JPS61175505A - Micrometer - Google Patents

Micrometer

Info

Publication number
JPS61175505A
JPS61175505A JP60015307A JP1530785A JPS61175505A JP S61175505 A JPS61175505 A JP S61175505A JP 60015307 A JP60015307 A JP 60015307A JP 1530785 A JP1530785 A JP 1530785A JP S61175505 A JPS61175505 A JP S61175505A
Authority
JP
Japan
Prior art keywords
arrow
laser beam
frequency
laser light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60015307A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaji
山地 廣
Shigeo Sasaki
佐々木 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60015307A priority Critical patent/JPS61175505A/en
Publication of JPS61175505A publication Critical patent/JPS61175505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement

Abstract

PURPOSE:To enable the measurement of length with a high resolution, by mounting a first optical means on a box body to reflect laser light to a measuring element while a second optical means is mounted somewhere in the course thereof to form an interferring light to accomplish photoelectric conversion of the interferring light. CONSTITUTION:A laser light comprising two frequencies f1 and f2 are emitted in the direction of the arrow 8 from a laser oscillator 5. A part of the laser light is converted into a reference signal SR with the frequency f1-f2 with the first photoelectric detector 12. On the other hand, a part of the laser light as such with the frequency f2 only is shifted in the direction with a prism 18 to be emitted in the direction of the arrow 17. On the other hand, the laser light transmitted through a halfmirror 14 will be as such with the frequency f1 and converged with the laser light with the frequency f2 in the direction of the arrow 17 to be received with the second photoelectric detector 29. Then, when an object to be measured is removed from a base, the laser light with the frequency f1 in the direction of the arrow 24 changes in the frequency and a Doppler signal SD is outputted from the detector 29. Thus, after the counting of the signals SR and SD with counters 32 and 33, the counts signal SC1 and SC2 are outputted to a subtractor 34 to compute the difference there between.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、レーザ光の干渉を利用して変位測定を行うマ
イクロメータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a micrometer that measures displacement using interference of laser light.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、精密長さ測定に用いられるマイクロメータは、
ねじのピッチを利用している。そして、バーニヤを用い
ることKより0.01m1で測定が可能でおる。これ以
上の測定精度で長さ測定を行う場合には、差動変圧器が
内蔵された電気マイクロメータが使用されている。
Generally, micrometers used for precision length measurement are
The pitch of the screw is used. By using a vernier, it is possible to measure at 0.01 m1. When measuring length with higher precision, an electric micrometer with a built-in differential transformer is used.

しかしながら、従来の電気マイクロメータでは1μm以
下の分解能を得ることが困難である欠点をもっている。
However, conventional electric micrometers have the disadvantage that it is difficult to obtain a resolution of 1 μm or less.

かりに、1μm以下の分解能で長さ測定ができたとして
も、測定範囲がすとふる短く、大きい変位量を1μm以
下の分解能で測定することは不可能である。
On the other hand, even if the length can be measured with a resolution of 1 μm or less, the measurement range is very short and it is impossible to measure a large amount of displacement with a resolution of 1 μm or less.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に着目してなされたもので、変位が
大きくても高分解能で測長が可能なマイクロメータを提
供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a micrometer that can measure length with high resolution even if the displacement is large.

〔発明の概要〕[Summary of the invention]

筐体に進退自在に弾性支持された測定子にレーザ光を反
射する第1の光学手段を一体的に取付けるとともに、筐
体の中途部に第10光学的手段からの反射レーザ光とと
もに干渉光を形成する第2の光学的手段を取付け、上記
干渉光を光電変換することによシ得られた電気信号によ
シ測定子の変位量を演算するようにしたものである。
A first optical means for reflecting a laser beam is integrally attached to a probe elastically supported in a movable manner in a housing, and an interference beam is emitted along with a reflected laser beam from a tenth optical means in the middle of the housing. A second optical means for forming the probe is attached, and the amount of displacement of the probe is calculated based on an electrical signal obtained by photoelectrically converting the interference light.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照して詳述する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、この実施例のマイクロメータを示している。FIG. 1 shows the micrometer of this embodiment.

