JPS6117415A - Preparation of hydrated silicic acid - Google Patents

Preparation of hydrated silicic acid

Info

Publication number
JPS6117415A
JPS6117415A JP13794884A JP13794884A JPS6117415A JP S6117415 A JPS6117415 A JP S6117415A JP 13794884 A JP13794884 A JP 13794884A JP 13794884 A JP13794884 A JP 13794884A JP S6117415 A JPS6117415 A JP S6117415A
Authority
JP
Japan
Prior art keywords
silicic acid
acid
hydrated silicic
slurry
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13794884A
Other languages
Japanese (ja)
Other versions
JPH0465008B2 (en
Inventor
Toyozo Iwamoto
岩本 十四三
Suekichi Nakao
中尾 末吉
Naoto Ono
大野 尚登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP13794884A priority Critical patent/JPS6117415A/en
Publication of JPS6117415A publication Critical patent/JPS6117415A/en
Publication of JPH0465008B2 publication Critical patent/JPH0465008B2/ja
Priority to JP5198230A priority patent/JPH0673691A/en
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a hydrated silicic acid having low content of coarse particle and having excellent oil absorptivity, by adding an acid dividedly to an aqueous solution of an alkali metal silicate to effect the precipitation of a hydrated silicic acid, and subjecting the silicic acid to wet pulverization. CONSTITUTION:An aqueous solution of an alkali metal silicate having an alkali metal salt content of 0.13-0.17mol/l, an SiO2 concentration of 0.9-1.4mol/l and an SiO2/M2O molar ratio of 3-3.2 (M is alkali metal) is heated at <=60 deg.C, added with an acid (e.g. hydrochloric acid) of an amount corresponding to 25-70% of the acid necessary to neutralize the alkali silicate, spending 8-10min, and heated to 85-95 deg.C at a heating rate of 1.5-2.5 deg.C/min. When the solution viscosity of the reaction system reaches its peak, the residual acid is added to the system spending 80-100min until the pH of the system reaches 4-6. A hydrous silicic acid is precipitated by this process to obtain a slurry of the hydrous silicic acid having a concentration of 6-15%. The slurry is pulverized in wet state until the residue on the 250 mesh sieve becomes <=1wt%.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、含水珪酸の新規な製造方法に間する。 詳しくは、含水珪酸の生成工程から、乾燥・粉砕の工程
を経ることなく、粗大粒子の含有率が極めて少なく、且
つ優れた吸油特性を有する含水珪酸をスラリー状態で得
るための含水珪酸の製造方法である。 従来より、含水珪酸をスラリー状態で使用する工程、例
えば、含水珪酸を填料として用いる抄紙工程においては
、含水珪酸の製造コストを低減させるため含水珪酸の生
成工程から得られる含水珪酸スラリーを、乾燥・粉砕の
工程を経ずに直接使用する方法が望まれていた。しかし
ながら、珪酸アルカリと鉱酸との反応によって得られる
スラリーは、上記乾燥・粉砕工程を経て得られた含水珪
酸を再びスラリー化したものと比較して含水珪酸の粗大
粒子の含有量が極端に多い。そのため、含水珪酸の生成
工程から得られる含水珪酸スラリーを前記抄紙工程のバ
ルブスラリーに添加して抄紙した場合、得られる紙の表
面に含水珪酸の粗大粒子、(こよる突起が多数生じ、そ
の商品価値を著しく低下させるという問題を生ずる。 本発明者等は、含水珪酸の生成工程より得られるスラリ
ー中の粗大粒子による上記問題を解消すべく鋭意研究を
重ねた。その結果、珪酸アルカリと鉱酸とを特定の条件
下に反応させて得られる含水珪酸をスラリー状態で湿式
粉砕することにより、粗大粒子の含有率が極めて少ない
含水珪酸をスラリー状態で得ることができることを見い
出し本発明を完成させた。 本発明は、珪酸アルカリ水溶液に、該珪酸アルカリを中
和するのに必要な酸の25〜70%となる竜の酸を添加
した後、反応系の溶液粘度が最大となる付近において、
残部の酸を連続的に添加して含水珪酸を析出せしめ、得
られた含水珪酸をスラリー状態で湿式粉砕することを特
徴とする含水珪酸の製造方法である。 本発明の特徴は、珪酸アルカリに酸を2段に分けて添加
して含水珪酸を生成させる工程と、該含水珪酸をスラリ
ー状態で湿式粉砕する工程との組み合わせになる。即ち
、珪酸アルカリと酸との反応によって生成する含水珪酸
は全て、−成粒子の凝集が過度に発達した粗大粒子を多
量に含有するが、珪酸アルカリと酸との反応条件によっ
て該粗大粒子の凝集エネルギーが変化するという知見を
得た。そして、更に研究を重ねた結果、珪酸アルカリと
酸との数ある反応条件の中で珪酸アルカリに酸を2段に
分けて添加する方法が他の方法と比較して粗大粒子の凝
集エネルギーが著しく小さいことを見い出したのである
。そして、上記含水珪酸の生成方法と湿式粉砕を組合わ
せることにより、粗大粒子が極めて少ない含水珪酸スラ
リーを得ることに成功したのである。また、必要に応じ
て珪酸アルカリに対する酸の2段添加の条件を特定する
ことにより、得られる含水珪酸に優れた吸油特性を付与
することができ、紙の填料として有効に使用される。 本発明において、珪酸アルカリ水溶液は、特に制限され
るものではなく、従来まり含水珪酸の製造に使用されて
いるものが一般に使用される。中でもアルカリ金属塩を
0.13〜0.17モル/?L好ましくは0.14〜0
.15モル/7に含有しSiOよ濃度が0.9〜1.4
モル/?X、好ましくは0.95〜1.25モル/爾、
S i O1/ M、0モル比(但し、Mはアルカリ金
属)が3〜3.2の珪酸アルカリが、得られる水和珪酸
を紙の填料として使用する場合に有利である。即ち、ア
ルカリ金属塩の存在量、S j O,11度、及びS 
i 02/ M。 0モル比が前記範囲の珪酸アルカリより製造された含水
珪酸は、これを用いて得られる紙の乾燥収縮が小さく、
良好な寸法安定性を示す。また、含水珪酸の吸油特性を
より向上させることができ、これを用いて得られる紙の
印刷インクの吸油性能がより向上し、裏抜は防止性が良
好となる。 尚、本発明において、珪酸アルカリとしては珪酸ナトリ
ウムが一般的であるが、珪酸カリウムも使用できる。ま
た、アルカリ金属塩は、ナトリウム、カリウム等の硫酸
塩、塩酸塩、硝酸塩が一般に使用される。特に、後述の
酸と同種の塩が好適に使用される。 本発明において、前記特定の珪酸アルカリ水溶液は酸で
中和して含水珪酸を析出させる。酸による中和は、珪酸
アルカリ水溶液中の全アルカリを中和するのに必要な酸
の量を1とした場合、これに対する酸の割合(以下、酸
添加率という)が25〜70、好ましくは25〜35%
となる量の酸を連続的に添加することによって行われる
。上記酸添加時の温度は60℃以下、好ましくは40〜
55℃とすることが得られる含水珪酸の吸油特性を向上
させ、これを用いて得られる紙の印刷インりの裏抜は防
止性を向上させることができ好ましい。また、酸添加率
が前記範囲より低い場合は、粗大粒子以外の粒子径が著
しく小さくなり得られた含水珪酸を用いて抄紙する際の
粉立ちが増したりまた、吸油特性も低下して充分な印刷
インクの裏抜は防止効果が得られない。逆に、酸添加率
が前記範囲より高い場合、吸油特性が低下するばかりで
なく、後述する湿式粉砕ての粗大粒子の減少率が低下す
る。更に、上記量の酸は8〜lO分の間に連続して添加
することが、得られる含水珪酸を添加した紙の寸法安定
性を高く維持することができる含水珪酸が得られ好まし
い。 本発明において、珪酸アルカリ水溶液は、上述した酸添
加が終了後、含水珪酸の種子が徐々に析出し始める。こ
の場合、該水溶液の温度を特定の温度に昇温させるこに
より、種子の析出効果的におこなわせることができ好ま
しい。上記昇温は、1.5〜2.6℃/分の昇温速度で
行うことが好ましい。また、昇温温度は85〜95℃、
好ましくは90〜95℃が望ましい。上記温度に昇温す
ることによって得られる含水珪酸の吸油特性を上げ、こ
れを用いて製造される紙に充分な印刷インクの裏抜は防
止性を付与することもできる。種子の析出は、初めは肉
眼で判別し得ない程度のゾルであるが、やがて羽毛状の
沈殿となり、その量に従って溶液の粘度を著しく増大せ
しめるので種子の析出が終わったかどうかは容易に識別
できる。 本発明では、この状態、即ち反応系の溶液粘度最大とな
る付近(最大となった時点を含む)において残部の鉱酸
を更に添加して含水珪酸を完全に析出させる。核酸の添
加は溶液のp)Iが4〜6となるように、若干過剰に添
