JPS61173113A - Magnetic rotation sensor - Google Patents

Magnetic rotation sensor

Info

Publication number
JPS61173113A
JPS61173113A JP60012688A JP1268885A JPS61173113A JP S61173113 A JPS61173113 A JP S61173113A JP 60012688 A JP60012688 A JP 60012688A JP 1268885 A JP1268885 A JP 1268885A JP S61173113 A JPS61173113 A JP S61173113A
Authority
JP
Japan
Prior art keywords
parallel
sensing parts
magnetic field
thin film
rotation sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60012688A
Other languages
Japanese (ja)
Other versions
JPH0448175B2 (en
Inventor
Kokichi Terajima
厚吉 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP60012688A priority Critical patent/JPS61173113A/en
Publication of JPS61173113A publication Critical patent/JPS61173113A/en
Publication of JPH0448175B2 publication Critical patent/JPH0448175B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve signal output and to reduce electric power consumption by disposing three pieces of sensing parts consisting of thin film magnetoresistance elements in parallel then connecting these sensing parts in series to constitute one set and forming such sensing parts on the same substrate in such a manner that the corresponding sensing parts parallel with each other. CONSTITUTION:The magnetic rotation sensor has the sensing parts MR5...MR10 of the thin film magnetoresistance element 15 formed on the insulating substrate 14. MR5, MR6 and MR7 among these sensing parts are arrayed in parallel at the interval of the wavelength of 1/3 the recording wavelength lambda of a signal magnetic field and are connected in series. MR8, MR9 and MR10 are also arrayed in parallel at the spacing of 1/3 the wavelength. The set of MR5, MR6 and MR7 and the set of MR8, MR9 and MR10 are arrayed at the spacing of 1/2 the wavelength in such a manner that the corresponding sensing parts parallel with each other. Two sets thereof are connected in parallel. The magnetic rotation sensor is thus prevented from being superposed with 1/2 the source voltage with the signal output as in the conventional practice and the signal output is improved 4/3 times. The electric power consumption is reduced to 2/3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ビデオテープレコーダ(VTR)のキャプ
スタンモータ等の回転体の回転数又は回転角度及び回転
方向を検出する薄膜磁気抵抗素子を用いた磁気回転セン
サに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention uses a thin film magnetoresistive element to detect the rotation speed, rotation angle, and rotation direction of a rotating body such as a capstan motor of a video tape recorder (VTR). This relates to a magnetic rotation sensor.

(i明の概要〕 この発明は、一定波長で繰返し記録した磁界により抵抗
値が変化する薄膜磁気抵抗素子を用いて、回転体の回転
数及び回転方向等を検出する磁気回転センサにおいて、
薄膜磁気抵抗素子に3個の感知部を形成して直列に接続
したものを2組並列に接続して同一基板上に形成し、そ
の各感知部を平行に形成してその間隔を信号磁界の記録
波長に対して特定の関係にすると共に、その薄膜磁気抵
抗素子の各感知部にバイアス磁界を加えるようにするこ
とにより1回転信号の検出出力を増大させ。
(Summary of the invention) The present invention provides a magnetic rotation sensor that detects the rotation speed, rotation direction, etc. of a rotating body using a thin film magnetoresistive element whose resistance value changes due to a magnetic field repeatedly recorded at a constant wavelength.
Three sensing parts are formed on a thin film magnetoresistive element and connected in series, and two sets are connected in parallel and formed on the same substrate. The detection output of a one-rotation signal is increased by creating a specific relationship with the recording wavelength and applying a bias magnetic field to each sensing portion of the thin film magnetoresistive element.

且つ消費電力を低減したものである。Moreover, power consumption is reduced.

〔従来の技術〕[Conventional technology]

薄膜磁気抵抗素子を用いた磁気回転センサは。 A magnetic rotation sensor using a thin film magnetoresistive element.

第4WIに示すようにロータ1の外周部に一定波長で着
磁記録したプラスチック磁石等からなる記録媒体2を取
りつけ、この記録媒体2に対向させて薄膜磁気抵抗素子
からなる磁気回転センサ3を配置している。
As shown in the 4th WI, a recording medium 2 made of a plastic magnet or the like magnetized and recorded at a constant wavelength is attached to the outer periphery of the rotor 1, and a magnetic rotation sensor 3 made of a thin film magnetoresistive element is placed opposite to this recording medium 2. are doing.

そして、回転体であるロータ1の回転に伴なう磁界の変
化により、薄膜磁気抵抗素子の抵抗値が変化することを
利用して、ロータの回転数及び回転方向等を検出するよ
うに構成したものである。
The system is configured to detect the number of rotations, the direction of rotation, etc. of the rotor by utilizing the fact that the resistance value of the thin film magnetoresistive element changes due to changes in the magnetic field accompanying the rotation of the rotor 1, which is a rotating body. It is something.