このマイクロメータは、わずかに異なる二つの周波数’
1 + ftからなるコヒーレントなレーザ光を発生す
るレーザ光発振部(1)と、各種光学部品が格納されレ
ーザ光発振部(1)から発信されたレーザ光により参照
信号SRとドツプラー信号8Dを得る本体部(2)と、
参照信号SRとドツプラー信号SDに基づいて測長演算
処理を行う演算部(3)とからなっている。上記本体部
(2)は、円筒状の筐体(4)を有している。そして、
レーザ光発振部(1)は、筐体(4)から離間して設け
られたへリクムーネオン(He −Ne )レーザ発振
器(5)と、一端部がこのレーザ発振器(5)に接続さ
れ他端部が筐体(4)の一方の端板(6)に接続されレ
ーザ発振器(5)から筐体(47までレーザ光を伝送す
る案内管、プリズム、反射オラー等からなる光学系(7
)とからなっている。そして、この光学系(7)から出
光されたレーザ光は矢印(8)方向に投射されるように
なりている。しかして、上記本体部(2)は、前記筐体
(4)と、端板(6)の内側に着設され矢印(8)方向
に沿りた光学系(7)からのレーザ光の光束を拡大して
平行光にするレンズの組合わせからなる光学系(9)と
、この光学系(9)の前方位置にて筐体(4)の内壁に
固定され矢印(8)方向のレーザ光の一部を矢印(8)
方向に直交する矢印a1方向に分岐させる第1のハーフ
ミラ−(Ll)と、筐体(4)の内壁に固定され矢印部
方向のレーザ光を受光して光電変換し周波数がf、 −
f、の参照信号SRを出力する第1の光電検出器aりと
、第1のノ・−7ミラー住υの前方にて筐体(4)の内
壁に固定され矢印(8)方向のレーザ光の一部を直角方
向である矢印(13方向に分岐させる第2のハーフミラ
−α荀と、筐体(4)の内壁に固定され矢印α4方向の
レーザ光を矢印(8)方向に対して平行かつ逆方向であ
る矢印(1つ方向に全反射させるとともにこの矢印(1
四方向のレーザ光を矢印0方向に対して平行かつ逆方向
である矢印(le方向に全反射させ再び第2のハーフミ
ラ−(14)に入射させこの第2のハーフミラ−Iによ
シ矢印(8)方向に対して平行かつ逆方向である矢印α
η力方向反射させるコーナキューブ(corner c
ube )形の第1のプリズムα樽と、この第1のプリ
ズムHと第2のハーフミラ−α尋と、の間になるように
筐体(4)の内壁に固定され矢印(13方向の周波数f
1. f、からなるレーザ光のうち周波数f。
This micrometer has two slightly different frequencies'
A reference signal SR and a Doppler signal 8D are obtained by a laser beam oscillation unit (1) that generates a coherent laser beam of 1 + ft and a laser beam emitted from the laser beam oscillation unit (1) in which various optical components are stored. A main body (2);
It consists of a calculation section (3) that performs length measurement calculation processing based on the reference signal SR and Doppler signal SD. The main body (2) has a cylindrical housing (4). and,
The laser beam oscillator (1) includes a Helium Neon (He-Ne) laser oscillator (5) provided apart from the housing (4), one end connected to this laser oscillator (5), and the other end connected to the He-Ne laser oscillator (5). is connected to one end plate (6) of the housing (4), and an optical system (7
). The laser light emitted from this optical system (7) is projected in the direction of the arrow (8). Accordingly, the main body (2) has a beam of laser light from the optical system (7) installed inside the housing (4) and the end plate (6) and extending in the direction of the arrow (8). An optical system (9) consisting of a combination of lenses that magnify and make parallel light; and a laser beam fixed to the inner wall of the housing (4) at a position in front of this optical system (9) in the direction of arrow (8). Arrow (8)
A first half mirror (Ll) that branches in the direction of arrow a1 perpendicular to the direction, and a first half mirror (Ll) fixed to the inner wall of the housing (4), which receives laser light in the direction of the arrow and photoelectrically converts it to a frequency of f, -
A first photoelectric detector a outputs a reference signal SR of f, and a laser beam fixed to the inner wall of the housing (4) in front of the first No.-7 mirror housing in the direction of arrow (8). A second half mirror α-shaft splits a part of the light in the direction of arrow α4, which is a right angle direction, and a second half mirror α is fixed to the inner wall of the housing (4) and directs the laser beam in the direction of arrow α4 to the direction of arrow (8). Arrows in parallel and opposite directions (total reflection in one direction and this arrow (1
The laser beams in four directions are totally reflected in the direction of the arrow (le) which is parallel and opposite to the direction of the arrow 0, and then enter the second half mirror (14) again, and the laser beams are reflected by the second half mirror (I). 8) Arrow α that is parallel and opposite to the direction
η Corner cube that reflects the force direction (corner c
It is fixed to the inner wall of the casing (4) so as to be between the first prism α barrel shaped like an arrow (13) and the first prism H and the second half mirror α barrel. f
1. Frequency f of the laser light consisting of f.