加し、添加は80〜100分かけて行うことが、析出す
る含水珪酸の濾過性を向上させるのみでなく、得られる
含水珪酸の吸油特性を向上させ、これを用いた紙の印刷
インクの裏抜は防IE性を一層向上することができ好ま
しい。 本発明で用いる原料珪酸アルカリの中和用酸は一般に水
和珪酸の製法として知られている硫酸、塩酸、硝酸等の
鉱酸、炭酸ガス等が特に制限なく使用できるが、紙の填
料として使用する場合、抄紙工程への影響などを考慮す
れば、一般に硫酸が最も好適である。また、上記酸の濃
度は2g/100c、c、 〜40 g/ 100c、
c、の範囲のものを使用することが好ましい。 上述した方法によって、珪酸アルカリと酸とを反応させ
て得られた含水珪酸スラリー中には一般に250メツシ
ュ残渣が20〜30%の割合で粗大粒子を含有
The present invention provides a novel method for producing hydrated silicic acid. Specifically, a method for producing hydrated silicic acid for obtaining hydrated silicic acid in a slurry state, which has an extremely low content of coarse particles and has excellent oil absorption properties, without going through the drying and pulverization steps from the generation process of hydrated silicic acid. It is. Conventionally, in the process of using hydrated silicic acid in a slurry state, for example, in the papermaking process using hydrated silicic acid as a filler, in order to reduce the manufacturing cost of hydrated silicic acid, the hydrated silicic acid slurry obtained from the hydrated silicic acid generation process is dried and There was a desire for a method that could be used directly without going through the pulverization process. However, the slurry obtained by the reaction between an alkali silicate and a mineral acid has an extremely high content of coarse particles of hydrous silicic acid compared to the slurry obtained by re-slurrying the hydrous silicic acid obtained through the above drying and pulverization process. . Therefore, when paper is made by adding the hydrated silicic acid slurry obtained from the hydrated silicic acid generation process to the valve slurry in the papermaking process, many coarse particles of hydrated silicic acid (protrusions) are formed on the surface of the resulting paper, and the product The inventors of the present invention have conducted extensive research to solve the above-mentioned problem caused by coarse particles in the slurry obtained from the process of producing hydrous silicic acid.As a result, they have found that alkali silicate and mineral acid The present inventors have discovered that hydrous silicic acid with an extremely low content of coarse particles can be obtained in a slurry state by wet-pulverizing the hydrated silicic acid obtained by reacting the hydrated silicic acid under specific conditions in a slurry state, and have completed the present invention. In the present invention, after adding to an aqueous alkali silicate solution 25 to 70% of the acid required to neutralize the alkali silicate, the solution viscosity of the reaction system is at its maximum.
The method for producing hydrated silicic acid is characterized in that the remaining acid is continuously added to precipitate hydrated silicic acid, and the obtained hydrated silicic acid is wet-pulverized in a slurry state. The feature of the present invention is the combination of a step of adding an acid to an alkali silicate in two stages to produce hydrated silicic acid, and a step of wet-pulverizing the hydrated silicic acid in a slurry state. That is, all hydrated silicic acid produced by the reaction between an alkali silicate and an acid contains a large amount of coarse particles with excessively developed agglomeration. We gained the knowledge that energy changes. As a result of further research, among the many reaction conditions for alkali silicate and acid, the method of adding acid to alkali silicate in two stages significantly reduced the cohesive energy of coarse particles compared to other methods. I discovered something small. By combining the above method for producing hydrated silicic acid with wet grinding, they succeeded in obtaining a hydrated silicic acid slurry with extremely few coarse particles. Furthermore, by specifying the conditions for two-stage addition of acid to alkali silicate as necessary, it is possible to impart excellent oil absorption properties to the resulting hydrated silicic acid, and it is effectively used as a filler for paper. In the present invention, the aqueous alkali silicate solution is not particularly limited, and those conventionally used in the production of hydrous silicic acid are generally used. Among them, 0.13 to 0.17 mol/? of alkali metal salts? L preferably 0.14-0
.. Contains 15 mol/7 and has a concentration of 0.9 to 1.4 as SiO
Mol/? X, preferably 0.95 to 1.25 mol/h,
Alkali silicates having a S i O1/M, 0 molar ratio (where M is an alkali metal) of 3 to 3.2 are advantageous when the resulting hydrated silicic acid is used as a paper filler. That is, the abundance of alkali metal salt, S j O, 11 degrees, and S
i02/M. Hydrous silicic acid produced from an alkali silicate having a molar ratio of 0 within the above range has a small drying shrinkage of paper obtained using the hydrated silicic acid.
