JPS61171186A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61171186A
JPS61171186A JP1084985A JP1084985A JPS61171186A JP S61171186 A JPS61171186 A JP S61171186A JP 1084985 A JP1084985 A JP 1084985A JP 1084985 A JP1084985 A JP 1084985A JP S61171186 A JPS61171186 A JP S61171186A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
clad layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1084985A
Other languages
Japanese (ja)
Inventor
Kazuhisa Uomi
魚見 和久
Shinichi Nakatsuka
慎一 中塚
Yuichi Ono
小野 佑一
Naoki Kayane
茅根 直樹
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1084985A priority Critical patent/JPS61171186A/en
Publication of JPS61171186A publication Critical patent/JPS61171186A/en
Priority to US07/379,672 priority patent/US5136601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate astigmatism by a method wherein a refractive waveguide is formed by thinning a P-GaAlAs clad layer. CONSTITUTION:An N-type Ga1-xAlxAs clad layer 2 (x=0.45), a Ga1-yAlyAs active layer 3 (y=0.14), a P-type Ga1-xAlxAs clad layer 4 (x=0.45), an N-type Ga1-sAlsAs oversaturated absorber layer 10, an N-type Ga1-uAluAs absorbed carrier leakage prevention layer 11, and an N-type GaAs current structure layer 5 are successively formed on an N-type GaAs substrate crystal 1, and a groove stripe exposing the surface of said clad layer 4 is formed by completely removing the above-mentioned layers 5, 11, and 10 by photo etching. Next, a P-type Ga1-xAlxAs clad layer 6 (x=0.45) and a P-type GaAs cap layer 7 are formed; then, a P-side electrode 8 and an N-side electrode 9 are formed. This construction facilitates the production of the low-noise laser element free of astigmatism and enables its mass production and cost reduction.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はMOCVD法(Metal QrganicC
hemical Vapor 1)eposition
 ) Kよる半導体レーザの構造に係り、%に民生用半
導体レーザ用として必須の低雑音レーザの構造に関する
ものでおる。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is based on the MOCVD method (Metal Qrganic Carbon
Chemical Vapor 1) Eposition
) This article relates to the structure of a semiconductor laser according to K., and relates to the structure of a low-noise laser essential for commercial semiconductor lasers.

〔発明の背景〕[Background of the invention]

従来のMOCVD法半導体レーザを第1図に示す。 A conventional MOCVD method semiconductor laser is shown in FIG.

この構造は、J、J、 Coleman等によシ、Ap
plied physics Letters、 Vo
l、 37 。
This structure was proposed by J. J. Coleman et al., Ap
plied physics Letters, Vo
l, 37.

1980.262頁に開示されている。このレーザの構
成は、活性層3をはさんだクラッド層2.4上に、スト
ライプを有する。n型を流狭窄層5を形成、こnをクラ
ッドRII6、キャップ層7で埋込むことによシ横モー
ドを制御した構造となっていた。
1980, page 262. The configuration of this laser has stripes on a cladding layer 2.4 sandwiching an active layer 3. The structure was such that the transverse mode was controlled by forming an n-type flow confinement layer 5 and burying the n-type cladding RII 6 and cap layer 7.

なお、9.10は各々p電極、n電極である。この構造
ではモード制御が屈折率導波型となシ、縦モードは単一
モードとなるため、相対雑音強度(RIN)レベルとし
てRIN=10”Hz−’(光学系からの戻シ光かある
場合)レベルであり・高周波重畳方式等により低雑音化
する必要があった。
Note that 9.10 is a p-electrode and an n-electrode, respectively. In this structure, the mode control is of the refractive index waveguide type, and the longitudinal mode is a single mode, so the relative noise intensity (RIN) level is RIN = 10"Hz-' (there is also light returned from the optical system). case) level, and it was necessary to reduce the noise by using a high frequency superimposition method, etc.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来法の欠点を除く目的でなされたもの
であシ、低雑音レーザの構造に関し、特に導波機構を最
適化することによシ安定に自励発振を起す構造を提供す
ることにある。
The purpose of the present invention is to eliminate the drawbacks of conventional methods, and relates to the structure of a low-noise laser, and in particular to provide a structure that stably generates self-sustained oscillation by optimizing the waveguide mechanism. There is a particular thing.