のレーザ光のみ第1のプリズム(Ieに向って出光させ
る第1の光学フィルタ0と、筐体(4)の他方の端板−
にスリーブQυを介して軸方向である矢印(8)。
A first optical filter 0 that emits only the laser beam toward the first prism (Ie) and the other end plate of the housing (4).
The arrow (8) is axially through the sleeve Qυ.

αη方向に摺動自在に軸支されかつ先端が半球状に形成
された測定子@と、との測定子(社)の後端部に連結さ
れ第2のハーフミラ−a◆より出光した矢印(8)方向
のレーザ光を矢印(11方向と平行な方向である矢印(
ハ)方向に全反射させたのち矢印aη力方向同一光路上
にある矢印(財)方向に全反射させるコーナキ島−ブ(
corner cube )形の第2のプリズム(ハ)
と。
A measuring element @ which is slidably supported in the αη direction and whose tip is formed into a hemispherical shape is connected to the rear end of the measuring element Co., Ltd., and an arrow ( The laser beam in the direction 8) is shown by the arrow (11) which is parallel to the
After total reflection in direction C), total reflection in direction of arrow Aη on the same optical path as direction of arrow aη force is applied to Konaki Island-B(
corner cube) shaped second prism (c)
and.

上記第2のハーフミラ−(14)と第2のプリズム(ハ
)との間において第2のハーフミラ−(14)から出光
した二つの周波数f、 、 f、からなる矢印(8)方
向のV−ザ光のうち周波数f1のレーザ光を第2のプリ
ズム(ハ)K入射させるように筐体(4)の内壁に固定
された第20光学フイルタ(ト)と、第2のプリズム(
ハ)の第2のハーフミラ−α荀側に近接して筐体(4)
内壁に突設されたリング状の支持板(財)と、この支持
板罰と第2のプリズム(イ)との間及び端板(至)と第
2のプリズム(至)との間に介装され測定子Q渇に外力
が付加されない状態でこの測定子(社)を一定位置にて
弾性的に支持する弾性体(ハ)・・・と、端板(6)に
固定され矢印αη力方向レーザ光を入射して光電変換す
る第2の光電検出器四とからなっている。しかして、第
2のプリズム(ハ)K入射した同波数f1のレーザ光は
、測定子(2)の移動にともなうドツプラー効果によ一
シ周波数がΔfだけ変化する。したがって、矢印124
方向のレーザ光の周波数はf1±Δfとなる。よって、
第2のハーフミラ−側から出光した矢印αη力方向レー
ザ光の周波数はw  ’1±Δf1とf、との二つの周
波数からなる。との二つの周波数を含む矢印αη力方向
レーザ光を受光した第2の光電検出器−からは。
Between the second half mirror (14) and the second prism (C), the V- in the direction of arrow (8) is composed of two frequencies f, f, f, emitted from the second half mirror (14). A 20th optical filter (G) fixed to the inner wall of the casing (4) so that the laser beam with a frequency f1 among the laser beams enters the second prism (C) K;
c) The second half mirror - the housing (4) close to the α side
A ring-shaped support plate protruding from the inner wall, and an intervening device between the support plate and the second prism (A) and between the end plate and the second prism (A). An elastic body (c) that elastically supports the probe at a certain position when no external force is applied to the probe is attached, and an elastic body (c) that is fixed to the end plate (6) and receives the αη force indicated by the arrow It consists of four second photoelectric detectors that input directional laser light and perform photoelectric conversion. Therefore, the frequency of the laser beam having the same wave number f1 incident on the second prism (c) K changes by Δf due to the Doppler effect accompanying the movement of the probe (2). Therefore, arrow 124
The frequency of the laser beam in the direction is f1±Δf. Therefore,
The frequency of the laser beam in the direction of arrow αη force emitted from the second half mirror side consists of two frequencies: w′1±Δf1 and f. A second photoelectric detector receives laser light in the direction of force indicated by the arrow αη, which includes the two frequencies of .

