JPS6117257B2 - - Google Patents

Info

Publication number
JPS6117257B2
JPS6117257B2 JP9951080A JP9951080A JPS6117257B2 JP S6117257 B2 JPS6117257 B2 JP S6117257B2 JP 9951080 A JP9951080 A JP 9951080A JP 9951080 A JP9951080 A JP 9951080A JP S6117257 B2 JPS6117257 B2 JP S6117257B2
Authority
JP
Japan
Prior art keywords
cooling
mold
heating
molding surface
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9951080A
Other languages
Japanese (ja)
Other versions
JPS5724232A (en
Inventor
Kaneo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP9951080A priority Critical patent/JPS5724232A/en
Publication of JPS5724232A publication Critical patent/JPS5724232A/en
Publication of JPS6117257B2 publication Critical patent/JPS6117257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Description

【発明の詳細な説明】 本発明は、加熱冷却に対する応答性を改善した
プラスチツクの射出成形用金型装置及びこれを用
いる射出成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plastic injection mold device with improved responsiveness to heating and cooling, and an injection molding method using the same.

プラスチツク射出成形は、成形体の形状自由度
が比較的広く且つ同一の金型で高速に成形でき生
産コストが低い等の利点を有している。このため
近年、カメラ、時計、電気製品、自動車部品等の
いわゆるエンジニアリングプラスチツクスをはじ
めとして広く利用されている。上述したようなエ
ンジニアリングプラスチツクスとしての用途に対
しては、成形品の寸法精度、密度、光学的性質、
残留応力、顔料等の充填物の均一分散、強度、硬
度等の諸物性の均一性が強く要求され、また生産
性の面より成形サイクルの短縮化も要求されてい
る。これ等の要求に応えるためには、射出成形時
の各シヨツト毎の射出条件、特に射出圧力・時
間、樹脂温度、金型温度等を均一化し、樹脂の流
れを均一化すること、及び射出成形後の成形体各
部の冷却過程を均一化することが重要となる。
Plastic injection molding has advantages such as a relatively wide degree of freedom in the shape of molded products, high speed molding using the same mold, and low production costs. Therefore, in recent years, they have been widely used in so-called engineering plastics such as cameras, watches, electrical products, and automobile parts. For the above-mentioned use as engineering plastics, the dimensional accuracy, density, optical properties,
Residual stress, uniform dispersion of fillers such as pigments, and uniformity of various physical properties such as strength and hardness are strongly required, and from the viewpoint of productivity, shortening of molding cycles is also required. In order to meet these demands, it is necessary to equalize the injection conditions for each shot during injection molding, especially the injection pressure and time, resin temperature, mold temperature, etc., to equalize the flow of resin, and to make injection molding It is important to make the subsequent cooling process of each part of the molded product uniform.

また、デザート食品カツプ等の食品容器、医薬
品容器等の分野においては、同一種類の成形品が
多量に生産されるものが多く、省資源の観点より
容器の薄肉化の要望がある。しかし、射出成形で
薄肉容器を成形する場合には、射出時の樹脂の流
動配向が問題となり、この配向が原因となつて流
れ方向に対し強度が低下し、この方向で割れが発
生し易くなる。また樹脂の薄肉化のためには射出
圧を増大せしめる必要があり、これが原因となつ
て更に流動配向が促進される。したがつて薄肉成
形に際しても流動配向の起りにくい射出成形方法
が強く要望されている。
Furthermore, in the field of food containers such as dessert food cups, pharmaceutical containers, etc., molded products of the same type are often produced in large quantities, and there is a demand for thinner containers from the viewpoint of resource conservation. However, when molding thin-walled containers by injection molding, the flow orientation of the resin during injection becomes a problem, and this orientation causes the strength to decrease in the flow direction, making it more likely that cracks will occur in this direction. . Furthermore, in order to make the resin thinner, it is necessary to increase the injection pressure, which further promotes flow orientation. Therefore, there is a strong demand for an injection molding method in which flow orientation is less likely to occur even during thin wall molding.

