JPS61172379A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61172379A
JPS61172379A JP1327885A JP1327885A JPS61172379A JP S61172379 A JPS61172379 A JP S61172379A JP 1327885 A JP1327885 A JP 1327885A JP 1327885 A JP1327885 A JP 1327885A JP S61172379 A JPS61172379 A JP S61172379A
Authority
JP
Japan
Prior art keywords
semiconductor
type
layer
type gaas
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1327885A
Other languages
Japanese (ja)
Inventor
Tadatsugu Ito
伊藤 糾次
Hideaki Kozu
神津 英明
Takeshi Kajimura
梶村 武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1327885A priority Critical patent/JPS61172379A/en
Publication of JPS61172379A publication Critical patent/JPS61172379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes

Abstract

PURPOSE:To enlarge the change of capacitance, to thin a P<+> type GaAs layer and to reduce parasitic resistance by forming a P-N junction with a steep narrow transition region to varactor diode and a lead type IMPATT diode. CONSTITUTION:An N<-> type GaAs layer 12 is formed onto an N<+> type GaAs substrate 11 through an epitaxial growth method so that carrier concentration is brought to 10<15>cm<-3> and thickness to approximately 4.5mum. Silicon is injected to the N<-> type GaAs layer 12, and an N-type GaAs layer 13 having 10<17>cm<-3> carrier concentration and approximately 0.5mum thickness is shaped through annealing. A P<+> type GaAs layer 14 is formed onto the N-type GaAs layer 13. An electrode such as an ohmic electrode 15 consisting of gold is applied, and the layers are removed through etching up to the N<+> type GaAs substrate 11 while using the electrode 15 as one part of a mask, thus shaping a mesa.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は、半導体装置の製造方法に関し、詳しくは、バ
ラクタダイオード、リード形インバットダイオードの製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a varactor diode and a lead type inbat diode.

従来の技術 現在、バラクタダイオードは、マイクロ波過言装置及び
TV、VTR、CATV等の情報電子機器において、チ
ューニング用1周波数逓倍用デバイスとして広く使用さ
れている。又、インバットダイオードもマイクロ波過言
装置において1発振用及び電力増幅用デバイスとして利
用されている。
BACKGROUND OF THE INVENTION Currently, varactor diodes are widely used as single frequency multiplication devices for tuning in microwave exaggeration devices and information electronic equipment such as TVs, VTRs, and CATVs. Invat diodes are also used as single oscillation and power amplification devices in microwave exaggeration devices.

これらのダイオードは、一般に第1図、第2図に示され
る構造、構成を有している。第1図はこれらのダイオー
ドの断面構造図であり、第2図は第1図に示す半導体領
域のn形、P形の区別及びそれらの層の厚さ及び代表的
なキャリア濃度を示す。第1図において、電極1はP形
層2とオーム性接触をなし、電極4はn形層3とオーム
性接触をなしている。n形層3はn形基板とn形活性層
とに分けられ、n 形基板のキャリア濃度は一般にIX
IOCm 以上であり、n形活性層のキャリア濃度プロ
ファイルは第2図に一例として示すような形をしている
。n形活性NはP形層とP−n接合をなし、このP−n
接合に加えられた逆方向電圧により、主にn形活性層に
広がる空乏層を利用してバラクタダイオード、インバッ
トダイオードは動作される。
These diodes generally have the structure and configuration shown in FIGS. 1 and 2. FIG. 1 is a cross-sectional structural diagram of these diodes, and FIG. 2 shows the distinction between n-type and p-type semiconductor regions shown in FIG. 1, and the thicknesses and typical carrier concentrations of these layers. In FIG. 1, electrode 1 is in ohmic contact with P-type layer 2, and electrode 4 is in ohmic contact with N-type layer 3. The n-type layer 3 is divided into an n-type substrate and an n-type active layer, and the carrier concentration of the n-type substrate is generally IX
IOCm or more, and the carrier concentration profile of the n-type active layer has a shape as shown in FIG. 2 as an example. The n-type active N forms a P-n junction with the P-type layer, and this P-n
By the reverse voltage applied to the junction, the varactor diode and the invat diode are operated mainly by utilizing the depletion layer that spreads in the n-type active layer.

