷材E3の中央部に
向かって増加せしめることができる。
Therefore, the fender E3 in this example is the first one described above.
And contrary to the second embodiment, the apparent modulus of elasticity in the axial direction can be increased toward the center of the fender E3, as shown in FIG. 3(b).

なお、上述した各実施例のように、二種類の弾性率の異
なる構成部材で、防舷材本体10を構成せしめることが
最も好ましいが、これは二種類以上の弾性率の異なる構
成部材により、防舷材本体10を構成せしめても良いの
は勿論である。
In addition, as in each of the above-mentioned embodiments, it is most preferable to configure the fender body 10 with two types of structural members having different elastic moduli; Of course, the fender main body 10 may also be configured.

第4図は、縦軸に反力を取り、横軸にひずみを取って、
この種の防舷材の反力特性曲線を示したもので、 曲線α・・・弾性率をNl >N2の関係に設定した第
2図ta+に示す本発明防舷材E2の反力特性曲線。
Figure 4 shows the reaction force on the vertical axis and the strain on the horizontal axis.
This shows the reaction force characteristic curve of this type of fender material, and the reaction force characteristic curve of the fender E2 of the present invention shown in Fig. 2 ta+ with the elastic modulus set to the relationship Nl > N2. .

曲線β・・・肉厚を本発明防舷材E2と同一の肉厚にし
た第10図(alに示す従来のこの種の防舷材Gの反力
特性曲線。
Curve β...reaction force characteristic curve of a conventional fender G of this kind shown in FIG. 10 (al) whose wall thickness is the same as that of the fender E2 of the present invention.

をそれぞれ示している。are shown respectively.

図において、本発明防舷材E2の反力特性曲線αと、従
来の防舷材Gの反力特性曲線βとを比較すると明らかな
ように、本発明防舷材E2は、極大点反力までの初期反
力を大きくすることができるので、船舶接岸の初期にお
ける吸収エネルギーを大きくすることができる。
In the figure, when comparing the reaction force characteristic curve α of the fender E2 of the present invention with the reaction force characteristic curve β of the conventional fender G, it is clear that the fender E2 of the present invention has a maximum point reaction force. Since the initial reaction force can be increased, the absorbed energy at the initial stage of the ship's berthing can be increased.

従って、上述したように弾性率をNl>N2の関係に設
定すると共に、第1図(a)及び第2図(a)に示すよ
うに、弾性率N1の構成部材11により形成された筒状
芯体Aの外周側及び/又は内周側に、弾性率N2の構成
部材I2を配置し、軸線方向の見掛けの弾性率を、第1
図(b)及び第2図(blに示すように、防舷材E2の
中央部に向かって減少せしめた防舷材は、船舶接岸の初
期における吸収エネルギーを大きくすることができる関
係上、船舶が大型であっても、接岸時初期に防舷材が過
度に座屈する恐れがなく、大型船舶の接岸及び係留に対
し極めて有効である。
Therefore, as described above, the elastic modulus is set to the relationship Nl>N2, and as shown in FIGS. 1(a) and 2(a), the cylindrical shape A component I2 having an elastic modulus N2 is arranged on the outer circumferential side and/or inner circumferential side of the core body A, and the apparent elastic modulus in the axial direction is set to the first
As shown in Figure (b) and Figure 2 (bl), the fender E2 decreases toward the center because it can absorb more energy at the beginning of the ship's berthing. Even if the ship is large, there is no risk of excessive buckling of the fender during the initial stage of berthing, making it extremely effective for berthing and mooring large ships.

また、第5図は、縦軸に反力比を取り、横軸にひずみを
取って、この種の防舷材の反力特性曲線を示したもので
、 曲線γ・・・弾性率をN、<N2の関係に設定した第、
3図(a)に示す本発明防舷材E3の反力特性曲線。
In addition, Figure 5 shows the reaction force characteristic curve of this type of fender, with the reaction force ratio on the vertical axis and the strain on the horizontal axis.Curve γ...The elastic modulus is N ,<N2,
The reaction force characteristic curve of the fender E3 of the present invention shown in FIG. 3(a).

曲線β・・・肉厚を本発明防舷材E3と同一の肉厚にし
た第10図(alに示す従来のこの種の防舷材Gの反力
特性曲線。
Curve β...reaction force characteristic curve of a conventional fender G of this type shown in FIG. 10 (al) whose wall thickness is the same as that of the fender E3 of the present invention.

をそれぞれ示している。are shown respectively.