周波数がf、 −f、±Δfのドツプラー信号SDが出
力される。一方、前記演算部(3)は、第1の光電検出
器@の出力側に電気的に接続され参照信号SRを増幅す
る第1の増幅器(至)と、第20光電検出器翰の出力側
に電気的に接続されドツプラー信号SDを増幅する第2
の増幅器C31)と、第1の増幅器(至)の出力側に接
続され参照信号SRの周波数を一定期間にわたってカウ
ントする第1の計数器(3湯と、第2の増幅器G1)の
出力側に接続されドツプラ信号8Dの周波数を一定期間
にわたって力゛ラン卜する第2の計数器(ハ)と、第1
の計数器C33から出力された計数信号SC8と第2の
計数器(至)から出力された計数信号SC1との差を求
め差信号SXを出力する減算器(財)と、この減算器(
財)から出力された差信号SXに基づき測長のための演
算処理を行う演算器(至)と、この演算器(至)におけ
る測長結果を表示する表示器(至)とからなっている。
Doppler signals SD with frequencies f, -f, ±Δf are output. On the other hand, the arithmetic unit (3) includes a first amplifier (to) which is electrically connected to the output side of the first photoelectric detector @ and amplifies the reference signal SR, and an output side of the 20th photoelectric detector @. a second electrically connected to the Doppler signal SD for amplifying the Doppler signal SD;
amplifier C31) and the output side of the first counter (3 points and second amplifier G1) that is connected to the output side of the first amplifier (to) and counts the frequency of the reference signal SR over a certain period of time. a second counter (c) which is connected and powers the frequency of the Doppler signal 8D over a certain period;
a subtracter (product) that calculates the difference between the count signal SC8 output from the counter C33 and the count signal SC1 output from the second counter (to) and outputs a difference signal SX;
It consists of a computing unit (to) that performs arithmetic processing for length measurement based on the difference signal SX output from the machine (to), and a display (to) that displays the length measurement result of this computing unit (to). .

つぎに、上記構成のマイクロメータの作動について述べ
る。
Next, the operation of the micrometer having the above configuration will be described.

まず%第2図に示すように、解放状態にて測定子@が基
台07)上面に当接するように本体部(2)を固設する
。ついで、測定子(社)を押し上げ、測定物量を基台(
37)に載置するとともに、測定子(社)と基台C17
)とによシ測定物(至)を挾持する。しかして、レーザ
発振器(5)よシ光学系(7)を介して、二つの周波数
’1 +f、からなるレーザ光を矢印(8)方向に出光
させる。
First, as shown in FIG. 2, the main body (2) is fixed so that the probe contacts the upper surface of the base 07 in the released state. Next, push up the measuring head (sha) and place the measured object amount on the base (
37), as well as the measuring head (sha) and base C17.
) to hold the object to be measured (to). Thus, a laser beam having two frequencies '1 +f is emitted in the direction of the arrow (8) via the laser oscillator (5) and the optical system (7).