一方、現在使用されている射出成形用金型装置
の温度制御のためには、金型内にフロンガス、二
酸化炭素ガス、チツ素ガス等のガスあるいは冷水
等の冷却媒体を巡環させる流路を設けて冷却を行
うか、あるいは金型内に温水、スチーム若しくは
高温オイル等の加熱媒体を巡環させる流路を設け
るか又は金型内若しくは金型外表面にバンドヒー
ター、鋳込ヒーター等を装着して加熱するかのい
ずれか一方を行うことが主として行われてきた。
または、加熱・冷却を同一金型内で同時に、又は
交互に実行することは、目的とする金型部分およ
び熱媒体の流路に接触する金型部分を含めて少な
からざる部分の温度昇降を必要とし、熱応答性が
きわめて悪く、また消費エネルギーも多くなるた
め実用性に乏しいものであつた。したがつて、上
述したように、成形品の寸法精度の向上、流動配
向の防止、残留応力の不均一性の除去、賦形性の
向上等の目的のために金型の、それも成形面につ
いての急速な加熱・冷却ならびに精緻な温度コン
トロールが要求されているにも拘らず、これを実
現せしめる射出成形用金型装置ならびに射出成形
法は得られていないのが実情である。
On the other hand, in order to control the temperature of the injection mold equipment currently in use, a flow path for circulating a gas such as fluorocarbon gas, carbon dioxide gas, or nitrogen gas or a cooling medium such as cold water is required in the mold. Alternatively, a channel for circulating a heating medium such as hot water, steam, or high-temperature oil may be provided in the mold, or a band heater, casting heater, etc. may be installed inside the mold or on the outside surface of the mold. Mainly, either one of the following methods has been used:
Alternatively, performing heating and cooling simultaneously or alternately within the same mold requires temperature increases and decreases in considerable parts, including the target mold part and the mold part that comes into contact with the flow path of the heat medium. However, it has extremely poor thermal response and consumes a lot of energy, making it impractical. Therefore, as mentioned above, in order to improve the dimensional accuracy of molded products, prevent flow orientation, eliminate non-uniformity of residual stress, improve formability, etc., it is necessary to improve the molding surface of the mold. Despite the need for rapid heating and cooling as well as precise temperature control, the reality is that no injection molding mold apparatus or injection molding method has been developed to achieve this.

本発明は、上述した射出成形における問題点を
解決するための時間的にも、又空間的にも極めて
熱応答性の良い射出成形用金型およびこれを用い
る射出成形法に関する。ここで「時間的に熱応答
性が良い」とは、短時間で金型成形面の温度が急
激に上昇ないし低下されることを云い、「空間的
に熱応答性が良い」とは金型成形面での位置変化
あるいは金型の厚み方向での位置変化に対し、加
熱側にあるいは冷却側に温度勾配をシヤープに取
り得ることを意味する。
The present invention relates to an injection mold that has extremely good thermal responsiveness both temporally and spatially and to an injection molding method using the same, in order to solve the above-mentioned problems in injection molding. Here, "good thermal response in terms of time" means that the temperature of the molding surface of the mold increases or decreases rapidly in a short time, and "good thermal response in space" means that the temperature of the molding surface of the mold increases or decreases rapidly in a short time. This means that a sharp temperature gradient can be created on the heating side or cooling side with respect to positional changes on the molding surface or positional changes in the thickness direction of the mold.

より詳しくは本願第1の発明にかかる射出成形
用金型装置は、金型成形面の少くとも一部の表層
部に成形面に沿つて層状加熱冷却素子を設けて且
つ金型内部には別系統の加熱および/または冷却
装置を設けてなり、該加熱冷却素子が多数のn型
半導体とp型半導体とを交互に平面的に並べその
表裏面で交互に導電体により直列接合してなる半
導体接合体を一体の絶縁層で挾持した構造を有す
ることを特徴とするものである。
More specifically, the injection mold device according to the first invention of the present application has a layered heating and cooling element provided along the molding surface on at least a part of the surface layer of the molding surface, and a separate layer inside the mold. A semiconductor comprising a system heating and/or cooling device, the heating and cooling element comprising a large number of n-type semiconductors and p-type semiconductors arranged alternately in a plane and connected in series with conductors on the front and back surfaces thereof. It is characterized by having a structure in which a bonded body is sandwiched between integral insulating layers.

また、本願第2の発明にかかる射出成形方法
は、上記金型装置の一つの利用法に関するもので
あり、上記金型装置を用い、金型キヤビテイ中の
樹脂の射出以前においては前記層状加熱冷却素子
が成形面を加熱するように直流通電し、その後、
樹脂のキヤビテイ中への射出の前後において、前
記層状加熱冷却素子への通電を停止しあるいは直
流電流を逆転することにより成形面を冷却し、冷
却後成形体を離型することを特徴とするものであ
る。
Further, the injection molding method according to the second invention of the present application relates to one method of using the above-mentioned mold device, and uses the above-mentioned mold device, and before injection of the resin in the mold cavity, the above-mentioned layered heating and cooling is performed. A direct current is applied so that the element heats the molding surface, and then
Before and after injection of the resin into the cavity, the molding surface is cooled by stopping the energization to the layered heating/cooling element or reversing the direct current, and the molded body is released from the mold after cooling. It is.