従来1M2図に示すようなキャリア濃度プロファイルを
形成するためには、まず、n 形基板にIX10Cm穆
変のキャリア濃度を有するn形層をエピタキシャル成長
させ、これにイオン注入法によ’) 1x1o cm程
度のn形層を形成してn形活性層をなし、さらに、かか
るn形活性層上にl X 10”cm、’以上のキャリ
ア濃度を有するP+形層をエピタキシャル成長させてい
た。
Conventionally, in order to form a carrier concentration profile as shown in the 1M2 diagram, first, an n-type layer having a carrier concentration of IX10Cm is epitaxially grown on an n-type substrate, and then an ion implantation method is used to grow the n-type layer to a thickness of about 1x10 cm. An n-type layer is formed to form an n-type active layer, and a P+ type layer having a carrier concentration of l x 10''cm or more is epitaxially grown on the n-type active layer.

しかしながら、かかる製造方法においては P+形層と
n形活性層との界面近傍に於けるP形層のキャリア濃度
が急峻に高くならず、従ってI X 101gcm−’
程度の高いキャリア濃度層を得るためには約1μ工程度
r形層を成長させねばならなかった。このために、ダイ
オードの容量変化量が小さくなり、又P形層の抵抗が大
きくなシ、バラクタダイオード、インバットダイオード
の性能を十分に向上させることができなかった。
However, in this manufacturing method, the carrier concentration of the P type layer near the interface between the P+ type layer and the n type active layer does not rise sharply, and therefore I
In order to obtain a high carrier concentration layer, it was necessary to grow an r-type layer with an approximately 1 micron step step. For this reason, the capacitance change of the diode becomes small and the resistance of the P-type layer becomes large, making it impossible to sufficiently improve the performance of varactor diodes and invat diodes.

発明の目的 本発明は従来の技術に内在する上記欠点を解消する為に
なされたものであり、従って本発明の目的は、薄いP形
層を形成Tる為の新しい製a73法を提供し、もってバ
ラクタダイオード、インバットダイオード等の半導体装
置の性能を改善し2うとすることにある。
OBJECTS OF THE INVENTION The present invention has been made to overcome the above-mentioned drawbacks inherent in the prior art, and therefore, it is an object of the present invention to provide a new manufacturing method for forming a thin P-type layer, The purpose of this invention is to improve the performance of semiconductor devices such as varactor diodes and invat diodes.

発明の構成 上記目的を達成Tる為に、本発明に係る半導体装置の製
造方法は、一導電形半導体に、該半導体と同一導電形で
かつ、よプ高いキャリア濃度を有Tる半導体層をイオン
注入法にxD影形成る工程と、前記半導体層上に、前記
半導体層の少くとも一構成元素の、少くともその一部が
イオン化した前記半導体層の構成元素からなる原子もし
くは分子線ビームと、該原子もしくは分子線ビームとの
相互作用によシイオン化し、前記半導体中において他の
導電形を示しうる不純物元素の原子もしくは分子線ビー
ムとを用いて、前記半導体と異なる導電形を示す半導体
層をエピタキシャル成長させる工程と、該エピタキシャ
ル成長さnた半導体層にオーム性電極を設ける工程を含
んで構成さnる。
Structure of the Invention In order to achieve the above-mentioned object, a method for manufacturing a semiconductor device according to the present invention includes forming a semiconductor layer of one conductivity type in a semiconductor having the same conductivity type as the semiconductor and having a higher carrier concentration. a step of forming an xD shadow in the ion implantation method; and an atomic or molecular beam beam consisting of at least one constituent element of the semiconductor layer, at least a part of which is ionized, on the semiconductor layer; , a semiconductor layer exhibiting a conductivity type different from that of the semiconductor by using atoms or a molecular beam of an impurity element that can be ionized by interaction with the atoms or molecular beam and exhibit a conductivity type different from that of the semiconductor. and a step of providing an ohmic electrode on the epitaxially grown semiconductor layer.

