JPS61174942A - Ultraviolet rays irradiation device - Google Patents

Ultraviolet rays irradiation device

Info

Publication number
JPS61174942A
JPS61174942A JP1529985A JP1529985A JPS61174942A JP S61174942 A JPS61174942 A JP S61174942A JP 1529985 A JP1529985 A JP 1529985A JP 1529985 A JP1529985 A JP 1529985A JP S61174942 A JPS61174942 A JP S61174942A
Authority
JP
Japan
Prior art keywords
irradiated
ultraviolet rays
ultraviolet
antenna
uniformly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1529985A
Other languages
Japanese (ja)
Inventor
Masaaki Yada
矢田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1529985A priority Critical patent/JPS61174942A/en
Publication of JPS61174942A publication Critical patent/JPS61174942A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • B01J19/124Ultraviolet light generated by microwave irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To irradiate uniformly ultraviolet rays on the surrounding surface of a material to be irradiated by providing both a conductive wire antenna wherein one part is inserted into a cavity part and a microwave feed source feeding the microwave to a light emission part via the antenna. CONSTITUTION:The ultraviolet rays-curing paint is coated on the surface of a yarn-shaped quartz glass 8a being the material to be irradiated by a coating part A and it is wound on the drum 10a of a conveyance means. Thereby it is conveyed through the aperture part 1b of a side faced to the aperture part 1a of a rectangular waveguide 1, the aperture part 1a, a conductive antenna 5a, an irradiation part 4c other than the part surrounding the antenna 5a of an electrode-free light emission tube 4 and the notched part 7a of a metallic cover 7 and passed. Since the ultraviolet beam is irradiated cylindrically and uniformly on the ultraviolet rays-curing paint coated on the quartz glass 8a, the cover of an even ultraviolet rays-cured paint is formed on the uniformly cured quartz 8a.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、物体に紫外線を照射させる装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a device for irradiating an object with ultraviolet rays.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、紫外光を物体に照射させ、物体の処理を図る手法
が使われている。例えば、物体表面に紫外線硬化性塗料
を塗布し、紫外線を照射し、前記点 塗料層を硬化させ表面被覆する手法や、また食器や、飲
料水、空気、容器等に紫外線を照射させ。
In recent years, methods have been used to treat objects by irradiating them with ultraviolet light. For example, there is a method in which an ultraviolet curable paint is applied to the surface of an object and then irradiated with ultraviolet rays to harden the dotted coating layer to cover the surface, and another method is to irradiate tableware, drinking water, air, containers, etc. with ultraviolet rays.

殺菌する手法等である。It is a method of sterilization, etc.

前者の被覆のための紫外線照射装置としては。The former is an ultraviolet irradiation device for coating.

第110図に示す様な装置が多用されている。つまり9
点状または棒状の紫外線光源外を反射体32の内に設け
、その近傍に1回転機構33により回転され2巻き取り
機構34により巻き取られ搬送される被照射物35を配
置するものである。
A device as shown in FIG. 110 is often used. That is 9
A point-like or rod-like ultraviolet light source is provided inside a reflector 32, and an irradiated object 35, which is rotated by a one-rotation mechanism 33 and wound up and transported by a two-winding mechanism 34, is placed near it.

また後者の物体を殺菌する装置は第11図に示す様な装
置が産業上多く用いられている。すなわち、棒状若しく
は点状の紫外線光源31を被照射物35の通過路に配置
するものである。ここで。
Further, as a device for sterilizing the latter object, a device as shown in FIG. 11 is often used in industry. That is, a rod-shaped or point-shaped ultraviolet light source 31 is arranged in the passage of the object 35 to be irradiated. here.

被照射物を搬送する手段としては、ベルトコンベヤ36
が代表的である。
A belt conveyor 36 is used as a means for conveying the object to be irradiated.
is typical.

これらの場合、光源が点状または棒状のため被照射物3
5の周囲に均等に紫外線が照射されず。
In these cases, since the light source is point-shaped or rod-shaped, the irradiated object 3
UV rays are not evenly irradiated around 5.

その結果被照射物の処理の均一性が欠けていた。As a result, the uniformity of treatment of the irradiated object was lacking.

また、前述の点状光源を被照射物の周囲に一様に配設置
た場合においても、光源製造時・7)ばらつき等によっ
て発光の均一性が保たれなかった。そのため被照射物の
周囲均等な紫外線照射が困難であった。
Further, even when the above-mentioned point light sources are uniformly arranged around the object to be irradiated, the uniformity of light emission cannot be maintained due to variations in the manufacturing process of the light source, etc. Therefore, it has been difficult to uniformly irradiate the surrounding area of the object with ultraviolet rays.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記U+ような従来技術の欠点を除去
し、被照射物の周回面に均一な紫外線を照射する紫外線
照射装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultraviolet irradiation device that eliminates the drawbacks of the conventional techniques such as U+ described above and irradiates uniform ultraviolet rays onto the circumferential surface of an object to be irradiated.