以下、本発明を実施例について図面を参照しつ
つ更に詳しく説明する。なお、以下の全図におい
て類似の部分は類似の記号で表わす。また第2図
を除く全図において、層状加熱冷却素子より電源
に通ずる導線及び離型のためのノツクピン、突出
ピン等の図示は省略した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the drawings. In addition, in all the figures below, similar parts are represented by similar symbols. Furthermore, in all the figures except for FIG. 2, illustrations of conductive wires leading from the layered heating/cooling element to the power source, knock pins for mold release, protruding pins, etc. are omitted.

第1図は、本発明の射出成形用金型装置の一実
施例の金型成形面付近の拡大断面図であり、一対
の基金型1a,1bの内部には加熱および/また
は冷却装置2a,2bが設けられている。これら
装置2a,2bは温度調節用流体通路又はヒータ
ー等からなるものであり基金型1a,1bを所定
の温度に保つとともに、成形体の加熱時の熱源
に、又は冷却時のヒートシンクの役割を果すもの
である。これら加熱および/または冷却装置2
a,2bは従来の射出成形用金型装置に用いられ
るものと同様であり、特に説明を要しないであろ
う。加熱装置と冷却装置を併用する場合は、もち
ろん、ある程度分離して設けられる。上記基金型
1a,1b上には、層状加熱冷却素子3aおよび
3bがそれぞれ設けられ、更にその上には表面金
型層4aおよび4bが設けられて、金型成形面4
aa,4bb及びキヤビテイ5を形成する。
FIG. 1 is an enlarged sectional view of the vicinity of the molding surface of an embodiment of the injection mold device of the present invention, in which a pair of base molds 1a and 1b includes a heating and/or cooling device 2a, 2b is provided. These devices 2a and 2b consist of temperature regulating fluid passages or heaters, etc., and keep the foundation molds 1a and 1b at a predetermined temperature, and serve as a heat source when heating the molded product or as a heat sink when cooling it. It is something. These heating and/or cooling devices 2
a and 2b are similar to those used in conventional injection molding mold apparatuses, and no particular explanation is required. When a heating device and a cooling device are used together, they are of course provided separately to some extent. Layered heating and cooling elements 3a and 3b are provided on the foundation molds 1a and 1b, respectively, and surface mold layers 4a and 4b are provided on top of the layered heating and cooling elements 3a and 3b.
Form aa, 4bb and cavity 5.