Shows good dimensional stability. Further, the oil absorption properties of the hydrated silicic acid can be further improved, and the oil absorption performance of the printing ink of the paper obtained using this is further improved, and the strike-through prevention property is improved. In the present invention, sodium silicate is generally used as the alkali silicate, but potassium silicate can also be used. As the alkali metal salt, sulfates, hydrochlorides, and nitrates of sodium, potassium, etc. are generally used. In particular, salts of the same type as the acids described below are preferably used. In the present invention, the specific aqueous alkali silicate solution is neutralized with an acid to precipitate hydrous silicic acid. For neutralization with an acid, when the amount of acid required to neutralize all the alkalis in the aqueous alkali silicate solution is 1, the ratio of acid to this (hereinafter referred to as acid addition rate) is 25 to 70, preferably 25-35%
This is done by continuously adding an amount of acid. The temperature at the time of adding the acid is 60°C or less, preferably 40°C or less.
Setting the temperature to 55° C. improves the oil absorption properties of the hydrous silicic acid obtained, and improves the ability to prevent printing in from printing on paper obtained using the same. In addition, if the acid addition rate is lower than the above range, the particle size of particles other than coarse particles will become significantly smaller, resulting in increased dusting when paper is made using the obtained hydrated silicic acid, and the oil absorption properties will also decrease, resulting in insufficient No effect can be obtained to prevent printing ink from bleeding out. On the other hand, if the acid addition rate is higher than the above range, not only the oil absorption properties will be lowered, but also the reduction rate of coarse particles during wet grinding, which will be described later, will be lowered. Furthermore, it is preferable to continuously add the acid in the above amount for a period of 8 to 10 minutes, since this results in a hydrous silicic acid that can maintain high dimensional stability of the resulting paper to which the hydrous silicic acid is added. In the present invention, in the aqueous alkali silicate solution, after the above-mentioned acid addition is completed, seeds of hydrated silicic acid begin to gradually precipitate. In this case, it is preferable to raise the temperature of the aqueous solution to a specific temperature because the seeds can be effectively precipitated. The temperature increase is preferably performed at a temperature increase rate of 1.5 to 2.6° C./min. In addition, the heating temperature is 85-95℃,
The temperature is preferably 90 to 95°C. By increasing the temperature to the above-mentioned temperature, the oil-absorbing properties of the hydrated silicic acid obtained can be increased, and it is also possible to provide sufficient prevention of print ink strike-through to paper produced using the same. Seed precipitation is initially a sol that cannot be seen with the naked eye, but it eventually becomes a feather-like precipitate, and the viscosity of the solution increases significantly depending on the amount, so it is easy to tell whether seed precipitation has finished or not. . In the present invention, in this state, that is, in the vicinity of the maximum solution viscosity of the reaction system (including the point at which it reaches the maximum), the remaining mineral acid is further added to completely precipitate the hydrous silicic acid. Adding the nucleic acid in a slight excess so that the p)I of the solution is 4 to 6, and adding the nucleic acid over a period of 80 to 100 minutes not only improves the filterability of the precipitated hydrous silicic acid, but also It is preferable to improve the oil absorption properties of the obtained hydrated silicic acid, and to use the same to remove printing ink from paper, which further improves the IE resistance. As the acid for neutralizing the raw material alkali silicate used in the present invention, mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, carbon dioxide gas, etc., which are generally known for the production of hydrated silicic acid, can be used without particular restriction, but they can be used as fillers for paper. In this case, sulfuric acid is generally the most suitable in consideration of the influence on the papermaking process. In addition, the concentration of the above acid is 2 g/100c, c, ~40 g/100c,
It is preferable to use one in the range c. The hydrated silicic acid slurry obtained by reacting an alkali silicate with an acid by the method described above generally contains coarse particles at a ratio of 20 to 30% of the 250 mesh residue.

