JPS61170633A - Pressure control device for cavitation tank - Google Patents

Pressure control device for cavitation tank

Info

Publication number
JPS61170633A
JPS61170633A JP1151885A JP1151885A JPS61170633A JP S61170633 A JPS61170633 A JP S61170633A JP 1151885 A JP1151885 A JP 1151885A JP 1151885 A JP1151885 A JP 1151885A JP S61170633 A JPS61170633 A JP S61170633A
Authority
JP
Japan
Prior art keywords
pressure
tank
valve
adjustment
pressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151885A
Other languages
Japanese (ja)
Inventor
Kenji Oguro
小黒 謙治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1151885A priority Critical patent/JPS61170633A/en
Publication of JPS61170633A publication Critical patent/JPS61170633A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels

Abstract

PURPOSE:To control the pressure inside a tank to the set value and to make the prescribed pressure range controllable continuously by using the atmosphere for adjusting the pressure rise in pressure reduction control system and by performing the control of the flow of this atmosphere by pressurizing adjusting valve. CONSTITUTION:At the operation time of a pressure reduction control system auxiliary pressure reduction adjusting valve 61B, the switching valve 72 for pressurizing are fully closed and an inlet valve 74 is fully opened. And when the pressure set value corresponding to the necessary pressure inside the tank is set to a programmable adjusting meter, the adjusting meter 100 performs PID operation of the difference between the pressure set value P0 and the pressure detected value P1 which is from a pressure gage 42, controls the opening of the pressure reduction adjusting valve 61A in case of the positive and controls the opening of the pressurizing adjusting valve 71A in case of the negative. The tank pressure is dropped by exhausting from the pressure adjusting tank 33 by the opening control of the valve 61A, the tank pressure is raised by feeding the air to the pressure adjusting tank 33 by the opening control of the valve 71A and the pressure inside the tank is adjusted by pressure rise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ギヤビテークヨン水槽の圧力制御装置に係り
、特に減圧制御系と加圧制御系の単独運転および自動切
換えによる連続運転ができるキャビテーション水槽の圧
力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure control device for a gear cavitation water tank, and in particular to a pressure control device for a cavitation water tank, which allows independent operation and continuous operation by automatic switching of a depressurization control system and a pressurization control system. It relates to a pressure control device.

〔従来の技術〕[Conventional technology]

キャビテーション水槽は、例えば模型ゾロ(うによシ実
船グaベラの中ヤピテーションの状態を模擬的に現出さ
せ、faベラの推力およびトルクを計測したシ、あるい
はキャビテーションの発生状態を観測するための試験水
槽である。
The cavitation tank is used, for example, to simulate the state of yapitation inside the sea urchin fish ship Gubera and measure the thrust and torque of Fa Bella, or to observe the state of cavitation occurrence. This is a test tank.

第3図は、従来の縦形キャビテーション水槽21の一例
を示したもので、循環流路22は、下部水平流路23と
、この下部水平流路23の両端に連通して上方に突出し
た鉛直流路25.26と、これらの鉛直流路25.26
の上端に夫々連通する上部水平流路28とからなってい
る。
FIG. 3 shows an example of a conventional vertical cavitation water tank 21, in which a circulation flow path 22 has a lower horizontal flow path 23 and a vertical flow that communicates with both ends of the lower horizontal flow path 23 and projects upward. channel 25.26 and these vertical flow channels 25.26
The upper horizontal flow passages 28 are connected to the upper ends of the upper horizontal flow passages 28, respectively.

下部水平流路23内には、モータ29により駆動される
ボンデ31が設置され、該タンク31によシ循環流路2
2内の水を回流させるようになっている。
A bonder 31 driven by a motor 29 is installed in the lower horizontal flow path 23, and the tank 31 allows the circulation flow path 2
It is designed to circulate the water inside 2.