第5図に従来の磁気回転センサの基板上の薄膜磁気抵抗
素子のパターンを示す、ガラス等からなる絶縁基板4上
に、NiFe合金、 NiCo合金等からなる磁界によ
り抵抗値が変化する材料を真空蒸着法等の方法により薄
膜形成し、フォトエツチング技術により所定の形状にパ
ターニングして薄膜磁気抵抗素子Sを得る。
Figure 5 shows the pattern of a thin film magnetoresistive element on a substrate of a conventional magnetic rotation sensor.A material such as NiFe alloy, NiCo alloy, etc. whose resistance value changes depending on the magnetic field is placed in a vacuum on an insulating substrate 4 made of glass or the like. A thin film magnetoresistive element S is obtained by forming a thin film using a method such as vapor deposition and patterning it into a predetermined shape using a photoetching technique.

この薄膜磁気抵抗素子5は、信号磁界を検出する感知部
M R1,M R2,M R3,M R4と端子部6 
a P6b、5e、5dからなる。ここで感知部M R
1゜MR2,MR3,MR4は、−第6図に示すように
ロータ1の外周部の記録媒体2にN、S交互に一定波長
λで記録された記録信号の1/4の間隔に配置されてい
る。
This thin film magnetoresistive element 5 includes sensing parts M R1, M R2, M R3, M R4 for detecting a signal magnetic field, and a terminal part 6.
a Consists of P6b, 5e, and 5d. Here, the sensing part M R
1° MR2, MR3, and MR4 are arranged at intervals of 1/4 of the recording signals N and S alternately recorded at a constant wavelength λ on the recording medium 2 on the outer circumference of the rotor 1, as shown in FIG. ing.

この感知部MRI〜MR4は、第7図に示すようにMR
IとMR3とを直列に接続して1組の薄膜磁気抵抗素子
として、その接続部を信号の出力端子6dとし、両端6
at 6Gを電力の供給端子としており、同様に感知部
MR2とMR4とを直列に接続して1組の薄膜磁気抵抗
素子として、その接続部を信号の出力端子6bとし、両
端を感知部MRIとMR3とからなる薄膜磁気抵抗素子
と共通の電力供給端子としている。
As shown in FIG.
I and MR3 are connected in series to form a set of thin film magnetoresistive elements, the connection part is used as the signal output terminal 6d, and both ends 6
at 6G is used as the power supply terminal, and similarly, the sensing parts MR2 and MR4 are connected in series to form a set of thin film magnetoresistive elements, the connection part is used as the signal output terminal 6b, and both ends are used as the sensing part MRI. It is used as a common power supply terminal with the thin film magnetoresistive element consisting of MR3.

さらに、第5図に破線で示すように、感知部MRI〜M
R4にバイアス磁界を与えるためのバイアス磁石7が、
薄膜磁気抵抗素子5から見て絶縁基板4の裏面に取り付
けられている。
Furthermore, as shown by the broken line in FIG.
A bias magnet 7 for applying a bias magnetic field to R4 is
It is attached to the back surface of the insulating substrate 4 when viewed from the thin film magnetoresistive element 5 .

このように構成された磁気回転センサは、第8図に示す
ような電気的結線がなされる。
The magnetic rotation sensor configured in this manner is electrically connected as shown in FIG.

ここで、感知部MRI、MR2,MR3,MR4と等し
い抵抗値の抵抗器8を直列に2個接続した回路を感知部
MRI〜MR4の電力供給端子6a、5cに並列接続し
てブリッジ構成とし、その両端に電源電圧Vccを印加
する。
Here, a circuit in which two resistors 8 having a resistance value equal to that of the sensing units MRI, MR2, MR3, and MR4 are connected in series is connected in parallel to the power supply terminals 6a and 5c of the sensing units MRI to MR4 to form a bridge configuration. A power supply voltage Vcc is applied to both ends thereof.

そして、2個の抵抗8,8の接続点日は2個の差動増幅
器10.itのそれぞれ一方の入力側に接続される。ま
た感知部MRIとMR3の信号出力端子6dは差動増幅
器10の他方の入力側に。
The connection point between the two resistors 8 and 8 is connected to the two differential amplifiers 10. each one input side of it. Further, the signal output terminals 6d of the sensing units MRI and MR3 are connected to the other input side of the differential amplifier 10.

MR2とMR4の信号出力端子6bは差動増幅器11の
他方の入力側にそれぞれ接続される。そして、この各差
動増幅器10.11の出力端子A。
The signal output terminals 6b of MR2 and MR4 are respectively connected to the other input side of the differential amplifier 11. And output terminal A of each differential amplifier 10.11.

Bから出力信号を得るようになっている。The output signal is obtained from B.

次に、この磁気回転センサの動作原理について説明する
Next, the operating principle of this magnetic rotation sensor will be explained.

第9図に示すように、薄膜磁気抵抗素子MRに電流方向
と直交する方向Hに磁界が加えられると。
As shown in FIG. 9, when a magnetic field is applied to the thin film magnetoresistive element MR in a direction H perpendicular to the current direction.

第10図に示すようにその抵抗値が変化する。感知部M
 R1,M R2,M R3,M R4にはバイアス磁
石7によりバイアス磁界が加えられ、はぼ直線的に抵抗
値が変化する範囲aの中心P付近にバイアス点が設定さ
れる。
The resistance value changes as shown in FIG. Sensing part M
A bias magnetic field is applied to R1, M R2, M R3, and M R4 by a bias magnet 7, and a bias point is set near the center P of a range a where the resistance value changes almost linearly.

