JPS61171127A - Plasma etching method - Google Patents

Plasma etching method

Info

Publication number
JPS61171127A
JPS61171127A JP1080785A JP1080785A JPS61171127A JP S61171127 A JPS61171127 A JP S61171127A JP 1080785 A JP1080785 A JP 1080785A JP 1080785 A JP1080785 A JP 1080785A JP S61171127 A JPS61171127 A JP S61171127A
Authority
JP
Japan
Prior art keywords
gas
processing
gas supply
wafer
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1080785A
Other languages
Japanese (ja)
Inventor
Yoshichika Fukushima
義親 福島
Makoto Nawata
誠 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1080785A priority Critical patent/JPS61171127A/en
Publication of JPS61171127A publication Critical patent/JPS61171127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the uniformity of the etching speed at each position of a sample in the surface to be processed, by a method wherein the processing gas adjusted to a composition ratio corresponding to said surface of the sample is ionized to plasma, and said surface is etched with this plasma. CONSTITUTION:A processing chamber 10 is exhausted under pressure reduction, and in this case a sheet of wafer 60 of Si or W, Mo which are high melting point metals is placed on a sample electrode 30. A processing gas from a processing gas source 41a such as SF6 is controlled in flow amount by an MFC42a, and a processing gas from a processing gas source 41b such as O2 by an MFC42b. The O2 controlled in flow amount by the MFC42b, after passing through a gas supply pipe 40b, is joined with the SF6 controlled in flow amount by the MFC42a and passing through a gas supply pipe 40a. SF6+O2 generated by this joint is supplied to a gas supply path 24 after passing through the gas supply pipe 40a. The SF6+O2 supplied to the gas supply path 24 then enters a gas dispersion chamber 23, being dispersed uniformly here and released through a gas release hole 22 toward the center of the wafer 60 surface to be processed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマエツチング方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma etching method.

〔発明の背景〕[Background of the invention]

処理ガスをプラズマ化して該プラズマにより試料の被処
理面をエツチング処理する技術としては、サセプタに載
置された各ウェハに対する反応ガスの関係を一様にする
ことで、プラズマ処理のバラツキを減少させるものが知
られている。(特開昭57−121234号〜1212
36号公報)しかし、このような技術では、試料の被処
理面に対応する処理ガスの組成比を調節することで。
As a technique for converting processing gas into plasma and etching the surface of the sample to be processed using the plasma, variations in plasma processing are reduced by making the relationship of reaction gas uniform for each wafer placed on a susceptor. something is known. (Unexamined Japanese Patent Publication No. 57-121234-1212
However, in such a technique, by adjusting the composition ratio of the processing gas corresponding to the surface to be processed of the sample.

試料のエツチング処理の均一性を向上させるといった認
識を有していない。
There is no recognition that the uniformity of the etching process on the sample can be improved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、試料の被処理面に対応する処理ガスの
組成比を調節して試料の被処理面内の各位置での二雫チ
ング速度の均一性を向上させることで、試料のエツチン
グ処理の均一性を向上できるプラズマエツチング方法を
提供することにある。
An object of the present invention is to improve the uniformity of the two-drop etching rate at each position on the surface of the sample by adjusting the composition ratio of the processing gas corresponding to the surface of the sample to be processed. An object of the present invention is to provide a plasma etching method that can improve the uniformity of processing.

〔発明の概要〕[Summary of the invention]

本発明は、試料の被処理−に対応する処理ガスの組成比
を調節し、組成比を調節された前記処理ガスをプラズマ
化して該プラズマにより前記試料の被処理面をエツチン
グ処理することを特徴とするもので、試料の被処理面内
の各位置でのエツチング速度の均一性を向上させようと
するものである。
The present invention is characterized in that the composition ratio of the processing gas corresponding to the sample to be processed is adjusted, the processing gas with the adjusted composition ratio is turned into plasma, and the processing target surface of the sample is etched by the plasma. This is intended to improve the uniformity of the etching rate at each position within the surface of the sample to be processed.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図〜第4図により説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 4.