キャビテーション水槽21は計測部32の中心よシ高さ
H(通常1m)に水面を有する圧力調整タンク33を備
えておシ、該圧力調整タンクの圧力を後述の圧力制御機
構によシ制御し、槽内の圧力調整を行っている。この槽
内圧力は、通常0゜1〜2.0bar (絶対圧)の範
囲に調整できるようになっており、キャビテーションを
任意条件の基で発生させることができるようになってい
る。
The cavitation water tank 21 is equipped with a pressure adjustment tank 33 having a water surface at a height H (usually 1 m) from the center of the measurement section 32, and the pressure of the pressure adjustment tank is controlled by a pressure control mechanism described below. The pressure inside the tank is adjusted. The pressure inside this tank can be adjusted normally within the range of 0°1 to 2.0 bar (absolute pressure), so that cavitation can be generated under arbitrary conditions.

従来、キャビテーション水槽の圧力制御は、第3図に示
すように、圧力調整タンク33を大気圧以下に設定する
減圧制御系と、大気圧以上に設定する加圧制御系の独立
した2系統によって行なわれている。すなわち、減圧制
御系は真空−ンプ34真空タンク35、減圧調整弁36
、吸気弁37、および減圧用調節計38とからなり、前
記減圧用調節計はキャビテーション水槽の計測部に設置
された減圧用圧力計40による圧力検出値と減圧設定値
との差分をPより演算し、減圧調整弁36の開度指令信
号および吸気弁37の開閉指令信号を出力する。そして
、キャビテーション水槽の圧力は、前記減圧用調節計3
8からの指令信号に基いて両弁を操作し、圧力調整タン
ク33からの排気あるいは該タンクへの大気の供給を行
ないタンク圧力を制御することによって行なわれる。一
方、加圧制御系はコンプレッサ50.空気タンク51゜
加圧調整弁52、排気弁53および加圧用調節計54と
からなシ、前記加圧用調節計は中ヤビテーション水槽O
計測部に設置された加圧用圧力計41による圧力検出値
と加圧設定値との差分をPより演算し、加圧調整弁52
の開度指令信号および排気弁53の開閉指令信号を出力
する。そして〜キャビテーション水槽の圧力は、前記加
圧用−筒針54から出力される指令信号に基いて両弁を
操作し為圧力X*タンク33への空気の供給あるいは該
タンクから大気への放出を行ないタンク圧力を制御する
ことによって行なわれる。
Conventionally, pressure control in a cavitation water tank has been performed using two independent systems: a pressure reduction control system that sets the pressure adjustment tank 33 below atmospheric pressure, and a pressurization control system that sets it above atmospheric pressure, as shown in Figure 3. It is. That is, the pressure reduction control system includes a vacuum pump 34, a vacuum tank 35, and a pressure reduction adjustment valve 36.
, an intake valve 37, and a pressure reduction regulator 38, and the pressure reduction regulator calculates the difference between the pressure detection value by the pressure reduction pressure gauge 40 installed in the measurement section of the cavitation water tank and the pressure reduction setting value from P. Then, an opening command signal for the pressure reduction regulating valve 36 and an opening/closing command signal for the intake valve 37 are output. Then, the pressure in the cavitation water tank is determined by the pressure reduction controller 3.
This is done by operating both valves based on a command signal from 8 and controlling the tank pressure by exhausting the pressure regulating tank 33 or supplying atmospheric air to the tank. On the other hand, the pressurization control system is the compressor 50. The air tank 51 is connected to a pressurization adjustment valve 52, an exhaust valve 53, and a pressurization controller 54, and the pressurization controller is connected to the middle cavitation water tank O.
The difference between the pressure detected by the pressurization pressure gauge 41 installed in the measurement unit and the pressurization set value is calculated from P, and the pressure adjustment valve 52
An opening command signal for the exhaust valve 53 and an opening/closing command signal for the exhaust valve 53 are output. The pressure in the cavitation water tank is determined by operating both valves based on the command signal output from the pressurizing cylinder needle 54 to supply air to the pressure X* tank 33 or release it from the tank to the atmosphere. This is done by controlling the pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の圧力制御装置では、槽内の所望圧
力が大気圧に対して高いか、低いかによって異なるg節
計を選択しなければならないので、両am計を跨ぐ連続
した可変圧力制御するにはマニアル操作で減圧制御系か
ら加圧制御系に切換える必要がらシ、自動設定運転がで
きなかった。また、計測部の圧力検出位置と圧力調整タ
ンクの水面との間の距離、すなわちヘッド差Eが1mあ
るので、前記圧力検出位置における圧力は標準気圧のも
とで1、l barとなる。したがって、槽内圧力を前
記圧力に制御するには、圧カN整メンクを大気圧に制御
することになシ、結局減圧制御系の吸気弁\37あるい
は加圧制御系の排気弁53を開放しなければならないの
で、槽内圧力は大気圧の変動に依存し、不安定な実験を
行なわなければならなかった。
However, with conventional pressure control devices, it is necessary to select a different g meter depending on whether the desired pressure in the tank is higher or lower than atmospheric pressure, so it is difficult to continuously variable pressure control across both am meters. Because it was necessary to manually switch from the depressurization control system to the pressurization control system, automatic setting operation was not possible. Further, since the distance between the pressure detection position of the measuring section and the water surface of the pressure adjustment tank, that is, the head difference E, is 1 m, the pressure at the pressure detection position is 1.1 bar under standard atmospheric pressure. Therefore, in order to control the pressure inside the tank to the above pressure, it is necessary to control the pressure N adjustment to atmospheric pressure, and in the end, the intake valve \37 of the pressure reduction control system or the exhaust valve 53 of the pressure control system is opened. As a result, the pressure inside the tank depended on fluctuations in atmospheric pressure, making it necessary to conduct unstable experiments.