〔発明の概要〕 低雑音レーザを実現するためKは発振スペクトルがマル
チモード発振とシングルモード発振の中間的な位置にお
いて自励発振を起こ丁レーザ構造が最適である。このた
め利得導波型レーザ構造と屈折率導波型レーザ構造の機
能を合せ持つ新しい構造が必要となる。この利得導波型
機能としてストライプ領域外に弱い過飽和吸収体領域を
設けることが考えられる。しかし、従来法の半導体レー
ザ装置においては、溝ストライプ領域外では吸収を生じ
る半導体11は第2図(a)のようにn−GaAS電流
狭窄層5のみであり、ここでの光吸収はその吸収係数α
が10100O0’以上と大きいので過飽和吸収体とし
ては動作できない。従って結果として縦、横モード共に
単一になっていた。本発明のレーザ装置においては、そ
の溝ストライプ領域外では第2図(b)のようKn−G
aAs電流狭窄層5とp−GaAtAs クラッド層4
の間Kn−GaAtAs過飽和吸収体層10を形成しで
あるので、自励発振を起こすレーザ構造となっている。
[Summary of the Invention] In order to realize a low-noise laser, a laser structure in which K causes self-sustained oscillation at a position where the oscillation spectrum is intermediate between multi-mode oscillation and single-mode oscillation is optimal. Therefore, a new structure is required that combines the functions of a gain-guided laser structure and a refractive index-guided laser structure. It is conceivable to provide this gain waveguide function by providing a weakly supersaturated absorber region outside the stripe region. However, in the conventional semiconductor laser device, the semiconductor 11 that causes absorption outside the groove stripe region is only the n-GaAS current confinement layer 5 as shown in FIG. Coefficient α
Since it is large, 10100O0' or more, it cannot operate as a supersaturated absorber. Therefore, as a result, both the vertical and horizontal modes were single. In the laser device of the present invention, Kn-G is used outside the groove stripe region as shown in FIG. 2(b).
aAs current confinement layer 5 and p-GaAtAs cladding layer 4
Since a Kn--GaAtAs supersaturated absorber layer 10 is formed between the two, the laser structure is such that self-sustained oscillation occurs.

この過飽和吸収体層10のAtのモル比は、活性層3の
Atのモル比と同じかあるいは少なく設定する事が自励
発振を生じさせる重要なポイントである。さら    
 Jにその過飽和吸収体層10と電流狭窄層5の間にn
−GaAtAs 吸収キャリア1れ防止層11を設ける
ことによシ、光吸収によ)発生したキャリアが電流狭窄
層5に漏れるのを防いでいる。この吸収中ヤリア漏れ防
止層11のAtのモル比は過飽和吸収体410のAtの
モル比よりも多い必要がある。さらに1この過飽和吸収
体層10と吸収キャリア漏れ防止層11はそのAtのモ
ル比を適当に選ぶと、その厚さを薄くしても容易に自励
発振を起こす。この厚さを各々、1100n以下に設定
すると、この2層の有無の光分布への影響は非常に小さ
く無視できる。従ってp GaAtAs クラッド層4
の厚さを適当に薄くして(〜0.3μm以下)、屈折率
導波路を形成し、非点収差を無くし、かつ、過飽和吸収
体JiilOKよシ容易に自励発振を起こすことを可能
ならしめたものである。
It is important to set the molar ratio of At in the supersaturated absorber layer 10 to be equal to or smaller than the molar ratio of At in the active layer 3 in order to cause self-oscillation. Sara
n between the supersaturated absorber layer 10 and the current confinement layer 5.
-GaAtAs By providing the absorbing carrier 1 anti-leakage layer 11, carriers generated (by light absorption) are prevented from leaking into the current confinement layer 5. The molar ratio of At in the layer 11 for preventing leakage during absorption must be greater than the molar ratio of At in the supersaturated absorber 410. Furthermore, if the molar ratio of At is appropriately selected in the supersaturated absorber layer 10 and the absorption carrier leakage prevention layer 11, self-sustained oscillation can easily occur even if the thickness thereof is reduced. When each of these thicknesses is set to 1100 nm or less, the influence of the presence or absence of these two layers on the light distribution is very small and can be ignored. Therefore p GaAtAs cladding layer 4
If it is possible to appropriately reduce the thickness (~0.3 μm or less), form a refractive index waveguide, eliminate astigmatism, and cause self-sustained pulsation more easily than the supersaturated absorber JiilOK. It is closed.