層状加熱冷却素子3aおよび3bは本質的に同
一構造であり、その詳細断面構造は第2図に示す
通りである。すなわち一般的に層状加熱冷却素子
3は、複数のn型半導体31とp型半導体32と
を交互に平面的に並べその表裏面で交互に導電体
33により直列に接合し、このようにして得られ
た半導体接合体を一対の絶縁層34で挾持した構
造を有する。そしてこの層状加熱冷却素子の半導
体接合体は、必要なときに同じく第2図に模式的
に示すように、導線35を介して直流電源36に
接続される。このように接続すると、それ自体は
良く知られているペルチエ効果が起り、接点にお
いてn型半導体31からp型半導体32へと電子
の流れる面37では発熱が起り、逆に流れる面3
8では冷却が起る。この加熱面37と冷却面38
の関係は層状加熱冷却素子3への通電方向を逆に
すれば逆になる。この際、各半導体間の空間39
にはエア層が形成され、これは半導体間の電気的
ならびに熱的絶縁層として働くとともに、必要に
応じて温度センサー(図示せず)が設けられる。
そして個々の半導体31,32の厚みは1mm以下
であり、素子3全体としても2〜5mm以下に抑え
られるのに対して、その加熱面37と冷却面38
の間では約70℃もの温度差を与えることができ、
しかもこの温度差はこの層状加熱冷却素子3を重
ねることにより、更に増加することができる。ま
た素子3自体の熱容量は非常に小さいため、第1
図のように配置した場合、表面金型層4a,4b
の厚さをたとえば10mm以下というように比較的薄
く抑えれば、表面金型層4a,4bをも含めて成
形面の温度を急速に昇降できることになる。すな
わち、時間的熱応答性の良い金型成形面を与える
ことができる。
The layered heating and cooling elements 3a and 3b have essentially the same structure, and the detailed cross-sectional structure thereof is as shown in FIG. That is, generally, the layered heating/cooling element 3 is obtained by alternately arranging a plurality of n-type semiconductors 31 and p-type semiconductors 32 in a plane and joining them in series with conductors 33 alternately on the front and back surfaces. It has a structure in which a semiconductor assembly is sandwiched between a pair of insulating layers 34. The semiconductor assembly of this layered heating/cooling element is connected to a DC power source 36 via a conducting wire 35, as schematically shown in FIG. 2, when necessary. When connected in this way, the well-known Peltier effect occurs, and heat generation occurs on the surface 37 where electrons flow from the n-type semiconductor 31 to the p-type semiconductor 32 at the contact point, and on the surface 37 where electrons flow in the opposite direction.
At 8, cooling occurs. This heating surface 37 and cooling surface 38
The relationship becomes reversed if the direction of current supply to the layered heating/cooling element 3 is reversed. At this time, the space 39 between each semiconductor
An air layer is formed between the semiconductors and serves as an electrical and thermal insulation layer between the semiconductors, and a temperature sensor (not shown) is provided if necessary.
The thickness of the individual semiconductors 31 and 32 is 1 mm or less, and the thickness of the element 3 as a whole is suppressed to 2 to 5 mm.
It is possible to give a temperature difference of about 70℃ between
Moreover, this temperature difference can be further increased by stacking the layered heating and cooling elements 3. In addition, since the heat capacity of the element 3 itself is very small, the first
When arranged as shown in the figure, surface mold layers 4a, 4b
By keeping the thickness relatively thin, for example, 10 mm or less, the temperature of the molding surface including the surface mold layers 4a and 4b can be rapidly raised and lowered. That is, it is possible to provide a molding surface with good temporal thermal response.

半導体材料としては、たとえばPbTe、
Bi2Te3、PbSe、InAs、InP、Ge、Si、Sb2Te3
が用いられ、なかでもBi−Te−Se−Sbの4元合
金が、電気抵抗、熱伝導度、ペルチエ効果を考慮
して最も好ましい。例えばBi2Te3をベースにした
場合、これにCuI、AgI等を添加してn型半導体
31を、またBiを添加してp型半導体を得ること
ができる。
Examples of semiconductor materials include PbTe,
Bi 2 Te 3 , PbSe, InAs, InP, Ge, Si, Sb 2 Te 3 , etc. are used, and among them, the quaternary alloy of Bi-Te-Se-Sb takes into account electrical resistance, thermal conductivity, and Peltier effect. Most preferred. For example, when Bi 2 Te 3 is used as a base, CuI, AgI, etc. can be added to obtain an n-type semiconductor 31, and Bi can be added to obtain a p-type semiconductor.

n型とp型の半導体を接続する導電体33の材
料は、導電率の良いものであれば良く、金属一
般、たとえばCu、Ag、Sn、Zn、等が用いられ必
要に応じて接合のために高温ハンダ、低温ハンダ
等の接合材が用いられる。また、半導体への接続
は半田付け、銀蝋付け、溶接、溶合いずれの方法
でもよい。
The material of the conductor 33 that connects the n-type and p-type semiconductors may be any material as long as it has good conductivity, and general metals such as Cu, Ag, Sn, Zn, etc. may be used, and if necessary, it may be used for bonding. Bonding materials such as high-temperature solder and low-temperature solder are used for this purpose. Further, connection to the semiconductor may be performed by any method such as soldering, silver brazing, welding, or welding.

絶縁層34としては、電気絶縁性に優れるとと
もに好ましくは熱伝導性も良い材料が用いられ
る。例えば、プラスチツク、ゴム、セラミツクス
及びこれらの複合体が用いられ、なかでもその表
面の仕上りの滑らかさ、強度、熱伝導性が秀れた
セラミツクス、特にベリリアセラミツクスが最も
好ましい。
As the insulating layer 34, a material that is excellent in electrical insulation and preferably also has good thermal conductivity is used. For example, plastics, rubber, ceramics, and composites thereof can be used, and ceramics, especially beryllia ceramics, are most preferred because of their smooth surface finish, strength, and thermal conductivity.