図において、本発明防舷材E3の反力特性曲線γと、従
来の防舷材Gの反力特性曲線βとを比較すると明らかな
ように、本発明防舷材E3は、極大点反力までの初期反
力を小さくすることができるので、船舶接岸の初期にお
ける吸収エネルギー当りの反力を小さくすることができ
る。
In the figure, when comparing the reaction force characteristic curve γ of the fender material E3 of the present invention with the reaction force characteristic curve β of the conventional fender material G, it is clear that the fender material E3 of the present invention has a maximum point reaction force. Since the initial reaction force can be reduced, the reaction force per absorbed energy at the initial stage of the ship's berthing can be reduced.

従って、弾性率を上述した実施例とは逆に、N1〈N2
の関係に設定すると共に、第3図(a)に示すように、
弾性率Nlの構成部材11により形成された筒状芯体A
の外周側及び/又は内周側に、弾性率N2の構成部材1
2を配置し、軸線方向の見掛けの弾性率を、第3図fb
)に示すように、防舷材E2の中央部に向かって増加せ
しめた防舷材は、船舶接岸の初期における吸収エネルギ
ー当りの反力が小さくなる関係上、船舶が小型であって
も、接岸時に防舷材によって跳ね飛ばされる恐れがなく
、小型船舶の接岸及び係留時に対し極めて有効である。
Therefore, contrary to the above embodiment, the elastic modulus is N1<N2
In addition, as shown in FIG. 3(a),
A cylindrical core body A formed of a component 11 with an elastic modulus Nl
A component 1 having an elastic modulus N2 is placed on the outer circumferential side and/or inner circumferential side of
2, and the apparent modulus of elasticity in the axial direction is shown in Figure 3 fb.
), the fender material increases toward the center of the fender E2 because the reaction force per absorbed energy becomes smaller at the beginning of the ship's berthing, even if the ship is small. There is no risk of it being blown off by fenders, making it extremely effective for when small vessels are moored or moored.

なお、前記極大点反力とは、第4図及び第5図に示す反
力特性曲線において、原点Oより歪の増加に伴い反力が
増加する状態から、歪の増加に対して反力が減少する状
態へ移行する時の変曲点、言い換えれば反力の第1次ピ
ーク点における反力である。
In addition, the maximum point reaction force is defined as the state in which the reaction force increases as the strain increases from the origin O in the reaction force characteristic curves shown in FIGS. This is the inflection point when transitioning to a decreasing state, in other words, the reaction force at the first peak point of the reaction force.

つづいて、他の実施例について説明する。Next, other embodiments will be described.

本発明の第4実施例からなる防舷材E4は、弾性率をN
l >N2又はNl<N2の関係に設定し、第6図に示
すように、弾性率Niのゴム状弾性体からなる構成部材
11により形成された筒状芯体Aの外周側に、弾性率N
2のゴム状弾性体からなる構成部材121を配置すると
共に、内周側に、弾性率N2のゴム状弾性体からなる構
成部材122を配置し、これらの各構成部材11゜12
+ 、122を一体的に加硫接着して構成されている。
The fender E4 according to the fourth embodiment of the present invention has an elastic modulus of N
l>N2 or Nl<N2, and as shown in FIG. N
A structural member 121 made of a rubber-like elastic body with a modulus of elasticity N2 is arranged on the inner peripheral side, and each of these constituent members 11° 12
+, 122 are integrally vulcanized and bonded.

−さらに、本実施例においては、前記防舷材本体10の
両端部近傍に、図示の如く、周方向に連らなる溝30が
それぞれ配置されており、しかもこの各溝30間の距離
をM、防舷材本体10の全長をHとすると、前記溝30
間の距離Mを0.60H〜0.85Hの範囲に設定しで
ある。
-Furthermore, in this embodiment, grooves 30 continuous in the circumferential direction are arranged near both ends of the fender main body 10, as shown in the figure, and the distance between each groove 30 is M. , if the total length of the fender main body 10 is H, the groove 30
The distance M between them is set in the range of 0.60H to 0.85H.

そして、上述した溝30は、図示のように、本実施例に
おいて断面略U字状に形成され、前記防舷材本体10の
軸方向中央部を中心として対称に配置されている。しか
も、前述したように各溝30間の距離Mは0.60H〜
0.85Hの範囲に設定されており、船舶の接舷によっ
て中空筒体10に圧縮力が作用した際、この各断面略U
字状の溝30を支点として防舷材本体10が軸対称に座
屈変形し得るようにしである。
As shown in the drawings, the grooves 30 described above are formed to have a substantially U-shaped cross section in this embodiment, and are arranged symmetrically about the axial center of the fender main body 10. Moreover, as mentioned above, the distance M between each groove 30 is 0.60H~
It is set within a range of 0.85H, and when compressive force is applied to the hollow cylindrical body 10 by a ship coming alongside, each cross section approximately U
This allows the fender main body 10 to buckle and deform axially symmetrically using the letter-shaped groove 30 as a fulcrum.