すると、この矢印(8)方向のレーザ光の一部は、第1
のハーフミラ−αυにより矢印a1方向に分岐する。
Then, a part of the laser beam in the direction of arrow (8)
The half mirror αυ branches in the direction of arrow a1.

との矢印α1方向のレーザ光は、第1の光電検出器α2
によシ光電変換され1周波数がf、 −f、の参照信号
に変換される。一方、第1のハーフミラ−αυを透過し
た矢印(8)方向のレーザ光の一部は、第2の八−7ミ
ラーIにより矢印0方向に方向転換する。
The laser beam in the direction of arrow α1 is transmitted to the first photoelectric detector α2
The signal is photoelectrically converted and one frequency is converted into a reference signal of f, -f. On the other hand, a portion of the laser light in the direction of arrow (8) that has passed through the first half mirror αυ is changed direction by the second 8-7 mirror I in the direction of arrow 0.

そして、この矢印(13方向のレーザ光は第1の光学フ
ィルタ員を透過すると周波数f、のみのレーザ光となシ
、第1のプリズムα$により矢印ni、rLe方向に順
次方向転換する。そして、再び第1のハーフミラ−(1
1)に入射したのち矢印CL、)方向に出光する。
When the laser beam in the direction of arrow 13 passes through the first optical filter member, it becomes a laser beam with only a frequency f, and the direction is sequentially changed to the directions of arrows ni and rLe by the first prism α$. , again the first half mirror (1
After being incident on 1), the light is emitted in the direction of arrow CL, ).

一方、第2のハーフミラ−Iを透過した矢印(8)方向
のレーザ光は、第2の光学フィルタ(1)を透過すると
周波数がちのみのレーザ光となシ、第2のプリズム(ハ
)に入射する。しかして、この第2のプリズム(ハ)に
入射した周波数f、のレーザ光は、矢印の。
On the other hand, the laser beam in the direction of arrow (8) that has passed through the second half mirror I becomes a laser beam with only a different frequency when it passes through the second optical filter (1), and passes through the second prism (C). incident. Therefore, the laser beam of frequency f that is incident on this second prism (c) is as shown by the arrow.

(財)方向に順次方向転換する。そして、この矢印(財
)方向のレーザ光は第2のハーフミラ−Iを透過すると
矢印C4方向で周波数f、のレーザ光と合流し。
(Foundation) direction. When the laser beam in the direction of the arrow passes through the second half mirror I, it merges with the laser beam of frequency f in the direction of the arrow C4.

第2の光電検出器−にて受光される。つぎに、測定物(
財)を基台07)から取り去る。すると、測定予報は弾
性体(至)・・・の付勢力によシ矢印(8)方向に下降
し基台(ロ)上面に当接する。このとき、測定子(イ)
と一体的に第2のプリズム(ハ)が下降する。その結果
The light is received by a second photoelectric detector. Next, measure the object (
property) is removed from the base 07). Then, the measurement forecast descends in the direction of the arrow (8) due to the urging force of the elastic body (to) and comes into contact with the upper surface of the base (b). At this time, the measuring head (a)
The second prism (c) is lowered integrally with this. the result.

矢印C4方向の周波数f、のレーザ光は、ドツプラー効
果によシ周波数がΔfだけ変化し、fl±Δfとなる。
The frequency of the laser beam having a frequency f in the direction of arrow C4 changes by Δf due to the Doppler effect, and becomes fl±Δf.