〔発明の概要〕[Summary of the invention]

本発明は、空洞部及び、該空洞部の周側に形成され、マ
イクロ波放射を受けることで励起され紫外光を発する発
光物質が封入された発光部とを有する無電極発光管と、
マイクロ波をその横断百方向均等に放射し2.また前記
無電極発光管へ空洞部へ少なくとも一部が挿入される導
電性アンテナと。
The present invention provides an electrodeless arc tube having a cavity and a light-emitting part formed around the cavity and filled with a luminescent substance that is excited by receiving microwave radiation and emits ultraviolet light;
2. Emit microwaves evenly in 100 directions across the spectrum. and a conductive antenna at least partially inserted into a cavity of the electrodeless arc tube.

該導電性アンテナを介してマイクロ波を前記発光部に供
給するマイクロ波供給源とを備えているので、マイクロ
波を伝搬する導電性アンテナは、放射状に均一なマイク
ロ波放射を実現し2発光部に封入される発光物質は、こ
の均一なマイクロ波放射により発光部の周側方向に均等
に励起されろため9発光部は同じく周側方向に均一な強
度の紫外光を発し、その結果、無電極発光管の空洞部中
で。
Since the conductive antenna is equipped with a microwave supply source that supplies microwaves to the light emitting section via the conductive antenna, the conductive antenna that propagates microwaves realizes radially uniform microwave radiation and connects the two light emitting sections. The luminescent substance enclosed in the 9-light emitting part is excited evenly in the circumferential direction of the light emitting part by this uniform microwave radiation, so the light emitting part 9 also emits ultraviolet light with uniform intensity in the circumferential direction, and as a result, there is no radiation. Inside the cavity of the electrode arc tube.

被照射物は表面一様な紫外線照射が得られる紫外線照射
装置を提供する。
The object to be irradiated is provided with an ultraviolet irradiation device that can uniformly irradiate the surface with ultraviolet rays.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について図面を参照して詳細に説明する
Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は9本発明の一実施例を示した装置の断面図であ
る。同図において、矩形導波管1の一端り一部 に金属がスケット2を介して取付けられたマグネトロン
3は、マイクロ波を発するもので、この発せられたマイ
クロ波は、無電極発光管4の構成部位である発光部4a
に封入された水銀や金属化合物などの発光物質を励起す
るためのものである。
FIG. 1 is a sectional view of a device showing an embodiment of the present invention. In the figure, a magnetron 3, which has a metal attached to a part of one end of a rectangular waveguide 1 via a socket 2, emits microwaves, and the emitted microwaves are transmitted to an electrodeless arc tube 4. Light emitting part 4a which is a constituent part
It is used to excite luminescent substances such as mercury and metal compounds sealed in the chamber.

そして、このマイクロ波を前記発光部4aに供給する手
段として9本実施例では前記マグネトロン3の他、矩形
導波管1と同筒状の導電性アンテナ5aとを用いている
。つまり、マグネトロン3によって発せられたマイクロ
波は、矩形導波管1の中を伝わ08例えば銅など伝導性
の優れた材料により形成される前記円筒状の導電性アン
テナ5aに至る。この円筒状の導電性アンテナ5aは、
導波管1の側壁に設けられた開口部1aに絶縁板6を介
して固定され、導波管1の内側と外側に所定の長さ突出
しているものである。本実施例では絶縁板6の材料とし
てフッ素樹脂を用いているが。
In this embodiment, in addition to the magnetron 3, a rectangular waveguide 1 and a cylindrical conductive antenna 5a are used as means for supplying the microwave to the light emitting section 4a. That is, the microwaves emitted by the magnetron 3 are transmitted through the rectangular waveguide 1 and reach the cylindrical conductive antenna 5a made of a highly conductive material such as copper. This cylindrical conductive antenna 5a is
It is fixed to an opening 1a provided in the side wall of the waveguide 1 via an insulating plate 6, and protrudes a predetermined length inside and outside the waveguide 1. In this embodiment, fluororesin is used as the material for the insulating plate 6.

これはセラミックス等の材料でもよい。このように固定
された導電性アンテナ5aに、前述のマイクロ波は吸収
され無電極発光管4側に放射される。
This may be a material such as ceramics. The aforementioned microwave is absorbed by the conductive antenna 5a fixed in this manner and radiated toward the electrodeless arc tube 4 side.