発明の実施例 以下、本発明をその好ましい一実施例について図面を参
照しながら具体的に脱明Tる。第3図(a)〜(d)は
、本発明の一実施例を示し、半導体としてガリウム砒素
(GaAs)を用いたバラクタダイオードの形成力法を
示す図である。第3図(1)において、n十形GaAs
基板11上に、n−形GaAsNl2を例えばキャリア
濃度1011cm″3、犀さ45μmになるようにエピ
タキシャル成長法で形成する。次に、第3図(b)に示
すように、前記n″″形UaAa 412に、たとえば
GaAs中にてn形不純物となるシリコン(以下Siと
紀T)をイオン注入法にて注入した後、アニールを施し
て注入損傷を回復させると共に、注入さnた不純物を活
性化させ、例えばキャリア濃JIEIO”cm 、厚さ
約0.5Pのn形GaAs1@13を形成する。
EMBODIMENT OF THE INVENTION Hereinafter, one preferred embodiment of the present invention will be specifically explained with reference to the drawings. FIGS. 3(a) to 3(d) show an embodiment of the present invention, and are diagrams illustrating a method of forming a varactor diode using gallium arsenide (GaAs) as a semiconductor. In FIG. 3 (1), n-domain GaAs
On the substrate 11, n-type GaAsNl2 is formed by epitaxial growth, for example, to have a carrier concentration of 1011 cm''3 and a thickness of 45 μm.Next, as shown in FIG. 3(b), the n-type GaAsNl2 For example, silicon (hereinafter referred to as Si and T), which becomes an n-type impurity, is implanted into GaAs using an ion implantation method, and then annealing is performed to recover the implantation damage and activate the implanted impurity. For example, n-type GaAs 1@13 with a carrier concentration of JIEIO" cm and a thickness of about 0.5P is formed.

次に、第3図(C)に示Tjうに、前記n形GaA s
層13上にP+十形aAs層を形成するが、この形成力
法としてインブラント・エピタキシャル法を用いる。こ
のインブラント嗜エピタキシャル法の概念を第4図を用
いて説明しよう。高真空で、例えばGaAs  なる半
導体基板21に向けて、例えばAsなる物質A22とG
aなる物質B23を高温加熱ルツボ24を用いて蒸発さ
せる時に、例えば物質B23の蒸発ガス、すなわち分子
線ビームをカソード25と7ノード26との間に電圧を
印加することにより生ぜしめた電子ガス中を通すことに
よってイオン化させる。
Next, as shown in FIG. 3(C), the n-type GaAs
A P+ decagonal aAs layer is formed on the layer 13, and an im-blunt epitaxial method is used as the formation method. The concept of this im-blunt epitaxial method will be explained using FIG. 4. In a high vacuum, a substance A22 such as As and a G
When the substance B23 a is evaporated using the high-temperature heating crucible 24, the evaporated gas of the substance B23, that is, the molecular beam beam, is emitted in the electron gas generated by applying a voltage between the cathode 25 and the seventh node 26. It is ionized by passing through it.

次に1例えば亜鉛なる物質C27を高温加熱ルッポムを
用いて蒸発させ、この物質C2′7の蒸発ガス。
Next, a substance C27, such as zinc, is evaporated using a high-temperature heating lupus to produce an evaporated gas of this substance C2'7.

すなわち分子線ビームを前記の少くとも一部がイオン化
した物質B23と交わらせることにより、この物質C2
7の蒸発ガスの一部がイオン化される。
That is, by intersecting the molecular beam with the at least partially ionized substance B23, this substance C2
A part of the evaporated gas of No. 7 is ionized.