第1図よりもより時間的熱応答性の良い金型装
置を得るために、第3図に示すように、層状加熱
冷却素子3を金型のごく表層に設けることもでき
る。この際、層状加熱冷却素子3a,3bの表面
には、成形面の平滑性及び成形体の離型性を改善
するために、表面処理層6a,6bを設けること
が好ましい。このような表面処理層6a,6bの
例としては、第2図における絶縁層34としてセ
ラミツク層を設けた場合の金属蒸着、スパツタリ
ング、イオンブレーテイングあるいはメツキ層等
が挙げられる。したがつて本明細書において「金
型成形面に沿つて」とは、第3図に示すようにほ
ぼ層状加熱冷却素子3自体によつて成形面を構成
させる場合と、第1図に示すように金型成形面か
ら10mm以下というような比較的浅い距離に成形面
とほぼ平行に層状加熱冷却素子3を配置した場合
の双方を含むものである。
In order to obtain a mold device with better temporal thermal response than that shown in FIG. 1, a layered heating and cooling element 3 can be provided in the very surface layer of the mold, as shown in FIG. At this time, it is preferable to provide surface treatment layers 6a, 6b on the surfaces of the layered heating/cooling elements 3a, 3b in order to improve the smoothness of the molding surface and the releasability of the molded product. Examples of such surface treatment layers 6a and 6b include metal vapor deposition, sputtering, ion blating, plating, etc. when a ceramic layer is provided as the insulating layer 34 in FIG. 2. Therefore, in this specification, "along the molding surface" refers to the case where the molding surface is formed almost entirely by the layered heating/cooling element 3 itself as shown in FIG. This includes both cases in which the layered heating/cooling element 3 is arranged approximately parallel to the molding surface at a relatively shallow distance of 10 mm or less from the molding surface.

本発明の金型装置において、層状加熱冷却素子
3は金型成形面の一部のみに沿つて設けることが
できる。たとえば第4図は、脚付きのコツプを成
形するための本発明の金型装置の他の実施例の断
面図であり、ホツトランナー7から射出された樹
脂はキヤビテイー5の脚部の肉厚部分5aおよび
上側部および底部の肉薄部分5bへと充填され
る。しかし脚部部分5aでは高温樹脂が最も多く
且つ長く流れており、冷却が最も遅くなる部分と
なる。このため従来の金型装置では、この肉厚部
分5aの冷却時間に合せて成形が実施され、成形
サイクルが長くならざるを得なかつた。しかし、
第4図に示すように本発明に従い肉厚部分5aに
沿つて、加熱冷却素子3を、その冷却面38が肉
厚部分5aに向うように配置し、直流電流を通電
することにより、この部分の冷却を促進できるた
め、全体の成形サイクルをそれだけ短縮可能とな
る。
In the mold apparatus of the present invention, the layered heating and cooling element 3 can be provided along only a part of the molding surface of the mold. For example, FIG. 4 is a cross-sectional view of another embodiment of the mold apparatus of the present invention for molding a pot with legs. 5a and the thinner parts 5b at the top and bottom. However, in the leg portion 5a, the high temperature resin flows in the largest amount and for the longest time, and is the portion where cooling is slowest. For this reason, in the conventional mold apparatus, molding is performed in accordance with the cooling time of the thick portion 5a, and the molding cycle has to be lengthened. but,
As shown in FIG. 4, according to the present invention, the heating/cooling element 3 is arranged along the thick portion 5a so that its cooling surface 38 faces the thick portion 5a, and by applying direct current to this portion, Since cooling can be accelerated, the overall molding cycle can be shortened accordingly.