また、絶縁板6に固定され、導電性アンテナ5aの導波
管1の外側に突出した部分を包囲し、かつその中心軸に
導電性アンテナ5aと同軸の空洞部4bが形成された無
電極発光管4を設げる。この無電極発光管4の管材と1
.ては、耐熱性、紫外光の透過性等を考慮に入れ石英ガ
ラスを用いている。
Further, the electrodeless light emitting device is fixed to the insulating plate 6, surrounds the portion of the conductive antenna 5a protruding outside the waveguide 1, and has a cavity 4b coaxial with the conductive antenna 5a formed in its central axis. A pipe 4 is provided. The tube material of this electrodeless arc tube 4 and 1
.. For this purpose, quartz glass is used in consideration of heat resistance, ultraviolet light transmittance, etc.

すなわち、導波管1の内側の導電性アンテナ5aで吸収
されたマイクロ波は、無電極発光管4の発光部4aによ
り囲まれた導電性アンテナ5aの部分で放射状に放射さ
れ2発光部4aに封入された発光物質を一様に励起し、
そのため発光部4aが発する紫外線強度が円筒状に均一
となり、正常な紫外線発光を遂げる。
That is, the microwave absorbed by the conductive antenna 5a inside the waveguide 1 is radially radiated from the part of the conductive antenna 5a surrounded by the light emitting part 4a of the electrodeless arc tube 4, and is radiated to the second light emitting part 4a. Uniformly excites the encapsulated luminescent substance,
Therefore, the intensity of the ultraviolet light emitted by the light emitting part 4a becomes uniform in the cylindrical shape, and normal ultraviolet light emission is achieved.

また、無電極発光管4の外側に配設される金属カバー7
は、外界にマイクロ波並びに紫外光が漏光することを防
止し、また外界からの衝撃から保護する役割を果たすも
ので、この金属カバー7の底面にも導電性アンテナ5と
同心の切欠部7aが設けられている。また、マグネトロ
ン3に電力を供給するためマグネトロン電源9を配設し
た。
Further, a metal cover 7 disposed outside the electrodeless arc tube 4
The metal cover 7 serves to prevent microwaves and ultraviolet light from leaking into the outside world, and to protect it from shocks from the outside world.The bottom of the metal cover 7 also has a notch 7a concentric with the conductive antenna 5. It is provided. Further, a magnetron power supply 9 was provided to supply power to the magnetron 3.

以上の様に構成された装置において、被照射物例えば糸
状石英ガラス8aは、この装置に付加された塗布部人に
よって紫外線硬化塗料が表面に塗布され、搬送手段であ
るドラム10aによって巻き取られることで、矩形導波
管1の開口部1aに対面した側面に開口された開口部1
bと、開口部1aと導電性アンテナ5aと、無電極発光
管4の導電性アンテナ5aに周回する部分以外の照射部
4Cと。
In the apparatus configured as described above, the object to be irradiated, for example, filamentous quartz glass 8a, has its surface coated with ultraviolet curable paint by an applicator attached to the apparatus, and is wound up by a drum 10a serving as a conveying means. , an opening 1 opened on the side surface facing the opening 1a of the rectangular waveguide 1.
b, the opening 1a, the conductive antenna 5a, and the irradiation section 4C other than the portion of the electrodeless arc tube 4 that revolves around the conductive antenna 5a.

金属カバー7の切欠部7aとに搬送され通過する。It is conveyed to and passes through the notch 7a of the metal cover 7.

つまり、糸状石英ガラス8aに塗布された紫外線硬化塗
料は、無電極発光管4の照射部4Cで前述のように均一
に放射された紫外光が円筒状に一様に照射されるので、
均等に硬化し糸状石英ガラス8aには一様な紫外線硬化
塗料の被覆が成される。
In other words, the ultraviolet curing paint applied to the filamentous quartz glass 8a is uniformly irradiated in a cylindrical shape with the ultraviolet light emitted uniformly by the irradiation section 4C of the electrodeless arc tube 4 as described above.
The filamentous quartz glass 8a is uniformly cured and coated with the ultraviolet curing paint.

ここで本実施例では、マグネトロン3の発振周波数を広
く用いられている2450MH% 、金属カバー7の切
欠部7aの穴径を5 mm 、付加したドラム10aの
巻き取り速度を約20m/secに各々設定した。
In this embodiment, the oscillation frequency of the magnetron 3 is set to 2450 MH%, which is widely used, the hole diameter of the notch 7a of the metal cover 7 is set to 5 mm, and the winding speed of the added drum 10a is set to about 20 m/sec. Set.