前述したように各溝30間の距離Mを0.60H〜0.
85I(の範囲に設定したのは、各溝3θ間の距離Mが
0.60H未満では、各溝30間の距離Mが狭′くなり
、船舶の接舷によって防舷材本体10に圧縮力が作用し
た際、この溝30を境として軸対称に座屈変形せず、変
形が非対称になり、その内周面同志が早期に接触してし
まい吸収エネルギーの減少を来し緩衝性能が低下する一
方、急激な反力の増大を招き、船舶の接舷時における衝
撃を緩衝することができず、船舶や岸壁等を損傷する恐
れがあるからである。
As mentioned above, the distance M between each groove 30 is set to 0.60H to 0.60H.
85I (is set in the range of 0.60H).If the distance M between each groove 3θ is less than 0.60H, the distance M between each groove 30 becomes narrow, and compressive force is applied to the fender main body 10 when a ship comes alongside. When this occurs, buckling deformation does not occur axially symmetrically with this groove 30 as a boundary, but the deformation becomes asymmetrical, and the inner circumferential surfaces come into contact with each other at an early stage, resulting in a decrease in absorbed energy and a decrease in cushioning performance. On the other hand, this is because a rapid increase in reaction force is caused, and it is not possible to buffer the impact when the ship comes alongside, which may result in damage to the ship, quay, etc.

また、各溝30間の距離Mが0.85Hを超えると、各
溝30間の距離Mが広くなり、船舶の接舷によって圧縮
力が作用した際、外側面が早期に受衝板や岸壁に接触し
てしまい、急激な反力の増大を招き、船舶の接舷時にお
ける衝撃を緩衝することができず、やはり、船舶や岸壁
等を損傷する恐れがあるばかりではなく、反力が急激に
増大するので、防舷材全体としての吸収エネルギー効率
の減少を来し、緩衝性能が低下する一方耐久性も低下す
るからである。
In addition, when the distance M between each groove 30 exceeds 0.85H, the distance M between each groove 30 increases, and when a compressive force is applied by a ship coming alongside, the outer surface is quickly damaged by an impact plate or a quay wall. If the ship comes into contact with the quay, the reaction force will suddenly increase, and the impact when the ship comes alongside cannot be buffered, which may not only cause damage to the ship or quay, but also cause the reaction force to suddenly increase. This is because the energy absorption efficiency of the fender as a whole decreases, and the cushioning performance and durability decrease as well.

なお、上述した各溝30間の距離Mは、0.65H〜0
.77Hの範囲に設定することが、軸対称に座屈変形せ
しめ、緩衝性能及び耐久性を向上するうえで、さらに好
ましい。
In addition, the distance M between each groove 30 mentioned above is 0.65H to 0.
.. It is more preferable to set it within the range of 77H in order to cause axially symmetrical buckling deformation and improve the shock absorbing performance and durability.

但し、それぞれのゴム状弾性体の弾性率N1゜N2の比
率が大きい場合には、溝30を設けることをしな(ても
、界面がその役割を果す。
However, if the ratio of the elastic modulus N1°N2 of each rubber-like elastic body is large, the groove 30 may not be provided (even if the interface plays its role).

次に本発明の第5実施例からなる防舷材E5は、第7図
に示すように、防舷材本体1oの両端部にフランジ部4
0を一体的に形成した例である。
Next, the fender E5 according to the fifth embodiment of the present invention has flange portions 4 at both ends of the fender main body 1o, as shown in FIG.
This is an example in which 0 is integrally formed.

本実施例においても弾性率はNl >N2又はN、1<
N2の関係に設定されており、図示の如く、弾性率N1
のゴム状弾性体からなる構成部材11により形成された
筒状芯体Aの外周側に、弾性率N2のゴム状弾性体から
なる構成部材121を配置すると共に、内周側に、弾性
率N2のゴム状弾性体からなる構成部材122を配置し
、これらの各構成部材11.121.122を一体的に
加硫接着して構成されている。
In this example as well, the elastic modulus is Nl > N2 or N, 1 <
As shown in the figure, the elastic modulus N1
A component 121 made of a rubber-like elastic body having an elastic modulus N2 is disposed on the outer circumferential side of the cylindrical core body A formed of the constituent member 11 made of a rubber-like elastic body of Component members 122 made of a rubber-like elastic body are arranged, and each of these component members 11, 121, and 122 are integrally vulcanized and bonded.