このときのバイアス磁界は、感知部MRI〜MR4の長
手方向に直交する方向に加える方法、または感知部MR
I〜MR4の長手方向と平行な方向と直角な方向にベク
トル分解できる方向に加える方法により加えられている
The bias magnetic field at this time can be applied in a direction perpendicular to the longitudinal direction of the sensing units MRI to MR4, or
It is added by a method of adding in a direction that can be vector-decomposed into a direction parallel to the longitudinal direction of I to MR4 and a direction perpendicular to the direction.

そこで、第6図のロータ1が回転すると、第8図に示す
回路の信号出力端子6dには、第11図に示すような出
力E3が6bにはそれよりも901位相のずれた出力E
4が得られる。
Therefore, when the rotor 1 shown in FIG. 6 rotates, the signal output terminal 6d of the circuit shown in FIG. 8 receives an output E3 as shown in FIG. 11, and the output E3 shown in FIG.
4 is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来の磁気回転センサは、信
号出力に対して電源電圧Vccの172が加わるため、
第8図に示すように抵抗器8,8とのブリッジ構成にし
て、抵抗器8,8の接続点Sと信号出力端子6dまたは
6bとの電位差として回転信号を検出する方法等が必要
である。したがって外部抵抗器が必要となり、さらに消
費電力が増加するという問題点があった。
However, in such a conventional magnetic rotation sensor, since 172 of the power supply voltage Vcc is added to the signal output,
As shown in Fig. 8, it is necessary to have a bridge configuration with resistors 8, 8, and to detect the rotation signal as a potential difference between the connection point S of resistors 8, 8 and the signal output terminal 6d or 6b. . Therefore, an external resistor is required, which further increases power consumption.

また、第8図における抵抗器8,8を薄膜磁気抵抗素子
5と同一の絶縁基板上に配置しようとすると、リード線
パターンの引き回しが複雑になり、接続端子が増加する
という問題点もあった。
Furthermore, if the resistors 8, 8 in FIG. 8 were to be placed on the same insulating substrate as the thin film magnetoresistive element 5, there would be a problem in that the routing of the lead wire pattern would become complicated and the number of connection terminals would increase. .

この発明は、上記のような従来のものの問題点を解決す
るためになされたもので、簡単なパターン引き回しで同
一絶縁基板上でブリッジを構成し。
This invention was made to solve the problems of the conventional ones as described above, and a bridge is constructed on the same insulating substrate by simple pattern routing.

消費電力を低減して信号出力を向上させ得る磁気回転セ
ンサを提供することを目的とする。
An object of the present invention is to provide a magnetic rotation sensor that can reduce power consumption and improve signal output.

〔問題点を解決するための手段〕[Means for solving problems]

この発明による磁気回転センサは、上記のような問題点
を解決するため、ロータ外周部に一定波長で記録した信
号磁石に接近して、薄膜磁気抵抗素子による3個の感知
部をその間隔が信号磁界の記録波長の1/3となるよう
に平行に配置して直列に接続したものを1組とし、これ
を2組並列に接続し、その対応する感知部が互いに平行
で且つその間隔が信号磁界の記録波長の1/2となるよ
うに同一基板上に形成し、この薄膜磁気抵抗素子の各感
知部にバイアス磁界を加えるようにしたものである。
In order to solve the above-mentioned problems, the magnetic rotation sensor according to the present invention approaches a signal magnet recorded at a constant wavelength on the outer periphery of the rotor, and detects a signal at a distance between three sensing sections made of thin film magnetoresistive elements. One set consists of devices arranged in parallel and connected in series so as to correspond to 1/3 of the recording wavelength of the magnetic field, and two sets of these are connected in parallel, so that the corresponding sensing parts are parallel to each other and the distance between them is equal to the signal. The thin film magnetoresistive elements are formed on the same substrate so as to have a magnetic field of half the recording wavelength, and a bias magnetic field is applied to each sensing portion of this thin film magnetoresistive element.

〔実 施 例〕〔Example〕

以下、この発明の実施例を第1図〜第3図によって説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は、この発明の一実施例である磁気回転センサの
構成を示す、MR5,MR6,MR7,MR8゜MR9
,MRIOは、絶縁基板14上に形成された薄膜磁気抵
抗素子15の感知部で、このうちM R5゜M R6,
M R7は信号磁界の記録波長λの1/3波長の間隔で
平行に並べられて直列に接続されている。
FIG. 1 shows the configuration of a magnetic rotation sensor which is an embodiment of the present invention.
, MRIO is a sensing section of a thin film magnetoresistive element 15 formed on an insulating substrate 14, of which MR5°, MR6,
The M R7s are arranged in parallel and connected in series at intervals of 1/3 wavelength of the recording wavelength λ of the signal magnetic field.

M R6,M R7,M R8も同様に173波長の間
隔で平行に並べられ、M R5,M R6,M R7の
組とMR8,MR9,MRIOの組はその対応する感知
部が互いに平行でかつ172波長の間隔で並べられ。
Similarly, M R6, M R7, and M R8 are arranged in parallel with an interval of 173 wavelengths, and the corresponding sensing parts of the set of M R5, M R6, and M R7 and the set of MR8, MR9, and MRIO are parallel to each other. Arranged at intervals of 172 wavelengths.