〔発明の実施例〕[Embodiments of the invention]

以]、本発明の実施例について第3図を用いて詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

n型G aA S基板結晶1の上にn型Gat−xA4
Asクラッド層2 (x== 0.45 ) 、G a
t−yAty A8活性層3 (y=0.14 )、I
)型Gal−11AムAs クラッド層4 (x =0
.45)、n型G al −I A ts A 8過飽
和吸収体層10、nmoat−wAzm As吸収キャ
リア漏れ防止層11、n型GaAs電流狭窄層5をMO
CVD法によシ順次形成する。ホトエッチ工程によりn
fflGaAs層5、n型Gat−wAtmAs吸収Φ
ヤリア漏れ防止層11、n型Ga1−mAt*AS過飽
和吸収過飽和吸収体層l線去し、p型G a 1− z
 A t! A Sクラッド層4の表面を露出する幅1
〜15μmの溝ストライプを形成する。次にMOCVD
法により pffiG at−zktx A 8クラツ
ド鳥6(x=0.45)、pHGaAsキャップ層7を
形成する。この後、p側電極8、n側電極9を形成した
後、へき開法により、共振器要約300μmのレーザ素
子を得た。また活性石の厚さdlとp−クラッド層4の
厚さd2は厚くする方向は狭ストライブ構造に近づきマ
ルチモード発振盤となシ、薄くする方向は単一モード発
振型となり非点収差が無くなるための条件として0.0
3μm<dt<0.12μm、0.3μm<dx <1
.2μmが得られた。さらKこの非点収差のない条件に
おいて、自励発振するための条件としては、0.05〈
zく0.14.0.15<u(0,6、かつ、過飽和吸
収層10の厚さdaはInm(da <0.2/Jm%
吸収キャリア漏れ防止層11の厚さd4はlnm(da
<0−2μmが得られた。
n-type Gat-xA4 on top of n-type GaA S substrate crystal 1
As cladding layer 2 (x==0.45), Ga
tyAty A8 active layer 3 (y=0.14), I
) type Gal-11A As cladding layer 4 (x = 0
.. 45), n-type Gal-I A ts A 8 supersaturated absorber layer 10, nmoat-wAzm As absorption carrier leakage prevention layer 11, and n-type GaAs current confinement layer 5 as MO
They are sequentially formed by CVD method. n by photoetch process
fflGaAs layer 5, n-type Gat-wAtmAs absorption Φ
Yaria leak prevention layer 11, n-type Ga1-mAt*AS supersaturation absorption supersaturation absorber layer l line removal, p-type Ga1-z
At! Width 1 that exposes the surface of A S cladding layer 4
Form groove stripes of ~15 μm. Next, MOCVD
A pHGaAs cap layer 7 is formed using a pffiG at-zktx A 8 cladding 6 (x=0.45) method. Thereafter, after forming a p-side electrode 8 and an n-side electrode 9, a laser element with a resonator diameter of 300 μm was obtained by a cleavage method. In addition, the thickness dl of the activated stone and the thickness d2 of the p-cladding layer 4 become thicker, approaching a narrow stripe structure, resulting in a multi-mode oscillation disk, and thinner, resulting in a single-mode oscillation type, which reduces astigmatism. 0.0 as a condition for it to disappear
3μm<dt<0.12μm, 0.3μm<dx<1
.. 2 μm was obtained. Furthermore, under this condition without astigmatism, the condition for self-sustained oscillation is 0.05〈
z 0.14.0.15<u(0,6, and the thickness da of the supersaturated absorption layer 10 is Inm(da<0.2/Jm%
The thickness d4 of the absorption carrier leakage prevention layer 11 is lnm (da
<0-2 μm was obtained.