【ノてい
る。本発明において、この粗大粒子を含む含水珪酸は、
スラリー状態で湿式粉砕することにより、粗大粒子を】
重量%以下に減少させることができる。上記効果は、含
水珪酸の生成を酸の2段添加により行うことで始めて達
成されるものである。即ち、他の方法、例えば、酸と珪
酸アルカリとを同時添加しながら製造する、所謂一段法
によって生成する含水珪酸は、粗大粒子の割合は20%
程度と少ないが、該含水珪酸に対して前記湿式粉砕を行
フても、粗大粒子の凝集エネルギーが大きいため、粗大
粒子を前記範囲まで減少させることは極めて困難である
。 本発明の湿式粉砕において、スラリー状態とは含水珪酸
が水によって流動性を示す状態を全て包含する。一般に
は、含水珪酸の濃度が6〜15重量%、好ましくは8〜
13重量%のスラリーが粉砕効率が良好であり好適であ
る。 tた、湿式粉砕の時期は特に制限されない。例えば、含
水珪酸が析出したスラリーをそのまま行う態様、該スラ
リーを濃縮した後行う態様、含水珪酸を濾過、場合によ
っては水洗した後再び流動化させてスラリーとして行う
態様等が挙げられる。 含水珪酸の湿式粉砕は、250メツシュ残渣の粒子が1
重量%以下、好ましくは0.5重量%以下となるまで粉
砕を行うことが、含水珪酸を填料として抄紙工程に使用
する場合、得られる紙の表面に粗大粒子による突起が生
じるのを防止でき好ましい。 上記湿式粉砕は公知の方法が特に制限なく採用される例
えば、コロイドミル、パールミル、ボールミル、タワー
ミル、流体エネルギーミル等を使用した粉砕方法が一般
的である。 本発明において、湿式粉砕後の含水珪酸スラリーは、粗
大粒子中に包まれていたアルカリ分が溶は出すことによ
り、pHが上昇し、それに伴フてスラリー粘度も大幅に
上昇する。この場合、湿式粉砕後のスラリーに酸を添加
し、ρ■を3〜7、好ましくは4〜6に調整することは
、上記スラリー粘度を低下させスラリーの輸送時の配管
抵抗等を減少することができ好ましい。 本発明は、また、前述した含水珪酸の製造方法において
、含水珪酸を析出させた後、特定条件で該含水珪酸を熱
処理して湿式粉砕することにより、より粉砕効率を高め
、粗大粒子の減少効果を一層増大させた含水珪酸の製造
方法をも提供する。即ち、本発明の第2発明は、珪酸ア
ルカリ水溶液に、該珪酸アルカリを中和するのに必要な
酸の25〜70%となる量の酸を添加した後、反応系の
溶液粘度が最大となる付近において、残部の酸を連続的
に添加して含水珪酸を析出せしめ、得られた含水珪酸を
スラリー状態で上記含水珪酸析出時の温度より少なくと
も10℃高い温度に2時間以上維持した後、湿式粉砕す
ることを特徴とする含水珪酸の製造方法である。 上記発明において、スラリーの処理温度が上記範囲より
も低かったり、処理時間が上記範囲より短いと続く湿式
粉砕における粉砕効率の向上効果が十分発揮されない。 スラリーの処理温度及び処理時間は前記範囲内であれば
特に制限されないが、工業的に実施する場合には、一般
に処理温度は前記反応における含水珪酸析出時の温度よ
りも10〜30℃、好ましくは12〜15℃高い温度、
処理時間は2〜10時間、好ましくは4〜7時間である
。上記処理において、スラリーは静置していてもよいし
、適当な撹拌を行ってもよい。 以上の説明より理解される如く、本発明の方法は含水珪
酸の生成工程から、直接、粗大粒子の含有率が極めて少
ない含水珪酸をスラリー状態で得ることができ、含水珪
酸をスラリー状で使用する工程に対して、乾燥・粉砕工
程を得るこくなく供給することが可能となる。特に、本
発明の含水珪酸を抄紙工程に供給する場合には、表面に
突起の生成もなく、しかもインクの裏抜は防止効果及び
寸法安定効果が優れた紙を得ることが可能である。 この場合、抄紙方法は公知の湿式粉砕の技術が特に制限
なく採用される。また、この場合含水珪酸の使用鰍は、
バルブに対して0.5〜lO重最%、好ましくは1〜3
重量%が適当である。上記含水珪酸と共に公知の紙用添
加剤の使用も特に制限な〈実施できる。 以下、本発明を更に具体的に説明するため実施例を示す
が、本発明はこれに限定されるものではない。尚、実施
例及び比較例において、紙の坪量、吸油度、印刷後の白
色度及び表面平滑性は次の方法によフて測定した。 (1)秤 量:20℃、64R,Hにおいて14当たり
の重量(g)を測定した。 (2)吸油度:JIS  P130に準じて測定した。 (3)印刷後の白色度:印刷インクの裏抜は防止効果の
良否を示すもので油性黒インキを1.5g/請均−に全
面塗布し、印刷面と反対面の白色度を示した。 4、表両平滑性試験 200gの荷重の重りを平板上に置いた試料紙の上を引
張りスピード30mm/分で水平に引張り、その時に要
した引っ張り力(χg)を測定し、下式壕用いて計算し
、表面平滑性として示した。 で含有し、且つS i OJ度が鯛111モル/靴の詞 点て溶液のpnが5〜6に入るように硫酸を一一分の酸
添加時間で添加して含水珪酸を析出させた。 次いで、得られた含水珪酸を濾過・水洗した後、第1表
に示す含水珪酸濃度のスラリーとした。 上記含水珪酸のスラリーを第1表に示す条件で湿式粉砕
した。その結果、250メツシュ残渣の粒子を第1表の
割合で含む含水珪酸スラリーが得られた。粉砕によって
pNが上昇し、これに伴いスラリー粘度が上昇したため
、硫酸を該スラリーのpHが5となるように添加した。 その時の粘度を第1表に示す。尚、N15は硫酸を添加
しない場合の粘度(*)を示す。 一方、バルブは機械バルブとして、GP20重量%、R
GP56重量%と化学バルブとして、NBKP24重量
%よりなる混合バルブとその他にセミケミカルバルブと
してCGPを上記混合バルブ100重量部に対し33重
量部加えたものを用いた。 上記バルブに水を加えて光分解綿したものに、湿式粉砕
した前記スラリーを、該混合バルブに対して含水珪酸が
1.6重量%となるよう加えた後、硫酸バンド[A I
、(S 04)a・8Hよ0]を上記バルブ(絶乾)1
00重員部に対し1重量部を水溶液にして加え、均一に
撹拌して、J I 5P8209の「バルブ試験用手す
き紙調整方法」に準じ抄紙した。得られた紙諸特性を第
1表に示す。 実施例2゜ 実施例1のNQIにおいて、含水珪酸スラリーを、湿式
粉砕する前に第2表に示す温度で3時間撹拌した以外は
同様な方法で行った。結果を第2表に示す。 第2表 尚、N++2においては粉砕時間1分で、Nti3にお
いては粉砕時間0.2分で250メツシュ残渣が0.8
%以下となっていた。 比較例 酸と珪酸ソーダの同時添加による、諸謂一段法によって
含水珪酸を得た。即ち、実施例1と同様のモル比を有す
る珪酸ソーダ水溶液と硫酸とを80℃に保たれた温水中
に、pH8,5〜9.0を維持する割合で連続的に添加
して含水珪酸を析出させた。次いで、この含水珪酸を濾
過・水洗した後、水を加えて8%スラリーとし、タワー
ミルで40分分間式粉砕した。粉砕後の250メツシュ
残渣は1.4%と多く、これを用いて実施例1と同様な
抄紙方法で得られた紙は、坪料4B、2g/m、印刷後
の白色度46.2%、表面平滑性0.45であった。
[It's here. In the present invention, the hydrated silicic acid containing coarse particles is
Coarse particles are removed by wet grinding in a slurry state.]
It can be reduced to less than % by weight. The above effects can only be achieved by producing hydrous silicic acid through two-stage addition of acid. That is, in hydrated silicic acid produced by other methods, for example, the so-called one-step method in which acid and alkali silicate are simultaneously added, the proportion of coarse particles is 20%.
Even if the hydrated silicic acid is wet-pulverized to a lesser extent, it is extremely difficult to reduce the number of coarse particles to the above range because the cohesive energy of the coarse particles is large. In the wet grinding of the present invention, the slurry state includes all states in which hydrated silicic acid exhibits fluidity with water. Generally, the concentration of hydrated silicic acid is 6 to 15% by weight, preferably 8 to 15% by weight.