第1図、第2図で、処理室10には、対向電極Iと試料
電極(資)とが、この場合、上下方向に対向して平行に
内股されている。処理室lOO頂壁中央部には、電極軸
4が下端部を処理室10内に突出し処理室10と電気的
に絶縁されて設けられている。電極軸乙の下端には、対
向電極加が略平行に設けられている。対向電極田には、
試料電極(9)に載置された試料、例えば、半導体素子
基板(以下、ウェハと略)の被処理面の中央部に対応し
て開口するガス放出孔nが穿設され、ガス放出孔nと連
通してガス分散室りが形成されている。電極軸乙には、
ガス分散室田と連通してガス供給略々が形成されている
。電極軸4には、ガス供給略々と連通してガス供給管4
0aの一端が連結され、ガス供給管荀aの他端は、処理
ガス源41 aに連結されている。
In FIGS. 1 and 2, in the processing chamber 10, a counter electrode I and a sample electrode (material) are arranged in parallel to each other, facing each other in the vertical direction. An electrode shaft 4 is provided at the center of the top wall of the processing chamber lOO, with its lower end protruding into the processing chamber 10 and electrically insulated from the processing chamber 10. At the lower end of the electrode shaft B, counter electrodes are provided substantially parallel to each other. In the counter electrode field,
A gas release hole n is formed corresponding to the center of the surface to be processed of a sample placed on the sample electrode (9), such as a semiconductor element substrate (hereinafter referred to as a wafer). A gas distribution chamber is formed in communication with the gas distribution chamber. For the electrode shaft B,
A gas supply line is generally formed in communication with the gas distribution room. A gas supply pipe 4 is connected to the electrode shaft 4 and is connected to the gas supply pipe 4.
One end of the gas supply pipe 0a is connected to the gas supply pipe 41a, and the other end of the gas supply pipe 41a is connected to a processing gas source 41a.

ガス供給管40aの途中には、ガス流量制御装置I(以
下、MFCと略)42aが設けられている。電極軸4は
アースされている。ガス供給管40aのMP’C42a
の後流側には、ガス供給管40bの一端が連結され、ガ
ス供給管40bの他端は、処理ガス源41bに連結され
ている。ガス供給管4obの途中には、MPC42bが
設けられている。この場合、処理室10の上部側壁に対
応し、かつ、その外側位置でガス分散管荀が環装されて
いる。ガス分散管Cと対応する処理室10の側壁には、
処理室lO内と連通して円周上等間隔にてガス放出孔材
が穿設されている。ガス分散管Cとガス放出孔Uとは連
通している。ガス供給管4obのMFC42bの前流側
でガス供給管40cが分岐され、ガス供給管40Cは、
ガス分散管招に連結されている。ガス供給管40cの途
中には、M F C42cが設けられている。処理室1
0の底壁中央部には、電極軸mが上端部を処理室lO内
に突出し処理室lOと電気的に絶縁されて設けられてい
る。電極軸阻の上端には、試料電極(9)が試料載置面
を上面として略平行に設けられている。
A gas flow rate control device I (hereinafter abbreviated as MFC) 42a is provided in the middle of the gas supply pipe 40a. The electrode shaft 4 is grounded. MP'C42a of gas supply pipe 40a
One end of the gas supply pipe 40b is connected to the downstream side, and the other end of the gas supply pipe 40b is connected to a processing gas source 41b. An MPC 42b is provided in the middle of the gas supply pipe 4ob. In this case, a gas dispersion tube is arranged around the upper side wall of the processing chamber 10 at a position outside of the upper side wall. On the side wall of the processing chamber 10 corresponding to the gas dispersion tube C,
Gas release holes are bored at equal intervals on the circumference so as to communicate with the inside of the processing chamber IO. The gas distribution tube C and the gas discharge hole U are in communication. The gas supply pipe 40c is branched on the upstream side of the MFC 42b of the gas supply pipe 4ob, and the gas supply pipe 40C is
Connected to the gas distribution pipe. An MFC 42c is provided in the middle of the gas supply pipe 40c. Processing room 1
An electrode shaft m is provided at the center of the bottom wall of 0, with its upper end protruding into the processing chamber 1O and electrically insulated from the processing chamber 1O. Sample electrodes (9) are provided at the upper end of the electrode axis in parallel with each other with the sample mounting surface as the upper surface.