この2組が並列に接続されている。These two sets are connected in parallel.

そして、端子17bと17eを電源に接続し。Then, connect terminals 17b and 17e to the power source.

端子17a、17c、17d、17fから信号を出力さ
せる。
Signals are output from terminals 17a, 17c, 17d, and 17f.

さらに、この薄膜磁気抵抗素子15の各感知部には、感
知部の長手方向に平行な方向と直角な方向にベクトル分
解できる方向にバイアス磁界HB(図中矢印HBで示す
)が加えられており、これは絶縁基板14の裏面に取り
付けた磁石16により得られる。
Furthermore, a bias magnetic field HB (indicated by an arrow HB in the figure) is applied to each sensing portion of the thin film magnetoresistive element 15 in a direction that can be vector resolved into a direction parallel to the longitudinal direction of the sensing portion and a direction perpendicular to the sensing portion. , which is obtained by the magnet 16 attached to the back surface of the insulating substrate 14.

この磁気回転センサを第2図に示すように電気的に接続
し、信号出力端子17aと17Cの電圧差を差動増幅器
1日によって検出し、信号出力端子17fと17dの電
圧差を差動増幅器1日によって検出して、出力端子A、
Bから回転信号を得るように接続して使用する。
This magnetic rotation sensor is electrically connected as shown in FIG. Detected by 1st, output terminal A,
Connect and use it so that the rotation signal is obtained from B.

次に、この実施例の動作原理について説明する。Next, the operating principle of this embodiment will be explained.

バイアス磁界が加えられた感知部MR5〜MRIOは、
それぞれ第10図に示したようにほぼ直線的に抵抗値が
変化する範囲aの中心P付近にバイアス設定される。
The sensing units MR5 to MRIO to which the bias magnetic field is applied are
As shown in FIG. 10, the bias is set near the center P of the range a in which the resistance value changes approximately linearly.

このようにバイア不設定された感知部MR5〜MRIO
に、従来と同様にロータ1の外周部に着磁記録された信
号磁界が作用する。
Sensing units MR5 to MRIO in which vias are not set in this way
As in the conventional case, a signal magnetic field magnetized and recorded on the outer circumference of the rotor 1 acts on the rotor 1.

ロータが回転すると一定波長の信号磁界が感知部MR5
〜MRIOの長手方向に直交する方向に正逆繰り返して
作用し、感知部MR5〜MRIOの抵抗値はそれぞれ信
号磁界の加わらない時の抵抗値R,を中心として、ロー
タの回転角に対してほぼ正弦曲線を描いて振動変化し、
近似的にR=R,+ΔR51nθ=io  (i+(Δ
R/R□ )sinθ)で示すことができる。 ここで
、ΔRsinθ は第10図における信号磁界による磁
気抵抗素子の抵抗値変化であり、θは信号磁界の記録波
長λを2πと置き換えた時のロータの回転角である。
When the rotor rotates, a signal magnetic field of a certain wavelength is generated at the sensing part MR5.
~MRIO acts in forward and reverse directions perpendicular to the longitudinal direction of the MRIO, and the resistance values of the sensing parts MR5~MRIO are centered around the resistance value R when no signal magnetic field is applied, and approximately change with respect to the rotation angle of the rotor. The vibration changes in a sinusoidal manner,
Approximately R=R, +ΔR51nθ=io (i+(Δ
R/R□) sin θ). Here, ΔR sin θ is the resistance value change of the magnetoresistive element due to the signal magnetic field in FIG. 10, and θ is the rotation angle of the rotor when the recording wavelength λ of the signal magnetic field is replaced with 2π.

したがって、感知部MR5の抵抗値を基準として、信号
磁界の記録波長λ=2πに対して位置173波長間隔、
及び1/2波長間隔に配置された感知部MR6,MR7
,MR8,MR9,MRIOの信号磁界による抵抗値変
化は RMz=Ro  (1+(ΔR/R□ )sinθ)R
蝉g=RO(1+(ΔR/RO)sin(θ−ニアc/
3))RsKT=Ro  (1+(ΔR/RO)sin
(θ−4g/3))RM(t=Ro  (1+(ΔR/
R□ )sin(θ−π))RHRt:Ro  (1+
(ΔR/RO)sin(θ−sπ/3))Rsx+o=
Rg  (1+(ΔR/RO)gin(θ−7g/3)
)となり、直列接続された感知部MR5〜MR7の組は
全抵抗が3Roとなり、同様に感知部MRa〜MRIO
の組も全抵抗が3R,となる。
Therefore, based on the resistance value of the sensing part MR5, the position is 173 wavelengths apart with respect to the recording wavelength λ=2π of the signal magnetic field,
and sensing units MR6 and MR7 arranged at 1/2 wavelength intervals.
, MR8, MR9, MRIO resistance change due to signal magnetic field is RMz=Ro (1+(ΔR/R□)sinθ)R
cicada g=RO(1+(ΔR/RO) sin(θ−near c/
3)) RsKT=Ro (1+(ΔR/RO) sin
(θ−4g/3))RM(t=Ro(1+(ΔR/
R□ ) sin (θ−π)) RHRt:Ro (1+
(ΔR/RO) sin (θ-sπ/3)) Rsx+o=
Rg (1+(ΔR/RO)gin(θ-7g/3)
), the total resistance of the set of sensing units MR5 to MR7 connected in series is 3Ro, and similarly the sensing units MRa to MRIO
The total resistance of the set is also 3R.