以上説明したように、この実施例によれば、被照射物で
ある紫外線硬化塗料の塗布された糸状ガラス8aの外側
表面に対し均一の紫外線照射が成される他に、マグネト
ロン3で発せられるマイクロ波出力を可変することによ
り2発光する紫外線の強度が変化するので、紫外線硬化
塗料の硬化時間を正確に制御できると共に、限られた種
類の紫5′、″)1.線硬化塗料のみならず、任意の紫
外線硬化塗料で被覆処理が可能となる。
As explained above, according to this embodiment, in addition to uniform ultraviolet irradiation on the outer surface of the filament glass 8a coated with the ultraviolet curing paint, which is the object to be irradiated, the By varying the wave output, the intensity of the emitted ultraviolet rays changes, making it possible to accurately control the curing time of ultraviolet curing paints and to cure not only limited types of purple (5','') 1. line curing paints. , it can be coated with any UV-curable paint.

また、上記実施例では糸状石英ガラスの被覆について述
べているが9石英ガラスに限られろことなく、各種電線
などその用途は広い。
In addition, although the above embodiment describes a coating made of filamentous quartz glass, it is not limited to quartz glass, and its applications are wide, including various electric wires.

次に、他の実施例として第2図の如茜液体例えば牛乳の
殺菌に用いる装置を説明する。第2図にあって、第1図
と同一の番号が付けられているものは前記の実施例が備
える部位と等しいことを示している。
Next, as another embodiment, the apparatus shown in FIG. 2 used for sterilizing liquid such as milk will be described. In FIG. 2, the same numbers as in FIG. 1 indicate the same parts as those in the previous embodiment.

ここで、前述の光フアイバー被覆のための装置との構成
上の差異は、前記実施例における糸状石英ガラス8aの
通過する経路に9例えば石英ガラスで形成された管10
bを配置し、その管10b内に殺菌処理を要する牛乳8
bを流動させる手段を備えることである。この牛乳8b
を流動させ無電極発光管4の照射部4Cに搬送する手段
の構成は。
Here, the difference in structure from the apparatus for coating optical fibers described above is that a tube 10 formed of, for example, quartz glass 9 is provided in the path through which the filamentous quartz glass 8a in the embodiment described above passes.
b, and milk 8 that requires sterilization is placed inside the tube 10b.
b. This milk 8b
The structure of the means for flowing and conveying the liquid to the irradiation section 4C of the electrodeless arc tube 4 is as follows.

例えば管10bと、既存の電気ポンプ10cである、上
記の様に構成された殺菌に用いる装置において、矩形導
波管1内の石英管10b中に所定の流量を以って流れて
いる牛乳8bは、マグネトロン3が発したマイクロ波に
より、マイクロ波誘電加熱を受ける。またその後、加熱
を受けた牛乳8bは無電極発光管4の照射部4Cに至り
、ここで先に述べた如く、紫外線が円筒状に一様に照射
される。
In a device used for sterilization configured as described above, for example a tube 10b and an existing electric pump 10c, milk 8b is flowing at a predetermined flow rate into the quartz tube 10b in the rectangular waveguide 1. is subjected to microwave dielectric heating by the microwaves emitted by the magnetron 3. Thereafter, the heated milk 8b reaches the irradiation section 4C of the electrodeless arc tube 4, where it is uniformly irradiated with ultraviolet rays in a cylindrical shape, as described above.

本実施例では、マグネトロン3の発振周波数を2450
 MW虱、金属カバー7の切欠部7aの穴径を30mm
とした。また、牛乳8bの加熱温度は石英管10bの管
径、牛乳の流量、吸収されるマイクロ波エネルギー等の
諸条件により左右されるが、牛乳の殺菌温度と加熱時間
を考慮し決定する。そして、マグネトロン3の発するマ
イクロ波エネルギーは、牛乳8bのマイクロ波誘電加熱
に要する電力と、無電極発光管4の発光部4aの所望の
発光に必要な電力とを供給するものである。
In this embodiment, the oscillation frequency of the magnetron 3 is set to 2450.
MW locust, the hole diameter of the notch 7a of the metal cover 7 is 30 mm.
And so. Further, the heating temperature of the milk 8b depends on various conditions such as the diameter of the quartz tube 10b, the flow rate of the milk, and the absorbed microwave energy, but is determined by considering the sterilization temperature of the milk and the heating time. The microwave energy emitted by the magnetron 3 supplies the power required for microwave dielectric heating of the milk 8b and the power required for the desired light emission from the light emitting portion 4a of the electrodeless arc tube 4.

以上説明したようにこの実施例によれば、牛乳に殺菌効
果の優れた紫外光を照射できると共に。
As explained above, according to this embodiment, milk can be irradiated with ultraviolet light that has an excellent sterilization effect.