この時、半導体基板21もしくは半導体基板の保持治具
をマイナス電位にしておけば、半導体基板21にはイオ
ン化した物質C27,少くとも一部がイオン化した物質
B23、イオン化していない物質A22のガスが被着さ
れるが、半導体基板21を例えば600℃程度の高温、
すなわち物質人22と物質B23とが化学結合し、単結
晶となりうる程度の温度に保てば物質A22と物質B2
3は半導体基板上で単結晶として成長し、一方、イオン
化した物質B23と物’[C27は加速されて半導体基
板21に向かうために。
At this time, if the semiconductor substrate 21 or the holding jig for the semiconductor substrate is set to a negative potential, the gases of the ionized substance C27, the at least partially ionized substance B23, and the non-ionized substance A22 are placed on the semiconductor substrate 21. However, the semiconductor substrate 21 is heated to a high temperature of about 600°C, for example.
In other words, if material 22 and material B23 are chemically bonded and kept at a temperature that can form a single crystal, material A22 and material B2 will be formed.
3 grows as a single crystal on the semiconductor substrate, while the ionized substance B23 and substance C27 are accelerated toward the semiconductor substrate 21.

物質A22と物質B23の半導体基板21への被着の初
期には、半導体基板21に注入されるいわゆるイオン注
入現象が起る。とのイオン注入現象によシ通常生ずる半
導体基板21の損傷は、半導体基板が高温なために生じ
ない。又、半導体基板21が物匍Wと物質B23とでで
きた。いわゆる化合物半導体の場合には、物質C27な
る不純物が物質A22の格子位置を占めることにより活
性化し、ドナーもしくはアクセプタになるならば、物質
B23が半導体基板21に同時に注入されるために、物
質C27が物質A22の格子位置を占める確率が増し、
ドナーもしくはアクセプタになる確率が上昇し、高いキ
ャリア濃度を有するn形もしくはP形半導体層を前記半
導体基板に形成することができる。
At the beginning of the deposition of the substance A22 and the substance B23 onto the semiconductor substrate 21, a so-called ion implantation phenomenon occurs. Damage to the semiconductor substrate 21 that normally occurs due to ion implantation phenomena does not occur due to the high temperature of the semiconductor substrate. Further, the semiconductor substrate 21 is made of the material W and the material B23. In the case of so-called compound semiconductors, if the impurity substance C27 occupies the lattice position of substance A22 and becomes activated and becomes a donor or acceptor, substance B23 is simultaneously implanted into the semiconductor substrate 21, so that substance C27 becomes active. The probability of occupying the lattice position of substance A22 increases,
An n-type or p-type semiconductor layer having an increased probability of becoming a donor or an acceptor and having a high carrier concentration can be formed on the semiconductor substrate.

第4図に示すインブラント・エピタキシャル法を単元素
半導体に適用する時には物質A22の入った高温加熱ル
ツボを使用しなければよい。したがって、このインブラ
ント・エピタキシャル法によれば、半導体基板表面をP
形もしくはn形半導体に変え、更にその上にP形もしく
はn形半導体をエピタキシャル成長により成長させるこ
とができる。第4図において、物質A22としてGa、
物質B23として加、物質C27としてznを用いれば
、亜鉛kを7クセプタとするP形伽Mt−まず第3図(
C)においてn形oaAs層13の表面領域に形成せし
め、更にP形GaAs14をエピタキシャル成長させる
ことができる。
When applying the implant epitaxial method shown in FIG. 4 to a single-element semiconductor, it is not necessary to use a high-temperature heating crucible containing the substance A22. Therefore, according to this instant epitaxial method, the surface of the semiconductor substrate is
It is possible to change the semiconductor layer to a type or n-type semiconductor, and then grow a p-type or n-type semiconductor thereon by epitaxial growth. In FIG. 4, Ga as substance A22,
If zn is used as substance B23 and substance C27, P-type Mt with zinc k as 7 receptors - first, Fig. 3 (
In step C), a p-type GaAs layer 14 can be formed on the surface region of the n-type oaAs layer 13, and then a p-type GaAs layer 14 can be epitaxially grown.

次に第3図(d)に示すように1例えば金なるオーム性
電極15をP形GaAS 14上に被着した後、この電
極15をマスクの一部としてn形GaAs基板litで
エツチング除去してメサを形成すると、バラクタダイオ
ードが完成する。
Next, as shown in FIG. 3(d), an ohmic electrode 15 made of, for example, gold is deposited on the P-type GaAs 14, and then this electrode 15 is removed by etching with an n-type GaAs substrate lit as part of a mask. When a mesa is formed, a varactor diode is completed.