よって、干渉光である矢印C17)方向のレーザ光を受
光する第2の光電検出器−からは1周波数ft−f、±
Δfのトップ2−信号SDが出力される。かくて、参照
信号8R及びドツプラー信号SDは、第1及び第2の増
幅器(至)、Gυにて増幅されそれぞれ第1及び第2の
計数器(至)、儲に入力する。しかして、これら第1及
び第2の計数器(至)、(至)にては、位置X、から位
置−まで測定子(2)が変位する全期間にわたりてそれ
らの周波数が計数される。そして、計数終了後とれら計
数結果を示す計数信号sc、、sc、が減算器(財)に
出力され、それらの差Nが演算される。ところで、差N
は、Δfを第2のプリズム(ハ)の移動の間積分し喪も
のであるので1次の関係式が成立する。
Therefore, one frequency ft-f, ±
A top 2 signal SD of Δf is output. Thus, the reference signal 8R and the Doppler signal SD are amplified by the first and second amplifiers, Gυ, and input to the first and second counters, respectively. Therefore, the frequencies of these first and second counters (to) and (to) are counted over the entire period during which the probe (2) is displaced from position X to position -. Then, after the counting is completed, the count signals sc, , sc, indicating the counting results are outputted to a subtracter, and the difference N between them is calculated. By the way, the difference N
Since Δf is integrated during the movement of the second prism (c), a linear relational expression is established.

ここで、f1λ1=C(ただし、Cは光速度)の関係を
利用している。また&)C!−”lは、測定子(社)の
変位量、つまシ測定する長さ7を示している。したがっ
て。
Here, the relationship f1λ1=C (where C is the speed of light) is used. Also &) C! -"l indicates the amount of displacement of the measuring head (company) and the length 7 to be measured by the pick. Therefore.

λ。λ.

1つ−N    00.■ よって、差Nを示す差信号SXを入力した演算器(財)
Kては、上式■によシ長さLを演算し、その結果が表示
器(ト)にて表示される。
One - N 00. ■ Therefore, the arithmetic unit (goods) to which the difference signal SX indicating the difference N is input
Then, the length L is calculated according to the above equation (2), and the result is displayed on the display (G).

このように、この実施例のマイクロメータは。Thus, the micrometer of this example.

測定範囲を規制されることなく高精度測定が可能となる
。たとえばレーザ光としてHe−Neレーザを用いた場
合の分解能は、数mの長さの範囲で約0.15μmとな
る。
High precision measurement is possible without restrictions on the measurement range. For example, when a He-Ne laser is used as the laser beam, the resolution is about 0.15 μm in a length range of several meters.

なお、上記実施例においては、ドツプラー効果を利用し
てNを計数しているが、第3図に示すように、筐体(至
)の一端部に半導体レーザ装置(40を取付け、この半
導体レーザ装置(40よシビームスプリッタ(41)を
経由して軸方向に変位自在な測定子□□□に一体的に取
付けられた反射鏡(43に向ってレーザ光を投射させた
後、この反射鏡Gi3にて反射したレーザ光を再びビー
ムスプリッタ(41)により直角方向である矢印(旬方
向に分岐させるとともに、最初にビームスプリツメ(4
1Jに入射した時点で矢印一方向とは反対方向に反射し
て筐体cll内壁に固定されている反射鏡(ハ)Kより
再び矢印一方向に反射したレーザ光と合流させ、筐体(
II内壁に固定されている光電検出器に)Kよシ受光さ
せるようにしてもよい。
In the above embodiment, N is counted using the Doppler effect, but as shown in FIG. After projecting a laser beam toward the device (40 and the beam splitter (41), which is integrally attached to the measuring head □□□, which can be freely displaced in the axial direction), The laser beam reflected by Gi3 is again branched by the beam splitter (41) in the perpendicular direction (in the direction of the arrow), and is first split into the beam splitter (41).
1J, the laser beam is reflected in the opposite direction to the direction of the arrow and merged with the laser beam reflected again in the direction of the arrow from the reflecting mirror (c) K fixed to the inner wall of the casing (cll).
A photoelectric detector fixed to the inner wall of II) may be made to receive light from K side.

そうして、との光電検出器IA6)から出力された電気
信号に基づき測定子(@が測長距離だけ変位するときの
干渉光の明るさの変化の数Nを計数する。しかして、こ
のときの測定物の長さJは によシ求めることができる。ただし、1は端数である。
Then, based on the electrical signal output from the photoelectric detector IA6), the number N of changes in the brightness of the interference light when the measuring tip (@ is displaced by the measuring distance) is counted. The length J of the object to be measured can be calculated using the following equation.However, 1 is a fraction.