マイクロ波誘電加熱による高温加熱が施こされ。High temperature heating is performed using microwave dielectric heating.

牛乳の殺菌が単一の装置内で二つの異なった殺菌手法を
用い瞬時に行なうことができる。
Sterilization of milk can be carried out instantly in a single device using two different sterilization techniques.

また、上記実施例では牛乳の殺菌について述べているが
、これに限られることなく、各種袋詰め湿式食品、調理
食品、飲料水等の殺菌に使用でき。
Further, although the above embodiment describes the sterilization of milk, the present invention is not limited to this, and can be used to sterilize various bagged wet foods, cooked foods, drinking water, and the like.

用途は広い。It has a wide range of uses.

他の実施例として、第3図に示す様な包装用フィルムの
殺菌のための装置の主要部を説明する。
As another embodiment, the main parts of an apparatus for sterilizing packaging films as shown in FIG. 3 will be explained.

つまり、導波管1の側壁に設けられた開口部1aに絶縁
板6を介して固定された円筒状導電性アンテナ5aの中
空部及び無電極発光管4の空洞部4bへ搬送される管状
に形成された包装用フィルム8Cと、包装用フィルム8
 c’の内側に新たなノくイブ11を付加した装置であ
る。ここで、無電極発光管4の空洞部4bに搬送される
包装用フィルム8Cは。
That is, the cylindrical conductive antenna 5a fixed to the opening 1a provided in the side wall of the waveguide 1 via the insulating plate 6 is transported into the hollow part of the cylindrical conductive antenna 5a and the hollow part 4b of the electrodeless arc tube 4. Formed packaging film 8C and packaging film 8
This is a device in which a new knob 11 is added inside c'. Here, the packaging film 8C conveyed to the cavity 4b of the electrodeless arc tube 4 is as follows.

照射部4Cで紫外線照射を受け、均一に殺菌される。ま
た、包装用フィルム8Cの内側に配置されたパイプ11
に流動性の食品等を流す手段を与え。
It is irradiated with ultraviolet rays in the irradiation section 4C and is uniformly sterilized. Moreover, the pipe 11 arranged inside the packaging film 8C
Provides a means for discharging liquid foods, etc.

またこの包装用フィルム8Cを紋り込み、完全に封する
既存の封入手段Bを付加することにより。
In addition, by adding an existing enclosing means B that imprints this packaging film 8C and completely seals it.

前述の様に完全に殺菌された包装用フィルム8Cに流動
性食品等を瞬時に詰め込み、密封することができる。ま
た、矩形導波管1内部分のノくイブ11を石英ガラス材
料にすると、この内部を流れる流動性食品等は前述の様
に、マイクロ波誘電加熱を受け、この食品等の加熱処理
、含有酸素の低減が図れる。
As described above, fluid foods and the like can be instantly packed into the completely sterilized packaging film 8C and sealed. Furthermore, if the nozzle 11 inside the rectangular waveguide 1 is made of quartz glass material, the fluid food, etc. flowing inside the rectangular waveguide 1 will be subjected to microwave dielectric heating as described above, and the food, etc. will be heated, processed, and contained. Oxygen can be reduced.

以上説明1.たようにこの実施例によれば、包装用フイ
ルノ、の完全無菌化が効率よく実現でき、またこのフィ
ルム内部に、加熱処理、含有酸素の低減の成された食品
等を詰め込み、密封することかで鎗るので9食品包装時
の雑菌の付着が大幅に低減できろ。
Above explanation 1. According to this embodiment, it is possible to efficiently make the packaging film completely sterilized, and it is also possible to pack food, etc. that has been heat-treated to reduce the oxygen content inside this film and seal it. 9. The adhesion of germs during food packaging can be significantly reduced.

また、他の実施例として、第4図に示す様に矩形導波管
1の所定の位置に固定分配器12等を用いて、マグネト
ロン3が発したマイクロ波を分配し、各々の分配された
マイクロ波により励起される無電極発光管4を配設する
ことも可能である。
In addition, as another embodiment, as shown in FIG. 4, a fixed distributor 12 or the like is used at a predetermined position of the rectangular waveguide 1 to distribute the microwaves emitted by the magnetron 3. It is also possible to provide an electrodeless arc tube 4 excited by microwaves.

同様に第5図に示す様に、矩形導波管1の側壁に予め定
められた間隔で複数の開口部1aを設け。
Similarly, as shown in FIG. 5, a plurality of openings 1a are provided in the side wall of the rectangular waveguide 1 at predetermined intervals.

導波1ff1の内外部に所定の長さ突出する複数の導電
性アンテナ5aを各々の開口部1aに配置し。
A plurality of conductive antennas 5a protruding from the inside and outside of the waveguide 1ff1 by a predetermined length are arranged in each opening 1a.