電極軸五の下端は、電源である高周波電淑父に接   
  J続されている。高周波電源父は、アースされてい
る。なお、処理室lOの下部側壁には排気ノズル11が
設けられ、排気ノズルHには、真空排気装置(図示省略
)が連結されている。
The lower end of the electrode shaft 5 is connected to the high frequency electric power source.
J is continued. The high frequency power source is grounded. Note that an exhaust nozzle 11 is provided on the lower side wall of the processing chamber IO, and the exhaust nozzle H is connected to a vacuum exhaust device (not shown).

のウェハωが、この場合、1枚載置される。処理ガス源
41 Mからの処理ガス、例えば、8F、は、MF04
2aで流量を制御され、処理ガス源41 bからの処理
ガス、例えば、02は、MFC42bで流量を制御され
る。MFC42bで流量制御された02はガス供給管4
1)bを流通した後に、M F 042 aで流量制御
されガス供給管40aを流通している8F、に合流され
る。この合流により生じた8F6+02はガス供給管4
0aを流通した後にガス供給略々に供給される。ガス供
給略々に供給された8F6+02は、その後、ガス分散
室nに入り、ここで均一に分散されてガス放出孔nより
ウェハωの被処理面の中央部に向って放出される。一方
、処理ガス源41 bからの処理ガスである02は、M
FC42cで流量を制御されガス供給管40cを流通し
た後にガス分散管ぐに供給される。ガス分散管Cに供給
された02は、その後、ガス放出孔材より処理室10内
に放出される。この状態で、試料型極美には、高周波電
源間より高周波電力が印加される。これにより、対向電
極(9)との間でグロー放電が生じ処理ガスはプラズマ
化され該プラズマによりウェハωの被処理面は、エツチ
ング処理される。
In this case, one wafer ω is placed. The processing gas from the processing gas source 41M, for example 8F, is MF04
The flow rate of the processing gas from the processing gas source 41b, for example 02, is controlled by the MFC 42b. 02 is the gas supply pipe 4 whose flow rate is controlled by MFC42b
1) After flowing through b, the flow rate is controlled by M F 042 a and the gas flows into 8F flowing through gas supply pipe 40a. 8F6+02 generated by this merging is the gas supply pipe 4.
After passing through 0a, the gas is supplied approximately. The gas 8F6+02 that has been roughly supplied then enters the gas dispersion chamber n, where it is uniformly dispersed and discharged from the gas discharge hole n toward the center of the surface to be processed of the wafer ω. On the other hand, the processing gas 02 from the processing gas source 41b is M
The flow rate is controlled by the FC 42c, and after flowing through the gas supply pipe 40c, it is supplied to the gas distribution pipe. 02 supplied to the gas dispersion tube C is then released into the processing chamber 10 from the gas release hole material. In this state, high frequency power is applied to the sample mold Gokumi from between the high frequency power sources. As a result, a glow discharge occurs between the counter electrode (9), the processing gas is turned into plasma, and the processing surface of the wafer ω is etched by the plasma.

第3図は、ウェハωの被処理面の中央部に向りて放出さ
れる8F6+0.と処理室10内に放出される02との
流量比(02/8F6+02 )すなわちウェハωの被
処理面に対応する処理ガスの組成比と、ウェハ〇の被処
理面の中央部でのエツチング速度Vlとウェハωの被処
理面の周辺部でのエツチング速度v2との関係を表わし
たものである。第3図から各エツチング速度vis v
2は、処理ガスの特定の組成比で最高値を有することが
わかる。
FIG. 3 shows 8F6+0. and 02 discharged into the processing chamber 10 (02/8F6+02), that is, the composition ratio of the processing gas corresponding to the processing surface of wafer ω, and the etching rate Vl at the center of the processing surface of wafer 〇. This represents the relationship between the etching speed v2 at the periphery of the surface to be processed of the wafer ω. From Figure 3, each etching speed vis v
It can be seen that No. 2 has the highest value at a specific composition ratio of the processing gas.