本発明の目的は、槽内圧力を設定値に制御できかつ所定
の圧力範囲を連続的に制御できるキャビテーション水槽
用圧力制御装置を提供することである0 〔問題点を解決するための手段〕 本発明のキャビテーション水槽用圧力制御装置は、循環
流路に圧力調整夕/りを接続し、該圧力調整タンクに圧
力調整機構を設けるとともに、前記圧力調整機構を循環
流路の計測部圧力に基いて動作させ、前記圧力調整タン
クの圧力を制御して槽内圧力を1iI4整するキャビテ
ーション水槽用圧力制御装置において、前記圧力調整タ
ンクに減圧調整手段を介して真空源と加圧調整手段を介
して加圧源を夫々接続し、前記加圧調整手段と加圧源と
の間に加圧用開閉弁を介装し、かつ前記加圧調整手段と
加圧用開閉弁との間の管路に吸気弁を有する大気に開放
した吸気管を接続するとともに、前記各調整手段および
各弁を前記計測部の検出圧力に基いて制御する調節計を
備えた圧力調整機構を有し、前記調節計は圧力調整′タ
ンクの圧力を減圧調整手段の操作によって減圧し、かつ
加圧調整手段の操作によって大気を導入して昇圧し、槽
内圧力を調整する減圧制御系および圧力調整タンクの圧
力を加圧調整手段の操作によって加圧源から圧縮空気を
供給して昇圧し、かつ減圧調整手段の操作によって減圧
し、槽内圧力を調整する加圧制御系のいずれか一方の制
御系による単独運転と、前記両制御系を組合せて槽内圧
力を連続的に可変制御する自動切換運転ができるように
構成されたものである。
An object of the present invention is to provide a pressure control device for a cavitation water tank that can control the pressure inside the tank to a set value and continuously control a predetermined pressure range. The pressure control device for a cavitation water tank of the invention connects a pressure adjustment port to a circulation flow path, provides a pressure adjustment mechanism in the pressure adjustment tank, and adjusts the pressure adjustment mechanism based on the pressure at a measurement section of the circulation flow path. In the pressure control device for a cavitation water tank, the pressure control device operates to control the pressure in the pressure adjustment tank to adjust the pressure inside the tank. The pressure sources are connected to each other, a pressurization on-off valve is interposed between the pressurization adjustment means and the pressurization source, and an intake valve is provided in a pipe line between the pressurization adjustment means and the pressurization on-off valve. and a pressure regulating mechanism that is connected to an intake pipe open to the atmosphere and equipped with a regulator that controls each of the regulating means and each valve based on the detected pressure of the measuring section, and the regulator is connected to a pressure regulating mechanism that is connected to an intake pipe that is open to the atmosphere. A pressure reduction control system that reduces the pressure in the tank by operating the pressure reduction adjustment means and increases the pressure by introducing atmospheric air by operating the pressure adjustment means to adjust the pressure in the tank; Independent operation by one of the control systems of the pressurization control system, which increases the pressure by supplying compressed air from the pressurization source by operation, and reduces the pressure by operating the pressure reduction adjustment means to adjust the pressure in the tank, and both controls. The system is configured to enable automatic switching operation in which the pressure inside the tank is continuously and variably controlled by combining systems.