それらを包囲する複数の無電極発光管4を励起すること
もできる。
It is also possible to excite a plurality of electrodeless arc tubes 4 surrounding them.

また、上記の全ての実施例においては、マイクロ波を無
電極発光管4の発光部4aに供給するマイクロ波供給源
としてマグネトロン3と矩形導波管1及び導電性アンテ
ナ5aを用いて、その完全な動作を保証しているが、第
6図に示す様にマイクロ波供給源の一部を同軸ケーブル
13としてもよい。この場合、マイクロ波の伝搬損失の
増加は否めないものの、マグネトロン3と無電極発光管
4とを同軸ケーブル13によって分割できるため。
Furthermore, in all of the above embodiments, the magnetron 3, the rectangular waveguide 1, and the conductive antenna 5a are used as the microwave supply source for supplying microwaves to the light emitting part 4a of the electrodeless arc tube 4, and the complete However, as shown in FIG. 6, part of the microwave supply source may be a coaxial cable 13. In this case, the magnetron 3 and the electrodeless arc tube 4 can be separated by the coaxial cable 13, although an increase in microwave propagation loss cannot be denied.

装置の配置の自由度が広がる。Greater flexibility in device placement.

第7図は、他の実施例と1−で無電極発光管4の形状を
変化させたもので0図示するように発光部4aを螺旋状
に形成したものである。同図に示す様に発光部4aが螺
旋状を成している場合においても、無電極発光管4は、
空洞部4b及び発光部4aを有しており、この空洞部4
bに、マイクロ波を放射する導電性アンテナ5を挿入す
ることで。
FIG. 7 shows another embodiment in which the shape of the electrodeless arc tube 4 is changed from 1 to 1, and the light emitting portion 4a is formed in a spiral shape as shown in FIG. Even when the light emitting section 4a has a spiral shape as shown in the figure, the electrodeless arc tube 4
It has a cavity 4b and a light emitting part 4a, and this cavity 4
b by inserting a conductive antenna 5 that emits microwaves.

発光部4aの一様な紫外線発光は保証される。この場合
、螺旋のピッチも細かくすることが照射光の均一を維持
する上で好ましいが、そのピッチを適宜変化させること
により、被照射物の形状に対応した湾曲を持つ空洞部を
形成することができる。
Uniform ultraviolet light emission from the light emitting section 4a is guaranteed. In this case, it is preferable to make the pitch of the spiral fine in order to maintain the uniformity of the irradiated light, but by changing the pitch appropriately, it is possible to form a cavity with a curve that corresponds to the shape of the object to be irradiated. can.

また以上の実施例では、被照射物を無電極発光管4の空
洞部4bへ通過させ紫外光を照射していたが、第8図に
示す様に付加された搬送手段10dによって被照射物8
dを無電極発光管4の空洞部4bに順次移入するよう搬
送させ、無電極発光管4の照射部4Cで紫外光を照射さ
れるように装置を構成することも可能である。図中に示
したように、ここでは棒状の導電性アンテナ5bを用い
て。
Further, in the above embodiment, the object to be irradiated was passed through the cavity 4b of the electrodeless arc tube 4 and irradiated with ultraviolet light, but as shown in FIG.
It is also possible to configure the apparatus in such a way that the ultraviolet light is transported so as to be transferred sequentially into the cavity 4b of the electrodeless arc tube 4 and irradiated with ultraviolet light by the irradiation section 4C of the electrodeless arc tube 4. As shown in the figure, a rod-shaped conductive antenna 5b is used here.

マイクロ波を無電極発光管4に供給している。また好ま
しい例として、金属カバー7の内面に例えばアルミ薄膜
などの紫外線反射膜14を付加し。
Microwaves are supplied to the electrodeless arc tube 4. Further, as a preferable example, an ultraviolet reflecting film 14 such as a thin aluminum film is added to the inner surface of the metal cover 7.

紫外光の有効な照射を促すことも可能である。It is also possible to promote effective irradiation with ultraviolet light.

この実施例によれば、比較的小さな同一形状の被照射物
に対し、均一な紫外線照射が可能となり。
According to this embodiment, it is possible to uniformly irradiate ultraviolet rays onto relatively small objects of the same shape.

大量少品種の被照射物の紫外線処理に好適である。Suitable for ultraviolet treatment of large quantities of small quantities of objects to be irradiated.

第9図は、他の実施例として、簿イ婁#導電性アンテナ
5から放射されるマイクロ波によって。
FIG. 9 shows another example in which microwaves are radiated from the conductive antenna 5.