A slurry with a content of 13% by weight has good grinding efficiency and is suitable. Furthermore, the timing of wet pulverization is not particularly limited. For example, examples include a mode in which a slurry in which hydrated silicic acid has been precipitated is used as it is, a mode in which the slurry is concentrated and then carried out, and a mode in which the hydrated silicic acid is filtered, or in some cases washed with water, and then fluidized again to form a slurry. In the wet grinding of hydrated silicic acid, 1 particle of 250 mesh residue
When hydrated silicic acid is used as a filler in the papermaking process, it is preferable to perform the pulverization until the concentration is 0.5% by weight or less, since this can prevent the formation of protrusions due to coarse particles on the surface of the resulting paper. . For the above-mentioned wet pulverization, any known method may be employed without particular limitation, for example, a pulverization method using a colloid mill, a pearl mill, a ball mill, a tower mill, a fluid energy mill, etc. is generally used. In the present invention, the pH of the hydrous silicic acid slurry after wet pulverization increases as the alkali contained in the coarse particles dissolves out, and the viscosity of the slurry increases accordingly. In this case, adding acid to the slurry after wet pulverization and adjusting ρ■ to 3 to 7, preferably 4 to 6 reduces the viscosity of the slurry and reduces piping resistance etc. during transportation of the slurry. This is preferable. The present invention also provides the method for producing hydrated silicic acid described above, in which the hydrated silicic acid is precipitated, and then the hydrated silicic acid is heat-treated under specific conditions and wet-pulverized to further improve the pulverization efficiency and reduce coarse particles. The present invention also provides a method for producing hydrated silicic acid that further increases silicic acid. That is, the second invention of the present invention is such that after adding an acid to an aqueous alkali silicate solution in an amount of 25 to 70% of the acid required to neutralize the alkali silicate, the solution viscosity of the reaction system reaches its maximum. After continuously adding the remaining acid to precipitate hydrated silicic acid at a temperature near the point where the hydrated silicic acid is precipitated, and maintaining the resulting hydrated silicic acid in a slurry state at a temperature at least 10°C higher than the temperature at which the hydrated silicic acid is precipitated for 2 hours or more, This is a method for producing hydrated silicic acid characterized by wet pulverization. In the above invention, if the processing temperature of the slurry is lower than the above range or the processing time is shorter than the above range, the effect of improving the grinding efficiency in the subsequent wet grinding will not be sufficiently exhibited. The treatment temperature and treatment time of the slurry are not particularly limited as long as they are within the above ranges, but in the case of industrial implementation, the treatment temperature is generally 10 to 30°C, preferably 10 to 30°C higher than the temperature at which hydrated silicic acid is precipitated in the reaction. 12-15℃ higher temperature,
The treatment time is 2 to 10 hours, preferably 4 to 7 hours. In the above treatment, the slurry may be left standing or may be appropriately stirred. As can be understood from the above explanation, the method of the present invention can directly obtain hydrous silicic acid in the form of a slurry with an extremely low content of coarse particles from the hydrous silicic acid generation process, and the hydrous silicic acid can be used in the slurry form. It becomes possible to supply the drying and pulverizing processes to the process without any problems. In particular, when the hydrated silicic acid of the present invention is supplied to the papermaking process, it is possible to obtain paper that does not generate protrusions on the surface and is excellent in preventing ink bleed-through and in dimensional stability. In this case, a known wet pulverization technique can be used as the paper making method without any particular restriction. In addition, in this case, the mackerel used for hydrated silicic acid is