試作した素子は発振波長780nmにおいて、しきい電
流像30〜50mAで室温連続発振し、発振スペクトル
は自励発振スペクトルを示した。
The prototype device oscillated continuously at room temperature at an oscillation wavelength of 780 nm with a threshold current of 30 to 50 mA, and the oscillation spectrum showed a self-oscillation spectrum.

また相対雑音強1i1 (RI N ) J’t〜3X
10−”Hz−’(戻り光あり)と低雑音性が確かめら
れた。さらに、非点収差は測定限界(1μm)以下であ
った。
Also, relative noise strength 1i1 (RI N ) J't~3X
Low noise of 10-''Hz-'' (with return light) was confirmed.Furthermore, astigmatism was below the measurement limit (1 μm).

70Cにおいて光出力10mW定光出力動作時の寿命も
2000時間経過後も顕著な劣化は見られず、信頼性も
高いことが明らかとなった。
At 70C, no significant deterioration was observed in the lifetime when operating at a constant light output of 10 mW even after 2000 hours, and it was revealed that the reliability was high.

本実施例では、活性層として単一のGaAtAS層を用
いたが、QaAsとGat−xAtz、Asの超格子で
活性層を形成したM QW (Multi −Quan
tum−Well )構造の場合やGRIN (Gra
dedRefracdive 工ndex )構造の場
合も同様な結果か得られた。また、本実施例の素子はI
nGaAsp系やInQap、InGaAtp系等、他
の材料系にも適用できることは言うまでもない。
In this example, a single GaAtAS layer was used as the active layer, but MQW (Multi-Quan
tum-Well) structure and GRIN (Gra
Similar results were obtained for the dedRefracdive index) structure. Moreover, the device of this example has I
Needless to say, it is also applicable to other material systems such as nGaAsp, InQap, and InGaAtp.

〔発明の効果〕〔Effect of the invention〕

本発明によればMOCVD法によシ非点収差のない低雑
音レーザ素子が容易に製作でき、かつ量産性を有するた
め、素子の低コスト化の点で効果がある。
According to the present invention, a low-noise laser device without astigmatism can be easily manufactured by the MOCVD method and can be mass-produced, which is effective in reducing the cost of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法を説明する素子構造の断面図、第2図は
本発明の詳細な説明するための溝ストライブ領域外での
吸収係数の分布を示す図、第3図は本発明の実施例を示
す構造断面図である。
FIG. 1 is a cross-sectional view of the device structure to explain the conventional method, FIG. 2 is a diagram showing the absorption coefficient distribution outside the groove stripe region to explain the present invention in detail, and FIG. 3 is a diagram showing the absorption coefficient distribution outside the groove stripe region to explain the present invention in detail. It is a structural sectional view showing an example.

Claims (1)