つまシ、この場合は1反射鏡(43を移動するときは、
干渉光の明るさは2分の1波長の移動を周期とする周期
変化することを利用するものである。さらに、上記最初
の実施例において、第1のハーフミラ−(11)は、ビ
ームスプリツメに置き換えてもよい。さらにまた、第2
のハーフミラ−I並びに第1及び第2の光学フィルタ(
1■、(ホ)は1周波数f1のレーザ光のみを透過させ
る偏光ビームスプリッタに置き換えることができる。さ
らにまた。
Tsumashi, in this case 1 reflector (when moving 43,
This method utilizes the fact that the brightness of the interference light changes periodically with a period of movement of 1/2 wavelength. Furthermore, in the first embodiment described above, the first half mirror (11) may be replaced by a beam splitter. Furthermore, the second
half mirror I and first and second optical filters (
1) and (E) can be replaced with a polarizing beam splitter that transmits only the laser beam of one frequency f1. Yet again.

第1及び第2のプリズムαL(2!9の代シに凸レンズ
と凹面鏡の組合わせからなるキャッツアイ(catse
ye)を用いてもよい。また、第1及び第2の増幅器(
至)、01)の出力側にダブラを接続することくよシ。
The first and second prisms αL (cat's eye) are made of a combination of a convex lens and a concave mirror.
ye) may also be used. In addition, the first and second amplifiers (
), connect a doubler to the output side of 01).

周波数を逓倍し、  l dipitに相当する長さを
λ、/2よシさらに小さくシ、読みを精密化することが
できる。さらに、第3図の実施例の場合、ビームスプリ
ッタ(41)からの反射光を固定反射鏡(ハ)を介して
プリズム(ハ)によル再度反射させるようにした場合は
、1/4波長の移動を周期とした周期変化をする(第4
図参照)。いずれにせよ、第3図及び第4図の実施例は
、レーザ光発振部として半導体レーザ装置(4Gを使用
しているので、マイクロメータが小型・軽量化し、可搬
性が向上する格別の効果を奏する。
By multiplying the frequency and making the length corresponding to l dipit even smaller than λ,/2, the reading can be made more precise. Furthermore, in the case of the embodiment shown in Fig. 3, if the reflected light from the beam splitter (41) is re-reflected by the prism (c) via the fixed reflecting mirror (c), the 1/4 wavelength It changes periodically with the movement of (4th
(see figure). In any case, since the embodiments shown in FIGS. 3 and 4 use a semiconductor laser device (4G) as the laser beam oscillation section, the micrometer can be made smaller and lighter, and has the special effect of improving portability. play.