0.5 to 10% by weight, preferably 1 to 3%, based on the valve
Weight % is appropriate. In addition to the above-mentioned hydrated silicic acid, known paper additives may also be used without any particular restrictions. EXAMPLES Hereinafter, Examples will be shown to further specifically explain the present invention, but the present invention is not limited thereto. In the Examples and Comparative Examples, the basis weight, oil absorption, whiteness after printing, and surface smoothness of the paper were measured by the following methods. (1) Weighing: The weight (g) per 14 was measured at 20°C, 64R, H. (2) Oil absorption: Measured according to JIS P130. (3) Whiteness after printing: The back-out of the printing ink indicates the quality of the prevention effect, and oil-based black ink was applied to the entire surface at a rate of 1.5 g/approx, and the whiteness of the printed side and the opposite side was shown. . 4. Smoothness test on both sides A weight of 200g was placed on a flat plate, and the sample paper was pulled horizontally at a pulling speed of 30mm/min, and the tensile force (χg) required at that time was measured, using the following method. calculated and expressed as surface smoothness. Sulfuric acid was added for an acid addition time of 11 minutes to precipitate hydrated silicic acid so that the pn of the solution was 5 to 6, and the S i OJ degree was 111 mol/socket. Next, the obtained hydrated silicic acid was filtered and washed with water to form a slurry having the hydrated silicic acid concentration shown in Table 1. The above slurry of hydrated silicic acid was wet-pulverized under the conditions shown in Table 1. As a result, a hydrous silicic acid slurry containing 250 mesh residue particles in the ratio shown in Table 1 was obtained. Since the pN increased due to the grinding and the viscosity of the slurry increased accordingly, sulfuric acid was added so that the pH of the slurry was 5. The viscosity at that time is shown in Table 1. Note that N15 indicates the viscosity (*) when sulfuric acid is not added. On the other hand, the valve is a mechanical valve, GP20% by weight, R
A mixing valve consisting of 56% by weight of GP and 24% by weight of NBKP was used as a chemical valve, and a semi-chemical valve in which 33 parts by weight of CGP was added to 100 parts by weight of the above mixing valve was used. The wet-pulverized slurry was added to the photolyzed cotton by adding water to the above-mentioned bulb so that the amount of hydrated silicic acid was 1.6% by weight based on the mixing bulb, and then sulfate band [A I
, (S 04)a・8Hyo0] with the above valve (absolutely dry) 1
1 part by weight was added as an aqueous solution to 00 parts by weight, stirred uniformly, and paper was made according to J I 5P8209 "Method for preparing handsheet paper for valve testing". The obtained paper properties are shown in Table 1. Example 2 NQI was carried out in the same manner as in Example 1 except that the hydrous silicic acid slurry was stirred for 3 hours at the temperature shown in Table 2 before being wet-milled. The results are shown in Table 2. Table 2 shows that the 250 mesh residue is 0.8 when the grinding time is 1 minute for N++2 and 0.2 minutes for Nti3.
% or less. Comparative Example Hydrous silicic acid was obtained by a so-called one-step method by simultaneous addition of acid and sodium silicate. That is, a sodium silicate aqueous solution and sulfuric acid having the same molar ratio as in Example 1 were continuously added to hot water kept at 80°C at a rate that maintained the pH of 8.5 to 9.0 to form hydrated silicic acid. It was precipitated. Next, this hydrated silicic acid was filtered and washed with water, water was added to make an 8% slurry, and the slurry was pulverized for 40 minutes in a tower mill. The 250 mesh residue after crushing was as high as 1.4%, and the paper obtained using this in the same papermaking method as in Example 1 had a basis material of 4B, 2 g/m, and a whiteness of 46.2% after printing. , the surface smoothness was 0.45.