〔作 用〕[For production]

上記の構成によると、減圧制御系では圧力調整タンクの
標準大気圧時における槽内圧力より低い圧力を上限設定
圧力とし、該上限設定圧力以下の槽内圧力を調整する。
According to the above configuration, in the pressure reduction control system, a pressure lower than the internal pressure of the pressure regulating tank at standard atmospheric pressure is set as the upper limit setting pressure, and the tank internal pressure below the upper limit setting pressure is adjusted.

この運転では、吸気弁を開放し、槽内圧力の検出信号に
基いて減圧調整弁の開度を制御し、圧力調整タンクから
空気を排出してタンク圧力を下げて槽内を設定圧力に調
整する。
In this operation, the intake valve is opened, the opening of the pressure reducing adjustment valve is controlled based on the detection signal of the pressure inside the tank, air is exhausted from the pressure adjustment tank, the tank pressure is lowered, and the inside of the tank is adjusted to the set pressure. do.

このとき、槽内圧力が変動して設定圧力より低くなった
場合には、加圧調整弁の開度を制御して加圧用開閉弁を
介して大気を圧力祠祭タンクに供給し、夕/り圧力を上
げて設定値に調整する。一方、加圧制御系の運転では、
吸気弁を全閉かつ加圧用開閉弁を全開し、槽内圧力の検
出信号に基いて減圧調整弁および加圧調整弁の開度を制
御し、前記減圧制御系の上限設定圧力より若干低い下限
設定圧力から圧力調整タンクの標準大気圧時の槽内圧力
を含む上限設定圧力までの圧力範囲において槽内、の圧
力制御が行なわれる。すなわち、加圧制御系においては
、槽内圧力が設定値より低い方向に変化すると、加圧調
整弁が操作され、圧力調整タンクに空気を供給してタン
ク圧力が上げられ、槽内圧力を上昇させて設定値に自動
調整するとともに、槽内圧力が設定値より高い方向に変
化すると、減圧調整弁が操作され、圧力調整タンクから
排気してタンク圧力が下げられ、槽内圧力を減少させて
設定値に自動調整する。
At this time, if the pressure inside the tank fluctuates and becomes lower than the set pressure, the opening degree of the pressurization adjustment valve is controlled and atmospheric air is supplied to the pressure shrine tank via the pressurization on-off valve. Increase the pressure and adjust to the set value. On the other hand, in the operation of the pressurization control system,
The intake valve is fully closed and the pressurization on-off valve is fully opened, and the opening degrees of the pressure reduction adjustment valve and pressure adjustment valve are controlled based on the detection signal of the tank pressure, and the lower limit is slightly lower than the upper limit set pressure of the pressure reduction control system. The pressure inside the tank is controlled within a pressure range from the set pressure to the upper limit set pressure, which includes the pressure inside the tank at standard atmospheric pressure in the pressure adjustment tank. In other words, in a pressurization control system, when the pressure inside the tank changes to be lower than the set value, the pressure adjustment valve is operated and air is supplied to the pressure adjustment tank to increase the tank pressure. When the tank pressure changes to higher than the set value, the pressure reducing valve is operated and the pressure adjustment tank is evacuated to lower the tank pressure, reducing the tank pressure. Automatically adjust to the set value.