その導電性アンテナ5の周側外側忙配設される発光部4
aと、同じく内側に配設される発光部4a’とを励起さ
せ、その両者の発光を実現する装置の一部切欠断面図で
ある。
Light emitting part 4 disposed on the outer side of the conductive antenna 5
FIG. 4 is a partially cutaway sectional view of a device that excites the light-emitting section 4a' and the light-emitting section 4a', which is also arranged inside, to realize light emission from both.

隻 ここで、導電性アンテナ5は、一様はマイクロ波を放射
するので、一般的に周側外側に配設される発光部4aは
9周側内側に配設される発光部4a’に比してマイクロ
波を受けることが困難となる。
Here, since the conductive antenna 5 uniformly emits microwaves, the light emitting part 4a disposed on the outer side of the circumference is generally smaller than the light emitting part 4a' disposed on the inner side of the circumference. This makes it difficult to receive microwaves.

そのため同図に示す様に9周側内側に配設される発光部
4a′の管長を短か<シ、またその発光部4alの管軸
に対する横方向の厚みを薄くすること等によって9周側
外側に配設される発光部4aに至るマイクロ波を増大す
る構造を採ることが好ま17い。
Therefore, as shown in the figure, by shortening the tube length of the light emitting part 4a' arranged inside the 9th circumference side, and by reducing the thickness of the light emitting part 4al in the lateral direction with respect to the tube axis, the 9th circumference side It is preferable to adopt a structure that increases the amount of microwaves reaching the light emitting section 4a disposed on the outside.

この実施例によれば、各々の発光部4a148’に発光
波長を異にする発光物質等を封入することができるので
、被照射物に照射する紫外光の波長領域を効率よく広範
囲のものとすることができる。
According to this embodiment, since each light emitting part 4a148' can be filled with a light emitting substance or the like having a different emission wavelength, the wavelength range of the ultraviolet light irradiated onto the object to be irradiated can be efficiently extended over a wide range. be able to.

以上述べてきた様に0本文中では具体的な数値等を用い
て特定V)実施例を詳細に説明しているが。
As mentioned above, specific examples are explained in detail using specific numerical values etc. in the main text.

当業者には明らかなように9本発明の展望と本質から離
れることなく、細かい部分での各種変更力を可能である
It will be apparent to those skilled in the art that various modifications may be made in the details without departing from the spirit and spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波によって励起され紫外光を
均一に発光する管状無電極発光管を設え。
According to the present invention, a tubular electrodeless arc tube that is excited by microwaves and uniformly emits ultraviolet light is provided.

その発光管の空洞部に被照射物を搬送するので。Because the object to be irradiated is transported into the cavity of the arc tube.

被照射物の周回面に均一な紫外光が照射され、被照射物
は均一に処理される。
The circumferential surface of the object to be irradiated is irradiated with uniform ultraviolet light, and the object to be irradiated is uniformly processed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る紫外線照射装置の一実施例の断
面図 第2図、第5図及至6図は、他の実施例の断面図 第3図、第8図及至9図は、他の実施例の一部切久断面
図 第4図は、他の実施例の斜視図 第7図は、他の実施例の無電極発光管の斜視図第10図
及至11図は、従来例の概略図である、 1・・・矩形導波管   3・・・ マグネトロン4.
4′・・無電極発光管  4a、4a’、・発光部4b
、4b’−、空洞部      4c、4c’・・照射
部5・・・ 導電性アンテナ  5a・・円筒状導電性
アンテナ5b・2.棒状導電性アンテナ 8・・・被照
射物代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第2図 b 第3図 第4図  1 第6図 第1図 第8図 第9図 4C 第10図 第11図
FIG. 1 is a sectional view of one embodiment of the ultraviolet irradiation device according to the present invention. FIGS. 2, 5 and 6 are sectional views of other embodiments. FIG. 4 is a partially cutaway sectional view of another embodiment; FIG. 7 is a perspective view of an electrodeless arc tube of another embodiment; FIGS. 10 and 11 are conventional examples. This is a schematic diagram of: 1... rectangular waveguide 3... magnetron 4.
4'...electrodeless arc tube 4a, 4a',...light emitting part 4b
, 4b'-, hollow part 4c, 4c'... irradiation part 5... conductive antenna 5a... cylindrical conductive antenna 5b.2. Rod-shaped conductive antenna 8... Irradiated object agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 b Figure 3 Figure 4 1 Figure 6 Figure 1 Figure 8 Figure 9 4C Figure 10 Figure 11

Claims (1)