また本発明の金型装置において、加熱冷却素子
3は、細分化して、そのユニツト毎に結線して個
別に加熱、冷却し、あるいはその加熱・冷却容量
を変えることもできる。たとえば第5図は、肉厚
の異なる円盤状の樹脂成形体を得るための本発明
の金型装置の他の実施例の断面図であり、スプル
ー8を通じてキヤビテイー5に入つた樹脂は冷却
通路を通る冷却水に冷却された基金型1a,1b
により冷却されるが、それだけではキヤビテイー
5内の樹脂の肉厚が異るため、均一な冷却速度は
得られない。このため、同心円状に分割した層状
加熱冷却素子3a1〜5および3b1〜5を成形面に
沿つて設け、表面金型4aおよび4bを介して付
加的な、しかも個々の素子によつて異なる負荷の
冷却(必要なら部分的に加熱してもよい)を行
う。すなわち、素子3a1〜6および3b1〜5は、
それぞれ近接する成形体各部分の肉厚相異および
樹脂の流れ位置の相違からくる冷却過程の相違を
補償するために、各々独立に電流制御し、冷却能
を制御しつつ均一且つ急速な冷却を可能とするも
のである。これにより成形体各部に冷却過程の不
均一性から来る残留応力の歪を少くし高品質の成
形体を得るとともに成形サイクルを短縮すること
も可能となる。
In the mold apparatus of the present invention, the heating/cooling element 3 can be subdivided and wired for each unit to heat and cool them individually, or to change their heating/cooling capacity. For example, FIG. 5 is a sectional view of another embodiment of the mold apparatus of the present invention for obtaining disc-shaped resin molded bodies with different wall thicknesses, and the resin entering the cavity 5 through the sprue 8 passes through the cooling passage. Fund types 1a and 1b cooled by passing cooling water
However, because the thickness of the resin inside the cavity 5 differs, a uniform cooling rate cannot be obtained. For this purpose, concentrically divided layered heating/cooling elements 3a 1 to 5 and 3b 1 to 5 are provided along the molding surface, and additional, and different Cool the load (or partially heat it if necessary). That is, the elements 3a 1 to 6 and 3b 1 to 5 are
In order to compensate for the differences in the cooling process caused by the differences in wall thickness of each part of the molded object and the difference in the flow position of the resin, the current is controlled independently for each part, allowing uniform and rapid cooling while controlling the cooling capacity. That is. This makes it possible to reduce the residual stress distortion caused by non-uniformity in the cooling process in each part of the molded product, to obtain a high-quality molded product, and to shorten the molding cycle.

本発明の射出成形法は、上述した層状加熱冷却
素子3の持つ通電の方向を変えることにより加熱
面と冷却面が容易にしかも速やかに逆転するとい
う性質を利用するものである。たとえば第6図は
薄肉容器を成形するための本発明の金型装置の他
の実施例の断面であり、ホツトランナー7から射
出された樹脂は、流路2〜2を流れる温度調
節用流体で温度調節された基金型1a,1b1〜4
の温度に加えて、更に予め層状加熱冷却素子3で
加熱されたキヤビテイ5中に、薄肉にも拘らず充
分な流動性をもつて導入される。次に溶融樹脂が
射出され、キヤビテイ5中への充填を開始すると
同時、或いは金型の熱容量を考慮して場合によつ
てはこれよりも早く、加熱冷却素子3に対する通
電方向を逆転してキヤビテイ5への冷却機能を作
動させる。これにより、樹脂がキヤビテイ5への
充填を完了するとほぼ同時に冷却を開始し、しか
も急冷することが可能になる。次いで樹脂が軟化
点以下に下り、固化した後離型する。
The injection molding method of the present invention utilizes the property of the above-mentioned layered heating/cooling element 3 that the heating surface and cooling surface can be easily and quickly reversed by changing the direction of energization. For example, FIG. 6 is a cross section of another embodiment of the mold apparatus of the present invention for molding thin-walled containers, and the resin injected from the hot runner 7 flows through the flow channels 2 1 to 2 4 for temperature adjustment. Fund type 1a, 1b 1-4 whose temperature is controlled by fluid
In addition to this temperature, it is introduced into the cavity 5 which has been heated in advance by the layered heating/cooling element 3 with sufficient fluidity despite its thin wall. Next, at the same time as the molten resin is injected and starts filling into the cavity 5, or in some cases earlier in consideration of the heat capacity of the mold, the direction of energization to the heating and cooling element 3 is reversed and the cavity is filled. Activate the cooling function to 5. This makes it possible to start cooling almost at the same time as the filling of the resin into the cavity 5 is completed, and to perform rapid cooling. The resin then cools below its softening point and solidifies before being released from the mold.