また、減圧制御系と加圧制御系の自動切換運転では、槽
内圧力を減圧制御系の下限圧力から加圧制御系の上限圧
力まで連続的に圧力設定値を変化させると、調節計は可
変圧力設定値と圧力検出値との差分を連続的にPより演
算する一方、圧力検出値から最適な制御系を選択すると
ともに、前記演算結果に基いて選択された制御系に属す
る圧力調整手段および6弁への制御信号を出力し、圧力
調整タンクの圧力を連続的に変化させて槽内圧力を連続
的に可変制御する。
In addition, in automatic switching operation between the depressurization control system and the pressurization control system, when the pressure setting value is continuously changed from the lower limit pressure of the depressurization control system to the upper limit pressure of the pressurization control system, the controller changes. Continuously calculates the difference between the pressure set value and the detected pressure value using P, selects an optimal control system from the detected pressure value, and includes a pressure adjusting means belonging to the control system selected based on the calculation result; A control signal is output to the six valves to continuously change the pressure in the pressure adjustment tank, thereby continuously variable controlling the pressure inside the tank.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基いて説明する。なお
、キャビテーション水槽の基本的構造は第3図に示す従
来のものと同じなので、同一機能を有する構造部分には
同一符号を付してその説明を省略する。
Hereinafter, one embodiment of the present invention will be described based on the drawings. The basic structure of the cavitation water tank is the same as the conventional one shown in FIG. 3, so structural parts having the same functions are given the same reference numerals and their explanations will be omitted.

圧力調整タンク33には排気するための真空タンク35
および圧縮空気を供給するための空気タンク51が夫々
接続されている。前記圧力調整タンク33と真空タンク
35とを接続する管路60には減圧調整弁61Aと補助
減圧調整弁61Bを並列配置した減圧調整手段61が介
装されておシ、また圧力調整タンク33と空気タンク5
1とを接続する管路70には圧力調整タンク側に加圧調
整手段71としての加圧調整弁71ムを、空気タンク側
に加圧用開閉弁72を位置させるようにして介装すると
ともに、該加圧調整弁71Aと加圧用開閉弁72との間
の管路70Aに大気を導入する吸気管73が接続されて
いる。なお、補助減圧調整弁61Bは減圧調整弁61A
の日経より小さい日経を有し、少ない流量を制御するの
に適するように構成されている。前記吸気管73には後
述の減圧制御系の運転時に開放される吸気弁74が介装
されている。ここで、真空源80は真空タンク35およ
び真空ポンプ34からなシ、また加圧源90は空気タン
ク51およびコンプレッサ50からなっている。
The pressure adjustment tank 33 includes a vacuum tank 35 for exhausting air.
and an air tank 51 for supplying compressed air. A pipe line 60 connecting the pressure adjustment tank 33 and the vacuum tank 35 is provided with a pressure reduction adjustment means 61 in which a pressure reduction adjustment valve 61A and an auxiliary pressure reduction adjustment valve 61B are arranged in parallel. air tank 5
1 is interposed with a pressure regulating valve 71 as a pressure regulating means 71 on the pressure regulating tank side and a pressurizing on/off valve 72 on the air tank side, An intake pipe 73 for introducing atmospheric air is connected to a pipe line 70A between the pressurization adjustment valve 71A and the pressurization on-off valve 72. Note that the auxiliary pressure reduction adjustment valve 61B is the pressure reduction adjustment valve 61A.
It has a smaller Nikkei and is configured to be suitable for controlling a small flow rate. The intake pipe 73 is provided with an intake valve 74 that is opened when a pressure reduction control system, which will be described later, is operated. Here, the vacuum source 80 consists of the vacuum tank 35 and the vacuum pump 34, and the pressurization source 90 consists of the air tank 51 and the compressor 50.