そのため、端子17bと17eの間に電源電圧Vccが
印加されたとき、ロータの回転により信号磁界が変化し
ても感知部M R5,M R6,M R7の組と感知部
M R8,M R9,M RIOの組に分流する電流は
変化せず一定である。
Therefore, when the power supply voltage Vcc is applied between the terminals 17b and 17e, even if the signal magnetic field changes due to the rotation of the rotor, the combination of sensing parts M R5, M R6, M R7 and the sensing parts M R8, M R9, The current shunted to the MRIO set does not change and remains constant.

一方、感知部MR5とMR6の接続部である信号出力端
子17aの電圧E1は。
On the other hand, the voltage E1 at the signal output terminal 17a, which is the connection between the sensing parts MR5 and MR6, is as follows.

=1/3 (2−(ΔR/R□ )sinθ)・vcc
となる。
=1/3 (2-(ΔR/R□)sinθ)・vcc
becomes.

また、感知部MR8とMR9の接続部である信号出力端
子17cの電圧E2は =1/3 (2+(ΔR/R□ )sinθ)・vcc
となる。
Also, the voltage E2 of the signal output terminal 17c, which is the connection between the sensing parts MR8 and MR9, is = 1/3 (2+(ΔR/R□) sin θ)・vcc
becomes.

したがって、信号出力端子17aと17cの電圧差を出
力信号ΔEaとして取り出すとΔEa=E1−E2 =1/3 [(2−(ΔR/RO)sinθ)−(2+
(ΔR/R□ )ginθ)〕・vccニー(2ΔR/
3RO)Vcc sinθ    −(1)が得られる
Therefore, when the voltage difference between the signal output terminals 17a and 17c is extracted as the output signal ΔEa, ΔEa=E1-E2=1/3 [(2-(ΔR/RO)sinθ)-(2+
(ΔR/R□)ginθ)]・vcc knee (2ΔR/
3RO) Vcc sin θ −(1) is obtained.

また、感知部MR6とMR7の接続部である信号出力端
子17fの電圧E3は =1/3 (1+(ΔR/R□ )sin(θ−4π/
3)) ・Vccとなり、感知部MR9とMRIOの接
続部である信号出力端子17dの電圧E4は =1/3 (1+(ΔR/R□ )sin(θ−’7c
/3)) ・Vceとなる。
Moreover, the voltage E3 of the signal output terminal 17f, which is the connection between the sensing parts MR6 and MR7, is = 1/3 (1+(ΔR/R□) sin(θ−4π/
3)) ・Vcc, and the voltage E4 of the signal output terminal 17d, which is the connection between the sensing unit MR9 and MRIO, is = 1/3 (1+(ΔR/R□) sin(θ-'7c
/3)) ・Vce.

したがって、信号出力端子17fと17dの電圧差を出
力信号ΔEbとして取り出すと。
Therefore, if the voltage difference between the signal output terminals 17f and 17d is extracted as the output signal ΔEb.

ΔEb=E3−E4 =1/3 ((1+(ΔR/R□ )sin(θ−4t
c /3) )−(1+(ΔR/Ro)sin(θ−7
π13))〕・vcc=(2ΔR/3Rg )Vcc−
cog(θ+π/6)=−(2ΔR/3R□ )Vcc
−sin(θ+2 tc /3)・・・(2) となり、(1)式及び(2)式で示される回転信号出力
が得られる。
ΔEb=E3-E4 =1/3 ((1+(ΔR/R□) sin(θ-4t
c / 3) ) - (1 + (ΔR/Ro) sin (θ - 7
π13))]・vcc=(2ΔR/3Rg)Vcc-
cog(θ+π/6)=-(2ΔR/3R□)Vcc
-sin(θ+2 tc /3) (2) The rotation signal outputs shown by equations (1) and (2) are obtained.

第3図はこの出力信号波形を示し、出力ΔEbは出力Δ
Eaに対して位相が2π/3だけ進んだ信号が得られ、
ロータの回転方向を逆にするとΔEbはΔEaに対して
位相が2π/3だけ遅れた信号となるので、ロータの回
転数又は回転角度とともに回転方向をも検出できる。
Figure 3 shows this output signal waveform, and the output ΔEb is the output Δ
A signal whose phase is advanced by 2π/3 with respect to Ea is obtained,
If the rotational direction of the rotor is reversed, ΔEb becomes a signal whose phase is delayed by 2π/3 with respect to ΔEa, so that the rotational direction as well as the rotational speed or rotational angle of the rotor can be detected.

一方、このような構成の磁気回転センサの消費電力は、 W1= 2 Vcc” / 3 Rg   −(3)で
ある。
On the other hand, the power consumption of the magnetic rotation sensor having such a configuration is W1=2 Vcc"/3 Rg-(3).