Claims (6)

【特許請求の範囲】[Claims] (1)珪酸アルカリ水溶液に、該珪酸アルカリを中和す
るのに必要な酸の25〜70%となる量の酸を添加した
後、反応系の溶液粘度が最大となる付近において、残部
の酸を連続的に添加して含水珪酸を析出せしめ、得られ
た含水珪酸をスラリー状態で湿式粉砕することを特徴と
する含水珪酸の製造方法。
(1) After adding an amount of acid that is 25 to 70% of the acid required to neutralize the alkali silicate to an aqueous alkali silicate solution, the remaining acid is 1. A method for producing hydrated silicic acid, which comprises continuously adding hydrated silicic acid to precipitate hydrated silicic acid, and wet-pulverizing the obtained hydrated silicic acid in a slurry state.
(2)湿式粉砕するスラリーの濃度が、6〜15重量%
である特許請求の範囲第1項記載の方法。
(2) The concentration of the slurry to be wet-milled is 6 to 15% by weight.
The method according to claim 1.
(3)含水珪酸の250メッシュ残渣の粒子が1重量%
以下となるように湿式粉砕を行う特許請求の範囲第1項
記載の方法。
(3) 1% by weight of 250 mesh residue particles of hydrated silicic acid
The method according to claim 1, wherein wet pulverization is carried out as follows.
(4)珪酸アルカリ水溶液に、該珪酸アルカリを中和す
るのに必要な酸の25〜70%となる量の酸を添加した
後、反応系の溶液粘度が最大となる付近において、残部
の酸を連続的に添加して含水珪酸を析出せしめ、得られ
た含水珪酸をスラリー状態で、上記含水珪酸析出時の温
度より少なくとも10℃高い温度に2時間以上維持した
後、湿式粉砕することを特徴とする含水珪酸の製造方法
(4) After adding an amount of acid that is 25 to 70% of the acid required to neutralize the alkali silicate to the aqueous alkali silicate solution, the remaining acid is continuously added to precipitate hydrated silicic acid, and the resulting hydrated silicic acid is maintained in a slurry state at a temperature at least 10°C higher than the temperature at which the hydrated silicic acid is precipitated for 2 hours or more, and then wet-pulverized. A method for producing hydrated silicic acid.
(5)湿式粉砕するスラリーの濃度が6〜15重量%で
ある特許請求の範囲第4項記載の方法。
(5) The method according to claim 4, wherein the slurry to be wet-milled has a concentration of 6 to 15% by weight.
(6)含水珪酸中の250メッシュ残渣の粒子が1重量
%以下となるように湿式粉砕を行う特許請求の範囲第4
項の記載の方法。
(6) Wet pulverization is performed so that the 250 mesh residue particles in the hydrated silicic acid are 1% by weight or less.
How to describe the section.
JP13794884A 1984-07-05 1984-07-05 Preparation of hydrated silicic acid Granted JPS6117415A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13794884A JPS6117415A (en) 1984-07-05 1984-07-05 Preparation of hydrated silicic acid
JP5198230A JPH0673691A (en) 1984-07-05 1993-08-10 Method for papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13794884A JPS6117415A (en) 1984-07-05 1984-07-05 Preparation of hydrated silicic acid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5198230A Division JPH0673691A (en) 1984-07-05 1993-08-10 Method for papermaking