グログマプル調節計(以下調節計という)100は、圧
力計42からの圧力検出信号に基いて圧力設定値との差
分を求め、該差分をPより演算し、各調整弁の開度指令
信号および吸気弁又は加圧用開閉弁の開閉指令信号を出
力する。また、前記調節計は、第2図に示すように、減
圧制御系と加圧制御系の2系1洸を組合せて連続的に変
化する圧力制御ができるように構成されている。すなわ
ち、調・筒針には圧力設定値の変化に応じて減圧制御系
から加圧制御系又は前記とは逆の制御系への切換えを自
動的に行なうプログラムが内シされている0したがって
、圧力設定値を可変させると、該圧力設定値と圧力検出
値との間に生ずる差分が直ちにPより演算される一方、
圧力検出値から最適な制御系が選択される。そして、前
記Pより演算の結果に基いて選択された制御系に属する
調整弁などの制御手段に指令信号が出力される。
A grog maple controller (hereinafter referred to as a controller) 100 calculates the difference from the pressure setting value based on the pressure detection signal from the pressure gauge 42, calculates the difference from P, and outputs the opening command signal and intake air of each regulating valve. Outputs opening/closing command signals for valves or pressurizing on/off valves. Further, as shown in FIG. 2, the controller is configured to perform continuous pressure control by combining two systems, a pressure reduction control system and a pressure control system. In other words, the adjustment/tube needle has a program built into it that automatically switches from the pressure reduction control system to the pressure control system or the opposite control system to the above according to changes in the pressure setting value. When the set value is varied, the difference between the pressure set value and the detected pressure value is immediately calculated from P, while
The optimal control system is selected from the detected pressure values. Then, a command signal is outputted from P to a control means such as a regulating valve belonging to the control system selected based on the result of the calculation.

つぎに、上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

まず、減圧制御系の運転時には、補助減圧調整弁61B
および加圧用開閉弁72を全閉にし、吸気弁74を全開
にする。そして、所望の槽内圧力に対応した圧力設定値
をプログラマブル調節計にセットすると、調節計100
は前記圧力設定値P。
First, when operating the pressure reduction control system, the auxiliary pressure reduction adjustment valve 61B
Then, the pressurizing on-off valve 72 is fully closed, and the intake valve 74 is fully open. Then, when the pressure setting value corresponding to the desired tank pressure is set in the programmable controller, the controller 100
is the pressure setting value P.

と圧力計42からの圧力検出値P1との差分(P。and the pressure detection value P1 from the pressure gauge 42 (P.

−Po)をPID演算し、(Pt −”a ) > O
のときには減圧調整弁61Aの開度を制御する指令信号
を出力し、一方(Pt−Po ) (0のときには加圧
調整弁71Aの開度を制御する指令信号を出力する。こ
の減圧調整弁61Aの開度を制御することによって圧力
調整タンク33から排気してメン。
-Po) is subjected to PID calculation, and (Pt-”a) > O
When (Pt-Po) (0), a command signal is output to control the opening degree of the pressure-reducing regulating valve 61A. The pressure adjustment tank 33 is evacuated by controlling the opening degree of the tank.

り圧力が下げられ、槽内圧力を減圧調整するとともに、
加圧調整弁71Aの開度を制御することによって圧力調
整タンク33へ大気を供給してタンク圧力が上げられ、
槽内圧力を昇圧調整する0加圧制御系の運転時には、減
圧調整弁61Aおよび吸気弁74を全開にし、加圧用開
閉弁72を全開にする。この加圧制御系では、圧力調整
り/り3−3の大気圧時における槽内圧力以下の負圧領
域から前記槽内圧力以上の正圧領域に亘る圧力範囲が制
御できる。
The pressure in the tank is reduced, and the pressure inside the tank is adjusted to reduce the pressure.
By controlling the opening degree of the pressure adjustment valve 71A, atmospheric air is supplied to the pressure adjustment tank 33 and the tank pressure is increased.
When operating the zero pressurization control system that increases and adjusts the tank internal pressure, the pressure reduction adjustment valve 61A and the intake valve 74 are fully opened, and the pressurization on-off valve 72 is fully opened. This pressurization control system can control a pressure range ranging from a negative pressure region below the tank internal pressure to a positive pressure region above the tank internal pressure at the atmospheric pressure of the pressure adjustment 3-3.