これに対して、第5図に示した従来の磁気回転センサに
おいて、上記実施例と同様に感知部MRI〜MR4の長
手方向に平行な方向と直角な方向にベクトル分解できる
方向にバイアス磁界HBを加えた場合、信号磁界による
感知部の抵抗値変化はR:=Ro  (i+(ΔR/R
o)sinθ)R=1g  (i+(ΔR/R(1)s
in(θ−π))Rsxz=R,(1+(ΔR/R□ 
)sin(θ−π/2))RMR4=RO(1+(ΔR
/R□ )sin(θ−3π/3))となり、MRl 
とMR3との接続部である信号出力端子6dの電圧E3
は E3=1/2 (1+(ΔR/R□ )sinθ) ・
Vcc −(4)となり、またMR2とMR4との接続
部である信号出力端子6bの電圧E4は E4 =1/2 (1+(ΔR/R□ )sin(θ−
3π/2))・vCc・・・(5) となる。
On the other hand, in the conventional magnetic rotation sensor shown in FIG. 5, the bias magnetic field HB is directed in a direction that can be vector-resolved in a direction perpendicular to a direction parallel to the longitudinal direction of the sensing parts MRI to MR4, as in the above embodiment. When the signal magnetic field is applied, the resistance value change of the sensing part due to the signal magnetic field is R:=Ro (i+(ΔR/R
o) sinθ)R=1g (i+(ΔR/R(1)s
in(θ−π))Rsxz=R, (1+(ΔR/R□
) sin (θ−π/2)) RMR4=RO(1+(ΔR
/R□)sin(θ-3π/3)), and MRl
The voltage E3 of the signal output terminal 6d which is the connection part between and MR3
is E3=1/2 (1+(ΔR/R□)sinθ) ・
Vcc -(4), and the voltage E4 at the signal output terminal 6b, which is the connection between MR2 and MR4, is E4 = 1/2 (1+(ΔR/R□) sin(θ-
3π/2))・vCc...(5)

そして、このような従来の構成の磁気回転センサの消費
電力は W 2 = Vcc” / Ro       −(6
)である。また、第8図のようなブリッジ回路を構成す
ればさらに消費電力が増加する。
The power consumption of a magnetic rotation sensor with such a conventional configuration is W 2 = Vcc” / Ro − (6
). Moreover, if a bridge circuit as shown in FIG. 8 is constructed, power consumption will further increase.

なお、上記実施例ではバイアス磁界の方向を感知部の長
手方向と平行な方向と直角な方向にベクトル分解できる
方向に加えたが、感知部の長手方向に直角な方向にバイ
アス磁界を加えて、第10図におけるバイアス点Pに設
定するようにしてもよい。
In addition, in the above embodiment, the direction of the bias magnetic field was applied in a direction that can be vector resolved into a direction parallel to the longitudinal direction of the sensing section and a direction perpendicular to the direction, but by applying the bias magnetic field in a direction perpendicular to the longitudinal direction of the sensing section, It may be set at the bias point P in FIG.

また、上記実施例においては感知部を折り返し形状とし
たが、折り返し形状にしなくても同様の効果が得られる
Further, in the above embodiment, the sensing portion is formed into a folded shape, but the same effect can be obtained even if the sensing portion is not formed into a folded shape.

さらに、以上の説明においては、感知部MR5゜M R
6,M R7の間隔を信号磁界の記録波長λの1/3と
し、M R8,M R9,M RIOをM R5,M 
R6゜MR7に対して記録波長λの1/2だけずらすよ
うにしたが、これらの間隔が多少変動しても。
Furthermore, in the above explanation, the sensing part MR5゜MR
6, M R7 interval is 1/3 of the recording wavelength λ of the signal magnetic field, M R8, M R9, M RIO are M R5, M
R6° was set to be shifted by 1/2 of the recording wavelength λ with respect to MR7, but even if these intervals vary somewhat.