上述した本発明の射出成形法によれば、たとえ
ば肉厚0.2〜1mmというような薄肉容器を成形す
る場合に、射出される金型が充分に高温であるた
め射出成形圧力がきわめて低圧で良くなる。また
これに伴い、(イ)高圧力油圧を必要としない、(ロ)金
型強度を高圧に耐えるものとする必要がなくな
る、(ハ)金型内での流動性が良いため配向が少くな
り、強度的にも改善されるため一層の薄肉化が可
能となる、(ニ)高賦形性がありシヨートモールドの
発生もない、(ホ)しかも全体としての成形サイクル
の長時間化が避けられる、等の利点が得られる。
According to the injection molding method of the present invention described above, when molding a thin-walled container with a wall thickness of 0.2 to 1 mm, for example, the injection mold is at a sufficiently high temperature, so the injection molding pressure can be extremely low. . Also, along with this, (a) high pressure hydraulic pressure is not required, (b) there is no need for the mold strength to withstand high pressure, and (c) there is less orientation due to good fluidity within the mold. (d) It has high formability and does not cause short molding, and (e) It also avoids lengthening of the overall molding cycle. Benefits such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は、それぞれ本発明の金型
装置の実施例の要部断面図、第2図は層状加熱冷
却素子の詳細構造ならびに作用を説明するための
拡大模式断面図、第4図〜第6図は、それぞれ本
発明の金型装置の他の実施例の断面図を示す。 1……基金型、2……加熱および/または冷却
装置、2,2,2,2……温度調節用流
体通路、3……層状加熱冷却素子、4……表層金
型、4aa,4bb……金型成形面、5……キヤビ
テイ(充填樹脂)、6……表面処理層、7……ホ
ツトランナー、8……スプルー、31……n型半
導体、32……p型半導体、33……導電体、3
4……絶縁層、35……導線、36……直流電
源、37……加熱面、38……冷却面、39……
空間。1a,1b,2a,2b等における添字
a,bは一対の金型の個々の部材を示す。1c,
1d等における添字c,dは成形体に応じた付加
的金型部分であることを示す。1b1,1b2……
…,3a1,3a2,3b1,3b2………等における下
添字,………は各部材の分割部分であるこ
とを示す。
1 and 3 are sectional views of essential parts of an embodiment of the mold apparatus of the present invention, FIG. 2 is an enlarged schematic sectional view for explaining the detailed structure and operation of the layered heating/cooling element, and FIG. 6 to 6 respectively show cross-sectional views of other embodiments of the mold apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Fund type, 2... Heating and/or cooling device, 2 1 , 2 2 , 2 3 , 2 4 ... Temperature adjustment fluid passage, 3... Layered heating and cooling element, 4... Surface mold, 4aa, 4bb... Mold molding surface, 5... Cavity (filling resin), 6... Surface treatment layer, 7... Hot runner, 8... Sprue, 31... N-type semiconductor, 32... P-type semiconductor , 33... conductor, 3
4...Insulating layer, 35...Conducting wire, 36...DC power supply, 37...Heating surface, 38...Cooling surface, 39...
space. The subscripts a and b in 1a, 1b, 2a, 2b, etc. indicate individual members of a pair of molds. 1c,
The subscripts c and d in 1d etc. indicate additional mold parts depending on the molded product. 1b 1 , 1b 2 ...
..., 3a 1 , 3a 2 , 3b 1 , 3b 2 , etc., the subscripts 1 , 2 , . . . indicate divided parts of each member.

Claims (1)