以上の説明ではP形層の形成の場合について述べたが、
n+形層の場合も同様である。半導体がシリコンの場合
には、物質C27なる不純物として原子番号が大きくイ
オン化しやすいりん、砒素、ガリウム、インジウムを用
いるとよシ効果的である。
The above explanation deals with the formation of a P-type layer, but
The same applies to the n+ type layer. When the semiconductor is silicon, it is most effective to use phosphorus, arsenic, gallium, and indium, which have large atomic numbers and are easily ionized, as the impurity substance C27.

又、 GaAsを半導体として用いる場合には、ゲルマ
ニウム、セレン、テルル−f f −力Y ミラA 。
Moreover, when GaAs is used as a semiconductor, germanium, selenium, tellurium-f f -force Y miraA.

アニンが不純物として有効である。Anine is effective as an impurity.

本発明の一部であるP−n接合の製造方法はP−n接合
を有するバラクタダイオード、インバットダイオード以
外のデバイスにも適用しうるとともにそのデバイスの高
性能化に効果的であることは明白なことである。
It is clear that the method for manufacturing a P-n junction, which is a part of the present invention, can be applied to devices other than varactor diodes and invat diodes having P-n junctions, and is effective in improving the performance of such devices. That's true.

発明の効果 以上の説明より1本発明に係る製造方法を用いることに
より、急峻な狭り遷移領域をもっ九P−n接合を形成す
ることができるために、容量変化を大きくすることがで
き、また%P+形QaAs層の厚さを薄くすることがで
きるために、寄生抵抗を低減することができる。この様
な長所はインバットダイオードの高周波化、高効率化匹
も役立つものである。
Effects of the Invention From the above explanation, 1. By using the manufacturing method according to the present invention, it is possible to form a P-n junction with a steeply narrowed transition region, so that the capacitance change can be increased. Furthermore, since the thickness of the %P+ type QaAs layer can be reduced, parasitic resistance can be reduced. These advantages are also helped by the higher frequency and higher efficiency of invat diodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダイオードの構造を示す断面図、第2図はM1
図のダイオードの半導体領域の構成を示す図、t43図
(a)〜(d)Fi本発明の実捲例を示す工程図、第4
図は本発明の重要な工程であるインブラント・エピタキ
シャル法の概念を示す図である。 1.4・・・電極、2・・・P+形層、3・・・n形層
、11・・・n+形GaAs基板、12・n−形()a
As層、13・・・n形GaAs層、14 ・・・pj
n形aAs層、15・・・オーム性電極。 21・・・半導体基板、22・・・物質A、23・・・
物質B、24・・・高温加熱ルツボ、25・・・カソー
ド、26・・・アノード。 n・・・物質C
Figure 1 is a cross-sectional view showing the structure of the diode, Figure 2 is M1
Figures showing the configuration of the semiconductor region of the diode shown in the figure, t43 (a) to (d) Fi process diagram showing an actual winding example of the present invention, No. 4
The figure shows the concept of the im-blunt epitaxial method, which is an important step of the present invention. 1.4... Electrode, 2... P+ type layer, 3... N type layer, 11... N+ type GaAs substrate, 12... N- type ()a
As layer, 13...n-type GaAs layer, 14...pj
n-type aAs layer, 15...ohmic electrode. 21... Semiconductor substrate, 22... Substance A, 23...
Substance B, 24... High temperature heating crucible, 25... Cathode, 26... Anode. n...Substance C

Claims (3)