第4図は、第3図における処理ガスの任意の組成比での
ウェハωの被処理面内のエツチング速度分布を示したも
のである。この場合、ウェハ〇の被処理面内のエツチン
グ速度v3は、中央部で遅く周辺部に向うにつれて速畷
なる。
FIG. 4 shows the etching rate distribution within the processing surface of the wafer ω at an arbitrary composition ratio of the processing gas shown in FIG. In this case, the etching speed v3 within the processing surface of wafer 0 is slow at the center and becomes faster toward the periphery.

第3図、第4図より、ウェハωの被処理面の中央部に向
つて放出されるSFg+02の流量を一定として処理室
10内に放出される02の流量を増減させる(ウェハω
の被処理面に対応する処理ガスの組成比を調節する)こ
とにより、ウェハωの被処理面内のエツチング速度は第
4図にv4* v5  で示すようになり、ウェハωの
被処理面の中央部でのエツチング速度レベルで均一性が
向上する。また、処理室10内に放出される02の流量
を一定としてウェハωの被処理面の中央部に向って放出
されるSFs + 02の流量を増減させる(ウェハω
の被処理面に対応する処理ガスの組成比を調節する)こ
とにより、ウェハωの被処理面内のエツチング速度は第
4図にv6e v7  で示すようになり、ウェハωの
被処理面の周辺部でのエツチング速度レベルで均一性が
向上する。なお、この場合、その他の条件は、全て同一
条件である。
3 and 4, the flow rate of SFg+02 discharged toward the center of the processing surface of the wafer ω is kept constant, and the flow rate of 02 discharged into the processing chamber 10 is increased or decreased (wafer ω
By adjusting the composition ratio of the processing gas corresponding to the surface to be processed of the wafer ω, the etching rate within the surface to be processed of the wafer ω becomes as shown by v4*v5 in FIG. Uniformity is improved at the etching speed level in the center. Further, while keeping the flow rate of 02 discharged into the processing chamber 10 constant, the flow rate of SFs + 02 discharged toward the center of the processing surface of the wafer ω is increased or decreased (wafer ω
By adjusting the composition ratio of the processing gas corresponding to the surface to be processed of the wafer ω, the etching rate within the surface to be processed of the wafer ω becomes as shown by v6e v7 in FIG. Uniformity is improved by increasing the etching speed level. In this case, all other conditions are the same.

本実施例では、ウェハの被処理面に対応する処理ガスの
組成比を調節してウェハの被処理面内の各位置でのエツ
チング速度の均一性を向上でき、ウェハのエツチング処
理の均一性を向上させることができる。
In this example, by adjusting the composition ratio of the processing gas corresponding to the surface to be processed of the wafer, the uniformity of the etching rate at each position within the surface to be processed of the wafer can be improved, and the uniformity of the etching process of the wafer can be improved. can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、試料の被処理面に対応
する処理ガスの組成比を調節して試料の被処理面内の各
位置でのエツチング速度の均一性を向上できるので、試
料のエツチング処理の均一性を向上できるという効果が
ある。
As explained above, the present invention can improve the uniformity of the etching rate at each position on the surface of the sample by adjusting the composition ratio of the processing gas corresponding to the surface of the sample to be processed. This has the effect of improving the uniformity of the etching process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施したプラズマエツチング装置の
一例を示す処理室部の縦断面図、第2図は、第1図のA
−A断面図、第3因は、02/8F。 +02とつ、への被処理面の中央部並びに周辺部でのエ
ツチング速度との関係模式図、第4図は、ウェハ中心か
らの半径方向距離とエツチング速度との関係模式図であ
る。 n、44・・・・・・ガス放出孔、41 a e 41
 b・・・・・・処理ガス源、42a4いL/ 42 
c −−−−−−M F C、60=つ87、    
    J代理人 弁理士  小 川 勝 男、/−ゝ
・゛( 才2図 才3図 十4図
FIG. 1 is a longitudinal sectional view of a processing chamber showing an example of a plasma etching apparatus embodying the present invention, and FIG.
-A sectional view, the third factor is 02/8F. FIG. 4 is a schematic diagram of the relationship between the radial distance from the wafer center and the etching rate. n, 44... Gas release hole, 41 a e 41
b...Processing gas source, 42a4L/42
c --------M F C, 60=tsu87,
J Agent Patent Attorney Katsuo Ogawa, /-ゝ・゛( Years 2, 3, 14