次に本発明の第6実施例からなる防舷材E6は、弾性率
をNl >N2又はNl<N、2の関係に設定し、第8
WJに示すように、弾性率N1のゴム状弾性体からなる
構成部材11により形成された筒状芯体Aの内部に、弾
性率N2のゴム状弾性体からなる構成部材12を配置し
、これらの各構成部材11.12を一体的に加硫接着し
て構成されている。
Next, the fender E6 according to the sixth embodiment of the present invention has an elastic modulus set to the relationship of Nl>N2 or Nl<N, 2, and
As shown in WJ, a component 12 made of a rubber-like elastic body with an elastic modulus N2 is arranged inside a cylindrical core body A formed of a constituent member 11 made of a rubber-like elastic body with an elastic modulus N1, and these It is constructed by integrally vulcanizing and adhering each of the constituent members 11 and 12.

次に本発明の第7実施例からなる防舷材E7は、防舷材
本体10の形状を、第9図に示すように、台形断面中空
体に形成した例である。
Next, a fender E7 according to a seventh embodiment of the present invention is an example in which the fender main body 10 is formed into a trapezoidal cross-section hollow body, as shown in FIG.

本実施例においても弾性率はNl >N2又はNl <
N2の関係に設定されており、図示の如く、弾性率N1
のゴム状弾性体からなる構成部材11により形成された
筒状芯体Aの外周側に、弾性率N2のゴム状弾性体から
なる構成部材121を配置すると共に、内周側に、弾性
率N2のゴム状弾性体からなる構成部材122を配置し
、これらの各構成部材IL 121.122を一体的に
加硫接着して構成されている。
In this example as well, the elastic modulus is Nl > N2 or Nl <
As shown in the figure, the elastic modulus N1
A component 121 made of a rubber-like elastic body having an elastic modulus N2 is disposed on the outer circumferential side of the cylindrical core body A formed of the constituent member 11 made of a rubber-like elastic body of It is constructed by arranging constituent members 122 made of a rubber-like elastic body, and integrally vulcanizing and adhering these constituent members IL 121 and 122.

また、同時に板状に対面したこの種の防舷材にも応用で
きる。
Furthermore, it can also be applied to this type of fender material that faces each other in the form of a plate.

〔発明の効果〕〔Effect of the invention〕

本発明は上述したように、防舷材本体を弾性率の異なる
二種類以上のゴム状弾性体からなる構成部材により構成
し、この弾性率の異なる各構成部材を、防舷材本体の軸
線方向の見掛けの弾性率が変化するよう配置したから、
防舷材の外形形状を変化せしめることな(、つまり、同
一形状のモールドを使用して、軸線方向の見掛けの弾性
率を変化させることによって、所望の疼力特性曲線を得
ることができる。
As described above, the present invention comprises a fender main body composed of constituent members made of two or more types of rubber-like elastic bodies having different moduli of elasticity, and each constituent member having a different modulus of elasticity is connected in the axial direction of the fender main body. Since we arranged it so that the apparent elastic modulus of
A desired pain characteristic curve can be obtained without changing the external shape of the fender (that is, by changing the apparent modulus of elasticity in the axial direction using a mold of the same shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第9図は本発明の各実施例からなる防舷材を示
し、第1図(alは第1実施例の断面説明図、第1図(
b)は同上見掛けの弾性率を示す線図、第2図(alは
第2実施例の断面説明図、第2図(b)は同上見掛けの
弾性率を示す線図、第3図+alは第3実施例の断面説
明図、第3図(b)は同上見掛けの弾性率を示す線図、
第4図は第2図(alに示す第2実施例と第11図fa
)に示す従来例との反力特性曲線図、第5図は第3図(
alに示す第3実施例と第11図(alに示す従来例と
の反力特性曲線図、第6図は第4実施例の断面説明図、
第7図は第5実施例の断面説明図、第8図は第6実施例
の断面説明図、第9図は第7実施例の断面斜視説明図で
あり、また第10図(a)は従来のこの種防舷材の断面
説明図、第10図(b)は同上見掛けの弾性率を示す線
図、第11図fa)は従来のこの種防舷材の断面説明図
、第11図(b>は同上見掛けの弾性率を示す線図であ
る。 10・・・防舷材本体、11,12.・・・弾性率の異
なる各ゴム状弾性体からなる構成部材。
1 to 9 show fenders made of each embodiment of the present invention, and FIG. 1 (al is a cross-sectional explanatory diagram of the first embodiment,
b) is a diagram showing the apparent elastic modulus of the same as above, FIG. A cross-sectional explanatory diagram of the third embodiment, FIG. 3(b) is a diagram showing the apparent elastic modulus of the same as above,
Figure 4 shows the second embodiment shown in Figure 2 (al) and Figure 11 fa.
) shows the reaction force characteristic curve diagram of the conventional example, and Fig. 5 shows the reaction force characteristic curve shown in Fig. 3 (
The third embodiment shown in al and FIG. 11 (reaction force characteristic curve diagram of the conventional example shown in al, FIG. 6 is a cross-sectional explanatory diagram of the fourth embodiment,
FIG. 7 is a cross-sectional explanatory diagram of the fifth embodiment, FIG. 8 is a cross-sectional explanatory diagram of the sixth embodiment, FIG. 9 is a cross-sectional perspective explanatory diagram of the seventh embodiment, and FIG. A cross-sectional explanatory diagram of a conventional fender of this kind, FIG. 10(b) is a diagram showing the apparent modulus of elasticity of the same as above, FIG. (b> is a diagram showing the apparent elastic modulus of the same as above. 10... Fender main body, 11, 12... Constituent members made of rubber-like elastic bodies having different elastic moduli.