Publications (2)

Publication Number Publication Date
JPS6117415A true JPS6117415A (en) 1986-01-25
JPH0465008B2 JPH0465008B2 (en) 1992-10-16

Family

ID=15210448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13794884A Granted JPS6117415A (en) 1984-07-05 1984-07-05 Preparation of hydrated silicic acid

Country Status (1)

Country Link
JP (1) JPS6117415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479277A2 (en) * 1990-10-03 1992-04-08 Sumitomo Chemical Company, Limited Infrared absorbing film improved in transparency
EP0704407A1 (en) 1994-09-26 1996-04-03 Nippon Paper Industries Co., Ltd. Process for preparing silicic acid hydrate
JP2003509318A (en) * 1998-07-20 2003-03-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved continuous process for preparing microgels

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015239A (en) * 1973-05-25 1975-02-18
JPS5125235A (en) * 1974-08-23 1976-03-01 Ichikoh Industries Ltd
JPS5128597A (en) * 1974-09-03 1976-03-10 Tokico Ltd KUROMUSANIONOGANJUSURU SUISEIEKITAIKARA KUROMUSANOKAISHUSURU HOHO
JPS5511799A (en) * 1978-07-10 1980-01-26 Schneider Co Optische Werke Zoom lens
JPS55113611A (en) * 1979-02-23 1980-09-02 Tokuyama Soda Co Ltd Manufacture of silicic acid hydrate
JPS55116613A (en) * 1979-02-28 1980-09-08 Tokuyama Soda Co Ltd Silicic acid hydrate and manufacture thereof
JPS5667371A (en) * 1979-11-06 1981-06-06 Mitsubishi Paper Mills Ltd Preparation of composition for coated paper
JPS6065713A (en) * 1983-09-22 1985-04-15 Oji Paper Co Ltd Preparation of filler of silicic acid hydrate for paper making

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015239A (en) * 1973-05-25 1975-02-18
JPS5125235A (en) * 1974-08-23 1976-03-01 Ichikoh Industries Ltd
JPS5128597A (en) * 1974-09-03 1976-03-10 Tokico Ltd KUROMUSANIONOGANJUSURU SUISEIEKITAIKARA KUROMUSANOKAISHUSURU HOHO
JPS5511799A (en) * 1978-07-10 1980-01-26 Schneider Co Optische Werke Zoom lens
JPS55113611A (en) * 1979-02-23 1980-09-02 Tokuyama Soda Co Ltd Manufacture of silicic acid hydrate
JPS55116613A (en) * 1979-02-28 1980-09-08 Tokuyama Soda Co Ltd Silicic acid hydrate and manufacture thereof
JPS5667371A (en) * 1979-11-06 1981-06-06 Mitsubishi Paper Mills Ltd Preparation of composition for coated paper
JPS6065713A (en) * 1983-09-22 1985-04-15 Oji Paper Co Ltd Preparation of filler of silicic acid hydrate for paper making

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479277A2 (en) * 1990-10-03 1992-04-08 Sumitomo Chemical Company, Limited Infrared absorbing film improved in transparency
US5256473A (en) * 1990-10-03 1993-10-26 Sumitomo Chemical Company, Limited Infrared absorbing film improved in transparency
EP0704407A1 (en) 1994-09-26 1996-04-03 Nippon Paper Industries Co., Ltd. Process for preparing silicic acid hydrate
US5695730A (en) * 1994-09-26 1997-12-09 Nippon Paper Industries Co., Ltd. Process for preparing silicic acid hydrate
JP2003509318A (en) * 1998-07-20 2003-03-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved continuous process for preparing microgels

Also Published As

Publication number Publication date
JPH0465008B2 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
JP2787377B2 (en) Silica sol, method for preparing silica sol and use of sol
JP3417954B2 (en) Rhombohedral calcium carbonate and accelerated thermal aging process for its production
US3959174A (en) Method of selectively producing high pore volume silica gel
JP2005507968A5 (en)
US5164006A (en) Method for preparing acid resistant calcium carbonate pigments
JP2008503630A (en) Silicone-containing starch complex, process for its production and use for producing paper and cardboard
SE7412354L (en)
PH30936A (en) Process for the production of precipitated silica.
JP3487511B2 (en) Materials based on polysilicate microgels and silica
BR9709522A (en) Abrasive precepitation silica silica preparation process use of silica and toothpaste compositions
US2259481A (en) Treated pigments and method of making
JPS6134070A (en) Production of tri-iron tetroxide pigment
JPS6117415A (en) Preparation of hydrated silicic acid
US2974054A (en) Treatment of clay
US6184258B1 (en) Synthetic mineral microparticles for retention aid systems
US3716493A (en) Process for making fine sized low density silica
US5766564A (en) Process for making aluminosilicate for record material
JPH04500501A (en) Opaque kaolin pigment and method for producing the same
US2866686A (en) Preparation of red oxide of iron
US3709980A (en) Precipitation of siliceous pigment
JPH0673691A (en) Method for papermaking
US1998182A (en) Production of di-sodium phosphate
JPH073182A (en) Silica used as matting agent for coating material and production thereof
JPS6034496B2 (en) Manufacturing method of alumina sol
US3787561A (en) Loosely aggregated 100 millimicron micellular silica

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term