感知部を流れる電流が若干変化し、また抵抗値変化の位
相が若干ずれることにより出力電圧が若干低下するだけ
である。
The current flowing through the sensing section changes slightly, and the phase of the change in resistance value shifts slightly, resulting in a slight drop in the output voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明による磁気回転センサは
、従来例のように信号出力に対して電源電圧Vccの1
/2が重畳されることなく、しかも信号出力が4/3倍
に向、上し、さらに消費電力が2/3に低減される。し
かも、外部抵抗が不要になり、単一の基板上に比較的簡
単なパターン構成で実現できる。
As explained above, the magnetic rotation sensor according to the present invention differs from the conventional example in that the magnetic rotation sensor has a power supply voltage Vcc of 1
/2 is not superimposed, the signal output is increased by 4/3 times, and the power consumption is further reduced by 2/3. Moreover, no external resistor is required, and it can be realized with a relatively simple pattern configuration on a single substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す磁気回転センサの基
板上の薄膜磁気抵抗素子のパターン構成を示す拡大平面
図。 第2図は同じくその磁気回転センサの回路図、第3図は
同じくその磁気回転センサによるロータ回転角に対する
出力電圧変化を示す線図である。 第4図はロータと磁気回転センサの位置関係を示す斜視
図、 第5図は従来の磁気回転センサの第1図と同様な拡大平
面図、 第6図は同じくその感知部とロータ外周部の信号磁界と
の関係を示す説明図。 第7図及び第8図は従来の磁気回転センサの接続関係を
示す回路図。 第S図は薄膜磁気抵抗素子に磁界を加えたときの動作を
説明するための説明図。 第10図は薄膜磁気抵抗素子に磁界を加えたときの抵抗
変化を示す線図、 第11図は従来の磁気回転センサのロータ回転角に対す
る出力電圧変化を示す線図である。 1・・・ロータ      2・・・磁気信号記録媒体
3・・・磁気回転センサ  14・・・絶縁基板15・
・・薄膜磁気抵抗素子 MRI−MRIO・・・感知部 16・・・バイアス磁界用磁石 17、〜17f・・・端子 18.19・・・差動増幅
器第1図 第2図 第3図 第5図 第6図 第7図      第8図 第11図 手続補正書(1劃 昭和60年9月17日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 特願昭60−12688号 2、発明の名称 磁気回転センサ 3、補正をする者 事件との関係  特許出願人 東京都大田区東糀谷二丁目12番14号(002)赤井
電機株式会社 4、代理人 東京都豊島区東池袋1丁目20番地5 6、補正の内容 明細書第13頁第19〜20行の rR=Ro  (1+(ΔR/Ro)sinθ)R=R
o  (1+(ΔR/RO)sin(θ−π))」 を
。 IrRMNI =Ro ’(1+ (ΔR/R□ )g
inθ)R北3=Ro  (1+(ΔR/RO)sin
(θ−π))」と訂正する。 以上
FIG. 1 is an enlarged plan view showing a pattern configuration of a thin film magnetoresistive element on a substrate of a magnetic rotation sensor showing an embodiment of the present invention. FIG. 2 is a circuit diagram of the magnetic rotation sensor, and FIG. 3 is a diagram showing changes in output voltage with respect to the rotor rotation angle by the magnetic rotation sensor. Fig. 4 is a perspective view showing the positional relationship between the rotor and the magnetic rotation sensor, Fig. 5 is an enlarged plan view similar to Fig. 1 of the conventional magnetic rotation sensor, and Fig. 6 is the same as that of the sensing part and the outer circumference of the rotor. An explanatory diagram showing a relationship with a signal magnetic field. FIG. 7 and FIG. 8 are circuit diagrams showing the connection relationship of a conventional magnetic rotation sensor. FIG. S is an explanatory diagram for explaining the operation when a magnetic field is applied to a thin film magnetoresistive element. FIG. 10 is a diagram showing a change in resistance when a magnetic field is applied to a thin film magnetoresistive element, and FIG. 11 is a diagram showing a change in output voltage with respect to a rotor rotation angle of a conventional magnetic rotation sensor. 1... Rotor 2... Magnetic signal recording medium 3... Magnetic rotation sensor 14... Insulating substrate 15.
...Thin film magnetoresistive element MRI-MRIO...Sensing section 16...Bias magnetic field magnet 17, ~17f...Terminal 18.19...Differential amplifier Fig. 1 Fig. 2 Fig. 3 Fig. 5 Figure 6 Figure 7 Figure 8 Figure 11 Procedural amendment (1. September 17, 1985, Director General of the Japan Patent Office, Michibu Uga, 1, Indication of Case Patent Application No. 12688-1988, 2) Name: Magnetic rotation sensor 3, person making the amendment Relationship to the case Patent applicant: 2-12-14 Higashikojidani, Ota-ku, Tokyo (002) Akai Electric Co., Ltd. 4, Agent: 5-6, 1-20 Higashiikebukuro, Toshima-ku, Tokyo , rR=Ro (1+(ΔR/Ro)sinθ)R=R on page 13, lines 19-20 of the specification of contents of amendment
o (1+(ΔR/RO)sin(θ−π))”. IrRMNI = Ro '(1+ (ΔR/R□)g
inθ)R north3=Ro (1+(ΔR/RO)sin
(θ−π))”. that's all

Claims (1)

【特許請求の範囲】[Claims] 1 一定波長で繰り返し記録した磁界により抵抗値が変
化する薄膜磁気抵抗素子に3個の感知部を設け、この3
個の感知部を間隔が信号磁界の記録波長の1/3となる
ように平行に配置して直列に接続し、該3個の感知部の
各接続部より信号の出力端子を引き出し、両端より電力
を供給するようにしたものを1組とし、これを2組並列
に接続し、その対応する感知部が互いに平行で且つ間隔
が信号磁界の記録波長の1/2となるように同一基板上
に形成すると共に、該基板の裏面に前記薄膜磁気抵抗素
子の各感知部にバイアス磁界を加える磁石を取り付けて
なることを特徴とする磁気回転センサ。
1 A thin film magnetoresistive element whose resistance value changes due to a magnetic field repeatedly recorded at a constant wavelength is provided with three sensing parts,
The three sensing parts are arranged in parallel and connected in series so that the interval is 1/3 of the recording wavelength of the signal magnetic field, and the signal output terminal is pulled out from each connection part of the three sensing parts, and the signal output terminal is pulled out from both ends. Two sets are connected in parallel, and the corresponding sensing parts are parallel to each other and the distance is 1/2 of the recording wavelength of the signal magnetic field on the same substrate. 1. A magnetic rotation sensor characterized in that a magnet is attached to the back surface of the substrate to apply a bias magnetic field to each sensing portion of the thin film magnetoresistive element.
JP60012688A 1985-01-28 1985-01-28 Magnetic rotation sensor Granted JPS61173113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60012688A JPS61173113A (en) 1985-01-28 1985-01-28 Magnetic rotation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60012688A JPS61173113A (en) 1985-01-28 1985-01-28 Magnetic rotation sensor