Claims (1)

【特許請求の範囲】[Claims] 防舷材本体を弾性率の異なる二種類以上のゴム状弾性体
からなる構成部材により構成し、この弾性率の異なる各
構成部材を、防舷材本体の軸線方向の見掛けの弾性率が
変化するよう配置したことを特徴とする防舷材。
The fender main body is composed of constituent members made of two or more types of rubber-like elastic bodies having different elastic moduli, and the apparent elastic modulus of each of the constituent members having different elastic moduli in the axial direction of the fender main body changes. A fender characterized by being arranged as follows.
JP59135858A 1984-06-30 1984-06-30 Fender Pending JPS6117618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135858A JPS6117618A (en) 1984-06-30 1984-06-30 Fender

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135858A JPS6117618A (en) 1984-06-30 1984-06-30 Fender

Publications (1)

Publication Number Publication Date
JPS6117618A true JPS6117618A (en) 1986-01-25

Family

ID=15161414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135858A Pending JPS6117618A (en) 1984-06-30 1984-06-30 Fender

Country Status (1)

Country Link
JP (1) JPS6117618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011883A (en) * 2001-06-29 2003-01-15 Nippon Steel Corp Float mooring device having nonlinear reaction characteristic
JP2012072563A (en) * 2010-09-28 2012-04-12 Bridgestone Corp Fender
EP2567932A1 (en) * 2011-09-09 2013-03-13 Ingenieursbureau Wuylens BVBA Impact deceleration device for material handling equipments.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927836A (en) * 1972-06-01 1974-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927836A (en) * 1972-06-01 1974-03-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011883A (en) * 2001-06-29 2003-01-15 Nippon Steel Corp Float mooring device having nonlinear reaction characteristic
JP2012072563A (en) * 2010-09-28 2012-04-12 Bridgestone Corp Fender
EP2567932A1 (en) * 2011-09-09 2013-03-13 Ingenieursbureau Wuylens BVBA Impact deceleration device for material handling equipments.

Similar Documents

Publication Publication Date Title
US3948500A (en) Shock absorbers for mooring guards
US4355792A (en) Hollow marine fender
US5458077A (en) Marine fenders
US4277055A (en) Cushioning fender
US3716999A (en) Mechanical buffer of resilient material such as rubber, in particular fender for ships
JPS6114316A (en) Fender
US4601611A (en) Marine fender
JPS6117618A (en) Fender
US6146748A (en) Lithographic layer for a printing blanket and a printing blanket fitted with this layer
US4721414A (en) Marine fenders
US3948501A (en) Resilient mounting
GB2032050A (en) Cushioning fender structure
JP2775388B2 (en) Fender
JP3234637B2 (en) Fender
CN217294866U (en) U-shaped rubber fender
JPH11351300A (en) Shock absorbing body, and impact absorbing method using it
JPS6319279Y2 (en)
JPH0241378Y2 (en)
JP3969813B2 (en) Pneumatic fender
JP4190816B2 (en) Fender
JPH0115712Y2 (en)
JP6740952B2 (en) Fender
JPS59210112A (en) Fender
JP3085826B2 (en) Combined fender for floating mooring
JPH10176321A (en) Fender