【特許請求の範囲】[Claims] (1)、一導電形半導体に該半導体と同一導電形でかつ
より高いキャリア濃度を有する半導体層をイオン注入法
により形成する工程と、前記半導体層上に、前記半導体
層の少くとも一構成元素の少くともその一部がイオン化
した前記半導体層の構成元素からなる原子もしくは分子
線ビームと、該原子もしくは分子線ビームとの相互作用
によりイオン化され前記半導体中において他の導電形を
示しうる不純物元素の原子もしくは分子線ビームとを用
いて、前記半導体と異なる導電形を示す半導体層をエピ
タキシャル成長させる工程と、該エピタキシャル成長さ
れた半導体層にオーム性電極を設ける工程とを含むこと
を特徴とする半導体装置の製造方法。
(1) A step of forming a semiconductor layer having the same conductivity type as the semiconductor and having a higher carrier concentration on a semiconductor of one conductivity type by ion implantation, and at least one constituent element of the semiconductor layer is formed on the semiconductor layer. an atomic or molecular beam consisting of a constituent element of the semiconductor layer, at least a part of which is ionized, and an impurity element that is ionized by interaction with the atomic or molecular beam and can exhibit another conductivity type in the semiconductor; A semiconductor device comprising the steps of: epitaxially growing a semiconductor layer exhibiting a conductivity type different from that of the semiconductor using an atomic or molecular beam beam; and providing an ohmic electrode on the epitaxially grown semiconductor layer. manufacturing method.
(2)、前記半導体がシリコンであり、不純物元素がり
んもしくは砒素もしくはガリウムもしくはインジウムで
あることを特徴とする特許請求の範囲第(1)項記載の
半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim (1), wherein the semiconductor is silicon, and the impurity element is phosphorus, arsenic, gallium, or indium.
(3)、前記半導体がガリウム砒素であり、不純物がゲ
ルマニウムもしくはセレンもしくはテルルもしくはすず
もしくはカドミウムであることを特徴とする特許請求の
範囲第(1)項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim (1), wherein the semiconductor is gallium arsenide, and the impurity is germanium, selenium, tellurium, tin, or cadmium.
JP1327885A 1985-01-25 1985-01-25 Manufacture of semiconductor device Pending JPS61172379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327885A JPS61172379A (en) 1985-01-25 1985-01-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327885A JPS61172379A (en) 1985-01-25 1985-01-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61172379A true JPS61172379A (en) 1986-08-04

Family

ID=11828732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327885A Pending JPS61172379A (en) 1985-01-25 1985-01-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61172379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227574A (en) * 1990-02-01 1991-10-08 Nec Corp Manufacture of varactor diode
CN113964193A (en) * 2016-11-14 2022-01-21 3-5电力电子有限责任公司 III-V semiconductor diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227574A (en) * 1990-02-01 1991-10-08 Nec Corp Manufacture of varactor diode
CN113964193A (en) * 2016-11-14 2022-01-21 3-5电力电子有限责任公司 III-V semiconductor diode
CN113964193B (en) * 2016-11-14 2024-03-26 3-5电力电子有限责任公司 III-V semiconductor diode

Similar Documents

Publication Publication Date Title
US4751201A (en) Passivation of gallium arsenide devices with sodium sulfide
EP1393352A2 (en) Semiconductor device, semiconductor layer and production method thereof
EP0334682B1 (en) Method for forming P-type germanium layer on a gallium arsenide body
JPS62122183A (en) Semiconductor device
US4494995A (en) Dual species ion implantation of ternary compounds based on In-Ga-As
US4045252A (en) Method of manufacturing a semiconductor structure for microwave operation, including a very thin insulating or weakly doped layer
JPH02252267A (en) Manufacture of semeconductor device
US4216037A (en) Method for manufacturing a heterojunction semiconductor device by disappearing intermediate layer
JPS59198759A (en) Indium phosphate transistor and its producing method
Vaidyanathan et al. Planar, ion-implanted bipolar devices in GaAs
CN114171597B (en) SiC MOSFET device with low source contact resistance and preparation method thereof
JPS61172379A (en) Manufacture of semiconductor device
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
US9985159B2 (en) Passivated contact formation using ion implantation
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
CN107658337B (en) High electron mobility spin field effect transistor and preparation method thereof
JP2692971B2 (en) Semiconductor light emitting device
JPH0322526A (en) Manufacture of silicon carbide semiconductor device
JPS63219176A (en) Manufacture of field-effect transistor
JP2798927B2 (en) Semiconductor light receiving device and method of manufacturing the same
JPH03227574A (en) Manufacture of varactor diode
JPH0715026A (en) Semiconductor element
JPH0278226A (en) Heterojunction bipolar transistor and its manufacture
JPS61123175A (en) Manufacture of hetero-junction bipolar transistor