【特許請求の範囲】 1 金型成形面の少くとも一部の表層部に成形面
に沿つて層状加熱冷却素子を設け且つ金型内部に
は別系統の加熱および/または冷却装置を設けて
なり、該加熱冷却素子が複数のn型半導体とp型
半導体とを交互に平面的に並べその表裏面で交互
に導電体により直列接合してなる半導体接合体を
一対の絶縁層で挾持した構造を有することを特徴
とする、射出成形用金型装置。 2 前記層状加熱冷却素子を、金型成形面の成形
体の肉厚の相異から又は樹脂の流動位置の相異か
ら冷却が遅れる部分に設け、成形体の部分的な冷
却遅れをなくし成形サイクルを向上させるように
した上記第1項の金型装置。 3 前記層状加熱冷却素子を、成形面に沿つて細
分化して設け、独立に制御可能とすることによ
り、成形面に沿つた各位置での均一な冷却を可能
とした上記第1項の金型装置。 4 金型成形面の少くとも一部の表層部に成形面
に沿つて層状加熱冷却素子を設け且つ金型内部に
は別系統の加熱および/または冷却装置を設けて
なり、該加熱冷却素子が多数のn型半導体とp型
半導体とを交互に平面的に並べその表裏面で交互
に導電体により直列接合してなる半導体接合体を
一対の絶縁層で挾持した構造を有する金型装置を
用い、金型キヤビテイ中への樹脂の射出以前にお
いては前記層状加熱冷却素子が成形面を加熱する
ように直流通電し、その後、樹脂のキヤビテイ中
への射出の前後において、前記層状加熱冷却素子
への通電を停止しあるいは直流電流を逆転するこ
とにより成形面を冷却し、冷却後成形体を離型す
ることを特徴とする、射出成形方法。
[Claims] 1. A layered heating and cooling element is provided along the molding surface on at least a part of the surface layer of the molding surface, and a separate heating and/or cooling device is provided inside the mold. , the heating/cooling element has a structure in which a semiconductor assembly is sandwiched between a pair of insulating layers, in which a plurality of n-type semiconductors and p-type semiconductors are alternately arranged in a plane and connected in series with conductors on the front and back surfaces thereof. An injection mold device comprising: 2. The layered heating/cooling element is provided at a portion of the molding surface where cooling is delayed due to differences in the wall thickness of the molded object or due to differences in the flow position of the resin, thereby eliminating the partial cooling delay of the molded object and improving the molding cycle. The mold device according to item 1 above, which improves. 3. The mold according to item 1 above, in which the layered heating and cooling elements are provided in pieces along the molding surface and can be independently controlled, thereby enabling uniform cooling at each position along the molding surface. Device. 4 A layered heating and cooling element is provided along the molding surface on at least a part of the surface layer of the molding surface, and a separate heating and/or cooling device is provided inside the mold, and the heating and cooling element is A mold device is used which has a structure in which a semiconductor assembly is formed by arranging a large number of n-type semiconductors and p-type semiconductors alternately in a plane and joining them in series with conductors alternately on the front and back surfaces, which is sandwiched between a pair of insulating layers. , before the resin is injected into the mold cavity, direct current is applied to the layered heating and cooling element to heat the molding surface, and after that, before and after the resin is injected into the mold cavity, the layered heating and cooling element is An injection molding method characterized by cooling the molding surface by stopping the current supply or reversing the direct current, and releasing the molded product after cooling.
JP9951080A 1980-07-21 1980-07-21 Mold device for projection molding and projection molding method Granted JPS5724232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9951080A JPS5724232A (en) 1980-07-21 1980-07-21 Mold device for projection molding and projection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9951080A JPS5724232A (en) 1980-07-21 1980-07-21 Mold device for projection molding and projection molding method

Publications (2)

Publication Number Publication Date
JPS5724232A JPS5724232A (en) 1982-02-08
JPS6117257B2 true JPS6117257B2 (en) 1986-05-07

Family

ID=14249251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9951080A Granted JPS5724232A (en) 1980-07-21 1980-07-21 Mold device for projection molding and projection molding method

Country Status (1)

Country Link
JP (1) JPS5724232A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026456A1 (en) * 2006-08-30 2008-03-06 Konica Minolta Opto, Inc. Device for and method of manufacturing optical part
JP2012256925A (en) * 2012-08-10 2012-12-27 Sumitomo Heavy Ind Ltd Resin seal mold
CN103950166A (en) * 2014-05-26 2014-07-30 蓝小玲 Plastic injection molding machine with thermoelectric semiconductor refrigeration

Also Published As

Publication number Publication date
JPS5724232A (en) 1982-02-08

Similar Documents

Publication Publication Date Title
US3804362A (en) Moulding means
JPH0626831B2 (en) Multilayer composite mold structure for molding on hot surfaces
JPH0137252B2 (en)
JP3162522B2 (en) Resin molding method and resin molding device for semiconductor device
JP3896461B2 (en) Precision mold
JPS6117257B2 (en)
JPH1034657A (en) Heating and cooling apparatus for mold
JPS60174624A (en) Molding die
KR100794503B1 (en) Mold for processing polymer resin including selective heat insulation layer and molding method using which
JPH0144492B2 (en)
KR101821709B1 (en) Die assembly
JPH04307207A (en) Mold
JP3986166B2 (en) Surface heater heating mold
JPS6343045Y2 (en)
JPH071457A (en) Mold
JPS61249721A (en) Mold for injection molding high density information recording disk
JPH0523169B2 (en)
JP2828161B2 (en) Plastic molding equipment
JPH11115013A (en) Plastic injection molding method
JPH0356341Y2 (en)
JPH06170905A (en) Mold of rsein molding machine
JP2622326B2 (en) Method and apparatus for controlling mold temperature distribution in injection molding
JPH11188734A (en) Mold for molding plastic and production thereof
JPS646272Y2 (en)
JP2000271969A (en) Mold for injection molding