【特許請求の範囲】 1、第1導電型の第1半導体領域上に、少なくとも第1
導電量の第2半導体層、該第2半導体層よりも屈折率が
大きく且禁制帯幅の小さな第3半導体層、該第3半導体
層よりも屈折率が小さく且禁制帯幅の大きな第2導電量
の第4半導体層、上記第3半導体層よりも禁制帯幅の小
さな第1導電量の第5半導体層、該第5半導体層よりも
禁制帯幅の大きな第1導電型の第6半導体層、上記第3
、第5および第6半導体層よりも禁制帯幅の小さな第1
導電型の第7半導体層を順次積層した後、エッチングに
より上記第5、第6および第7半導体層をストライプ状
に除去し、次に上記エッチングで除去された表面および
上記第7半導体層の表面上に、少なくとも上記第3半導
体層よりも屈折率が小さく且禁制帯幅の大きな第2導電
型の第8半導体層を設けたことを特徴とする半導体レー
ザ装置。 2、上記第5半導体層の膜厚が1nm〜0.2μmであ
り、上記第6半導体層の膜厚が1nm〜0.2μmであ
り、上記エッチングで除去するストライプ状の除去幅が
1〜15μmであることを特徴とする特許請求の範囲第
1項に記載の半導体レーザ装置。
[Claims] 1. On the first semiconductor region of the first conductivity type, at least the first
a second semiconductor layer having a conductive amount; a third semiconductor layer having a larger refractive index and a smaller forbidden band width than the second semiconductor layer; a second conductive layer having a smaller refractive index and a larger forbidden band width than the third semiconductor layer; a fourth semiconductor layer of a first conductivity type having a smaller bandgap width than the third semiconductor layer, a sixth semiconductor layer of a first conductivity type having a larger bandgap width than the fifth semiconductor layer. , the third above
, the first semiconductor layer has a smaller forbidden band width than the fifth and sixth semiconductor layers.
After sequentially stacking conductive type seventh semiconductor layers, the fifth, sixth, and seventh semiconductor layers are removed in stripes by etching, and then the surface removed by the etching and the surface of the seventh semiconductor layer are removed by etching. A semiconductor laser device, further comprising an eighth semiconductor layer of a second conductivity type having a smaller refractive index and a larger forbidden band width than at least the third semiconductor layer. 2. The thickness of the fifth semiconductor layer is 1 nm to 0.2 μm, the thickness of the sixth semiconductor layer is 1 nm to 0.2 μm, and the stripe width removed by the etching is 1 to 15 μm. The semiconductor laser device according to claim 1, characterized in that:
JP1084985A 1984-11-19 1985-01-25 Semiconductor laser device Pending JPS61171186A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1084985A JPS61171186A (en) 1985-01-25 1985-01-25 Semiconductor laser device
US07/379,672 US5136601A (en) 1984-11-19 1989-07-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084985A JPS61171186A (en) 1985-01-25 1985-01-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61171186A true JPS61171186A (en) 1986-08-01

Family

ID=11761797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084985A Pending JPS61171186A (en) 1984-11-19 1985-01-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61171186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608752A (en) * 1994-04-28 1997-03-04 Sanyo Electric Co., Ltd. Semiconductor laser device and method of designing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608752A (en) * 1994-04-28 1997-03-04 Sanyo Electric Co., Ltd. Semiconductor laser device and method of designing the same

Similar Documents

Publication Publication Date Title
JPH11251685A (en) Semiconductor laser
JP2929990B2 (en) Semiconductor laser
JPH09181389A (en) Self-excited semiconductor laser device
JPS61171186A (en) Semiconductor laser device
US5136601A (en) Semiconductor laser
JP2842465B2 (en) Semiconductor laser device and method of manufacturing the same
JP3341425B2 (en) Semiconductor laser
JPH02228087A (en) Semiconductor laser element
JP3572157B2 (en) Semiconductor laser device
KR20040040377A (en) Semiconductor laser device
JPH08316563A (en) Semiconductor laser device
JPH0671121B2 (en) Semiconductor laser device
JPS61112392A (en) Semiconductor laser and manufacture thereof
JP3119554B2 (en) Semiconductor laser
JPS60126884A (en) Semiconductor laser device
JP3144821B2 (en) Semiconductor laser device
JPH0272688A (en) Semiconductor laser element
JPS6083388A (en) Semiconductor laser
JP2010135564A (en) Self oscillation type semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JP2001094197A (en) Self-oscillating type semiconductor laser
JPH04269886A (en) Manufacture of semiconductor laser
JPH01282883A (en) Semiconductor laser device
JPH09283846A (en) Semiconductor laser manufacturing method
JPH098414A (en) Semiconductor laser device and manufacture thereof