Publications (2)

Publication Number Publication Date
JPS61173113A true JPS61173113A (en) 1986-08-04
JPH0448175B2 JPH0448175B2 (en) 1992-08-06

Family

ID=11812313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60012688A Granted JPS61173113A (en) 1985-01-28 1985-01-28 Magnetic rotation sensor

Country Status (1)

Country Link
JP (1) JPS61173113A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682268A (en) * 1991-02-28 1994-03-22 Japan Servo Co Ltd Magnetic type position detector
EP0924491A1 (en) * 1997-12-22 1999-06-23 Brown & Sharpe Tesa S.A. Electronic circuit for magnetic measuring device and measuring method
US6724186B2 (en) * 2000-06-27 2004-04-20 Brown & Sharpe Tesa Sa Measuring device with magneto-resistive electrodes, and measuring method
JP2005214920A (en) * 2004-02-02 2005-08-11 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JP2009128301A (en) * 2007-11-27 2009-06-11 Ckd Corp Magnetic linear measuring device
WO2010150725A1 (en) * 2009-06-24 2010-12-29 アルプス電気株式会社 Magnetic detection device
DE102014111045A1 (en) 2013-08-27 2015-03-05 Tdk Corporation Rotating field sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682268A (en) * 1991-02-28 1994-03-22 Japan Servo Co Ltd Magnetic type position detector
EP0924491A1 (en) * 1997-12-22 1999-06-23 Brown & Sharpe Tesa S.A. Electronic circuit for magnetic measuring device and measuring method
EP1052473A2 (en) * 1997-12-22 2000-11-15 Brown & Sharpe Tesa S.A. Magnetic measuring devices with reduced power consumption or stand by mode
EP1052473A3 (en) * 1997-12-22 2000-11-29 Brown & Sharpe Tesa S.A. Magnetic measuring devices with reduced power consumption or stand by mode
US6724186B2 (en) * 2000-06-27 2004-04-20 Brown & Sharpe Tesa Sa Measuring device with magneto-resistive electrodes, and measuring method
JP2005214920A (en) * 2004-02-02 2005-08-11 Sankyo Seiki Mfg Co Ltd Magnetic sensor
JP2009128301A (en) * 2007-11-27 2009-06-11 Ckd Corp Magnetic linear measuring device
WO2010150725A1 (en) * 2009-06-24 2010-12-29 アルプス電気株式会社 Magnetic detection device
JP5066628B2 (en) * 2009-06-24 2012-11-07 アルプス電気株式会社 Magnetic detector
EP2447674A4 (en) * 2009-06-24 2017-05-17 Alps Electric Co., Ltd. Magnetic detection device
DE102014111045A1 (en) 2013-08-27 2015-03-05 Tdk Corporation Rotating field sensor
US10386169B2 (en) 2013-08-27 2019-08-20 Tdk Corporation Rotating field sensor
US10648787B2 (en) 2013-08-27 2020-05-12 Tdk Corporation Rotating field sensor
DE102014111045B4 (en) 2013-08-27 2023-10-26 Tdk Corporation Rotating field sensor

Also Published As

Publication number Publication date
JPH0448175B2 (en) 1992-08-06

Similar Documents

Publication Publication Date Title
CA1037562A (en) Apparatus for detecting the direction of a magnetic field
EP0076519B1 (en) Encoder with position detecting device
JPS6349724Y2 (en)
JP3028377B2 (en) Magnetoresistive proximity sensor
US4413296A (en) Thin film magnetoresistive head
JPS58154615A (en) Magnetic detector
EP0372134B1 (en) Magnetoresistive sensor having interleaved elements
JPS61173113A (en) Magnetic rotation sensor
JPS58106462A (en) Rotation detector
JPS6086412A (en) Magnetic detector
JPS59147213A (en) Magnetic rotary sensor
JPS6266413A (en) Magnetoresistance effect type magnetic sensor
JPS6184504A (en) Magnetic sensor of position detecting device
JP3233317B2 (en) Magnetic encoder
JP2619621B2 (en) Encoder device
JPH0352565B2 (en)
JPH0432969B2 (en)
JPS58154680A (en) Magnetic sensor
JPS625284B2 (en)
JPS61240424A (en) Magneto-resistance effect type magnetic head
JP2929714B2 (en) Angle detector
JPH0221152B2 (en)
JPH0441282B2 (en)
JPS594646B2 (en) Split type magnetoelectric conversion element
JP3417144B2 (en) Method of manufacturing position sensor and position sensor