Claims (1)

【特許請求の範囲】[Claims] 1、試料の被処理面に対応する処理ガスの組成比を調節
し、組成比を調節された前記処理ガスをプラズマ化して
該プラズマにより前記試料の被処理面をエッチング処理
することを特徴とするプラズマエッチング方法。
1. The method is characterized in that the composition ratio of a processing gas corresponding to the surface to be processed of the sample is adjusted, the processing gas with the adjusted composition ratio is turned into plasma, and the surface to be processed of the sample is etched by the plasma. Plasma etching method.
JP1080785A 1985-01-25 1985-01-25 Plasma etching method Pending JPS61171127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080785A JPS61171127A (en) 1985-01-25 1985-01-25 Plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080785A JPS61171127A (en) 1985-01-25 1985-01-25 Plasma etching method

Publications (1)

Publication Number Publication Date
JPS61171127A true JPS61171127A (en) 1986-08-01

Family

ID=11760611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080785A Pending JPS61171127A (en) 1985-01-25 1985-01-25 Plasma etching method

Country Status (1)

Country Link
JP (1) JPS61171127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250643A (en) * 1986-04-24 1987-10-31 Fuji Electric Co Ltd Plasma etching method
JPH0536636A (en) * 1991-07-31 1993-02-12 Nec Yamagata Ltd Dry etching equipment of semiconductor device
JP2001144069A (en) * 1999-09-03 2001-05-25 Ulvac Japan Ltd Plasma etching apparatus for film-shaped substrate
US6737358B2 (en) * 2002-02-13 2004-05-18 Intel Corporation Plasma etching uniformity control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250643A (en) * 1986-04-24 1987-10-31 Fuji Electric Co Ltd Plasma etching method
JPH0536636A (en) * 1991-07-31 1993-02-12 Nec Yamagata Ltd Dry etching equipment of semiconductor device
JP2001144069A (en) * 1999-09-03 2001-05-25 Ulvac Japan Ltd Plasma etching apparatus for film-shaped substrate
US6737358B2 (en) * 2002-02-13 2004-05-18 Intel Corporation Plasma etching uniformity control

Similar Documents

Publication Publication Date Title
JP3317209B2 (en) Plasma processing apparatus and plasma processing method
US5369336A (en) Plasma generating device
US4812712A (en) Plasma processing apparatus
KR950012614A (en) Plasma processing equipment
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
KR970003605A (en) Plasma treatment method and apparatus
JPH088239A (en) Wafer treatment device
JP3050716B2 (en) Plasma processing equipment
JPH057861B2 (en)
JPH11283940A (en) Plasma treatment method
JPS6046029A (en) Equipment for manufacturing semiconductor
JPS61171127A (en) Plasma etching method
JP3036477B2 (en) Semiconductor manufacturing equipment
JPS57202733A (en) Dry etching device
JPS62250643A (en) Plasma etching method
JP3969907B2 (en) Plasma processing equipment
JPS6234834B2 (en)
JPS6345468B2 (en)
JPS60123033A (en) Plasma treating device
JP3252542B2 (en) Frequency adjustment method of piezoelectric element
JPH02236283A (en) Thin film forming device and thin film formation
JPS6012727A (en) Thin film forming apparatus
JPH0570958A (en) High-frequency plasma cvd device
JPH0469417B2 (en)
JP3269781B2 (en) Vacuum processing method and device