【特許請求の範囲】[Claims] マイクロ波放射を受けることで励起された紫外光を発す
る発光物質が封入され、略中央に空洞部が形成された発
光部を有する無電極発光管と、少なくとも一部が前記空
洞部へ挿入された導電性アンテナと、この導電性アンテ
ナを介して、マイクロ波を前記発光部に供給するマイク
ロ波供給源とを具備し、前記紫外光が照射される被照射
物は前記空洞部に搬送されることを特徴とする紫外線照
射装置。
An electrodeless arc tube having a light-emitting part in which a light-emitting substance that emits ultraviolet light excited by receiving microwave radiation is enclosed and a cavity formed approximately in the center, and at least a portion of the tube is inserted into the cavity. It comprises a conductive antenna and a microwave supply source that supplies microwaves to the light emitting part via the conductive antenna, and the object to be irradiated with the ultraviolet light is transported to the cavity part. An ultraviolet irradiation device featuring:
JP1529985A 1985-01-31 1985-01-31 Ultraviolet rays irradiation device Pending JPS61174942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1529985A JPS61174942A (en) 1985-01-31 1985-01-31 Ultraviolet rays irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1529985A JPS61174942A (en) 1985-01-31 1985-01-31 Ultraviolet rays irradiation device

Publications (1)

Publication Number Publication Date
JPS61174942A true JPS61174942A (en) 1986-08-06

Family

ID=11884938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1529985A Pending JPS61174942A (en) 1985-01-31 1985-01-31 Ultraviolet rays irradiation device

Country Status (1)

Country Link
JP (1) JPS61174942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674526A1 (en) * 1991-03-29 1992-10-02 France Telecom Device with a source of microwave-induced ultraviolet radiation for the polymerisation of photopolymerisable objects
JPH06312725A (en) * 1993-04-23 1994-11-08 San Furendo:Kk Fluid pasteurization apparatus
EP0916398A1 (en) * 1997-11-03 1999-05-19 Mikrowellen-Systeme MWS GmbH Apparatus for initiating and/or promoting chemical processes by radiation of a reactant with electromagnetic radiation
JP2007216996A (en) * 2006-02-15 2007-08-30 Toppan Printing Co Ltd Sterilization method and apparatus for hollow receptacle
JP2009202120A (en) * 2008-02-28 2009-09-10 Harison Toshiba Lighting Corp Ultraviolet irradiation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674526A1 (en) * 1991-03-29 1992-10-02 France Telecom Device with a source of microwave-induced ultraviolet radiation for the polymerisation of photopolymerisable objects
JPH06312725A (en) * 1993-04-23 1994-11-08 San Furendo:Kk Fluid pasteurization apparatus
EP0916398A1 (en) * 1997-11-03 1999-05-19 Mikrowellen-Systeme MWS GmbH Apparatus for initiating and/or promoting chemical processes by radiation of a reactant with electromagnetic radiation
JP2007216996A (en) * 2006-02-15 2007-08-30 Toppan Printing Co Ltd Sterilization method and apparatus for hollow receptacle
JP2009202120A (en) * 2008-02-28 2009-09-10 Harison Toshiba Lighting Corp Ultraviolet irradiation apparatus

Similar Documents

Publication Publication Date Title
US6559460B1 (en) Ultraviolet lamp system and methods
US5614151A (en) Electrodeless sterilizer using ultraviolet and/or ozone
US7923706B2 (en) Ultraviolet curing apparatus for continuous material
EP2144683B1 (en) Method and apparatus for treating materials using electrodeless lamps
US6614005B1 (en) Device and method for thermally treating substrates
EP1070339B1 (en) Microwave energised plasma light source
EP0772226A2 (en) Ultraviolet irradiating apparatus and components thereof
JPS61174942A (en) Ultraviolet rays irradiation device
JPH11345598A (en) Electrodeless lamp
US8405046B2 (en) Method and apparatus for treating materials using electrodeless lamps
JP6831268B2 (en) Discharge lamp
WO2014141182A1 (en) Microwave powered lamp
JPH1015040A (en) Ultraviolet irradiating device
JPH1012197A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, infrared-ray radiator, and fluid processor
JPH10241635A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, and fluid treatment device
JPH0279354A (en) Microwave excitation type electrodeless luminous tube and manufacture thereof
JPH1012195A (en) Electrodeless lamp, electrodeless lamp lighting device, and ultraviolet ray irradiation device
JP2001185088A (en) Flash discharge lamp, light emission device therefor
JPH1050269A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, and fluid treating device
KR100327537B1 (en) Microwave lighting apparatus
JPH11297276A (en) Two-area wave length radiating lamp
JPH1027578A (en) Electrodeless discharge lamp, electrodeless discharge lamp lighting device, ultraviolet irradiation device, and fluid processing device
JP2542952Y2 (en) Microwave electrodeless light emitting device
JPS61240562A (en) Microwave discharge light source device
JPS622446A (en) Microwave discharge power supply device