〔発明の効果〕〔Effect of the invention〕

との発明のマイクロメータは、電気マイクロメータのよ
うに測定範囲を規制されることなく、数mの長さの範囲
を0.15μm以下の分解能で高精度測長が可能となる
The micrometer of the invention enables high-precision length measurement with a resolution of 0.15 μm or less over a length range of several meters, without the measurement range being restricted as with electric micrometers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のマイクロメータの構成図
、第2図は第1図のマイクロメータによる測長を示す図
、第3図及び第4図はこの発明の他の実施例のマイクロ
メータの要部構成図である。 (1):レーザ発振部、    (2):本体部。 (3):演算部、     (4) :筐 体。 α4=第2のハーフミラ−(第2の光学的手段)。 @:測定子。 (ハ):第2のプリズム(第1の光学的手段)。 @:第2の光電検出器。 代理人 弁理士  則 近 憲 佑 (ほか1名)
FIG. 1 is a block diagram of a micrometer according to an embodiment of the present invention, FIG. 2 is a diagram showing length measurement by the micrometer of FIG. 1, and FIGS. 3 and 4 are diagrams showing other embodiments of the invention. FIG. 2 is a configuration diagram of main parts of a micrometer. (1): Laser oscillation section, (2): Main body section. (3): Arithmetic unit, (4): Housing. α4 = second half mirror (second optical means). @: Measuring head. (c): Second prism (first optical means). @: Second photoelectric detector. Agent: Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】 下記構成を具備することを特徴とするマイクロメータ。 (イ)レーザ光を発振するレーザ光発振部。 (ロ)内部にて上記レーザ光が投射される筐体と、上記
筐体に進退自在に弾性支持された測定子と、上記測定子
に取付けられ上記レーザ光を反射して反射レーザ光を得
る第1の光学的手段と、上記筐体に取付けられ上記レー
ザ光を上記反射レーザ光と同一の光路に沿って反射させ
干渉光を得る第2の光学的手段と、上記筐体に取付けら
れ上記干渉光を受光して光電変換する光電検出器とを有
する本体部。 (ハ)上記光電検出器から出力された電気信号に基づい
て上記測定子の変位量を演算する演算部。
[Claims] A micrometer characterized by having the following configuration. (a) Laser light oscillation unit that oscillates laser light. (b) A casing on which the laser beam is projected inside, a probe elastically supported by the casing so as to be movable back and forth, and a probe attached to the probe to reflect the laser beam to obtain a reflected laser beam. a first optical means; a second optical means attached to the housing and reflecting the laser beam along the same optical path as the reflected laser beam to obtain interference light; a second optical means attached to the housing and generating the interference light; A main body including a photoelectric detector that receives interference light and converts it into electricity. (c) A calculation unit that calculates the amount of displacement of the probe based on the electrical signal output from the photoelectric detector.
JP60015307A 1985-01-31 1985-01-31 Micrometer Pending JPS61175505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015307A JPS61175505A (en) 1985-01-31 1985-01-31 Micrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015307A JPS61175505A (en) 1985-01-31 1985-01-31 Micrometer

Publications (1)

Publication Number Publication Date
JPS61175505A true JPS61175505A (en) 1986-08-07

Family

ID=11885139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015307A Pending JPS61175505A (en) 1985-01-31 1985-01-31 Micrometer

Country Status (1)

Country Link
JP (1) JPS61175505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026207U (en) * 1988-06-27 1990-01-16
EP0408747A1 (en) * 1988-02-19 1991-01-23 Kitamura Machinery Co., Ltd. Length measuring method by using laser beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408747A1 (en) * 1988-02-19 1991-01-23 Kitamura Machinery Co., Ltd. Length measuring method by using laser beams
JPH026207U (en) * 1988-06-27 1990-01-16

Similar Documents

Publication Publication Date Title
US5369488A (en) High precision location measuring device wherein a position detector and an interferometer are fixed to a movable holder
US4938595A (en) Diffraction photoelectric displacement measuring device
EP0347215A2 (en) Proximity sensor
JPH09325005A (en) Device for measuring deflection
EP0433008B1 (en) Laser interferometric measuring apparatus
US5229832A (en) Optical ultrasonic material characterization apparatus and method
US3767307A (en) Real time interferometer
US10365298B2 (en) Optical knife-edge detector with large dynamic range
JP2012083274A (en) Vibration measuring device and vibration measuring method according to white light interferometry
US4571083A (en) Standing wave interferometer for measuring optical path differences
CN103376055A (en) High-resolution linear interferometer
US4729654A (en) Laser interferometer
RU2253882C1 (en) Gravity meter
US4678337A (en) Laser based gaging system and method of using same
CN105588515A (en) Nanometer displacement measurement sensor-based nanometer micro-displacement detector
JPH09113217A (en) Optical heterodyne type displacement amount detection device
JPS61175505A (en) Micrometer
US4714346A (en) Frequency chirped interferometric displacement sensors and mechanical translation tips therefor
CN101825435A (en) All-fiber-optic displacement measuring method and device thereof
CN106654839A (en) Displacement self-sensing helium-neon laser system
JPS6355035B2 (en)
EP0480027A1 (en) Method and device for determining the thickness of a glass tube
JPH0233962B2 (en)
JPS6319505A (en) Portable multipurpose precise length measuring method
Bennett Length and displacement measurement by laser interferometry