所望の槽内圧力に対応した圧力設定値を調節計100に
セットすると、調節計100は前記圧力設定値p、と圧
力計42からの圧力検出値Plとの差分(Pl−Po 
)をPより演算し、(Ps−Po)>00ときには補助
減圧調整弁61Bの開度を制御する指令信号を出力し、
一方(Ps−Po )<Oのときには加圧調整弁71A
Nの開度を制御する指令信号を出力する。この補助減圧
調整弁61Bの開度を制御することによって圧力調整タ
ンク33からの空気の排出を精度よく制御してタンク圧
力の下げ調整を行ない槽内圧力を減圧調整するとともに
、加圧調整弁71Aの開度を制御することによって空気
タンク51からの圧縮空気を圧力調整タンク33に供給
してタンク圧力の上げ調整を行ない槽内圧力を昇圧調整
する0減圧制御系と加圧制御系の自動切換運転時には、
各調整弁、加圧用開閉弁および吸気等が圧力設定値と圧
力検出値との差分および変化する設定圧力値に応じて制
御される。
When a pressure setting value corresponding to a desired tank pressure is set in the controller 100, the controller 100 calculates the difference (Pl - Po
) from P, and when (Ps-Po)>00, outputs a command signal to control the opening degree of the auxiliary pressure reduction regulating valve 61B,
On the other hand, when (Ps-Po)<O, the pressure regulating valve 71A
Outputs a command signal to control the opening of N. By controlling the opening degree of this auxiliary pressure reduction adjustment valve 61B, the discharge of air from the pressure adjustment tank 33 is accurately controlled to lower the tank pressure and adjust the tank internal pressure. Automatic switching between a zero depressurization control system and a pressurization control system that supplies compressed air from the air tank 51 to the pressure adjustment tank 33 to raise and adjust the tank pressure by controlling the opening degree of the tank. When driving,
Each regulating valve, pressurizing on-off valve, intake air, etc. are controlled according to the difference between the pressure setting value and the pressure detection value and the changing pressure setting value.

例えば、槽内圧力を減圧制御系の制御範囲にある圧力(
下限値)から加圧制御系の制御範囲にある圧力(下限値
)まで連続的に可変制御する実験を行なう場合、まず減
圧制御系が選択される。この減圧制御系では、補助減圧
調整弁および加圧調整弁が閉じられ、減圧調整弁61A
の開放によシ圧力調整タンク33の排気を行ないタンク
圧力を下げて槽内を減圧する0そして、槽内圧力が下限
圧力に達すると、減圧調整弁61Aおよび加圧調整弁γ
IAの開度制御によって下限圧力に保持される。
For example, change the pressure inside the tank to the pressure within the control range of the pressure reduction control system (
When conducting an experiment in which the pressure is continuously variable controlled from (lower limit value) to a pressure within the control range of the pressurization control system (lower limit value), the depressurization control system is first selected. In this pressure reduction control system, the auxiliary pressure reduction adjustment valve and the pressurization adjustment valve are closed, and the pressure reduction adjustment valve 61A is closed.
When the pressure adjustment valve 61A and the pressure adjustment valve γ are opened, the pressure adjustment tank 33 is evacuated, the tank pressure is lowered, and the pressure inside the tank is reduced.
The pressure is maintained at the lower limit by controlling the opening of the IA.

そし−C1圧力設定値を連続的に昇圧に向って変化させ
ると、この圧力設定値と圧力検出値が遂−比較されて差
分が求められる。この差分は直ちにPID演算されると
同時に、圧力検出値から減圧制御系の選択が行なわれる
。続いて、PID演算の結果に基いて加圧調整弁の開度
指令信号が出力され、吸気弁74および加圧調整弁71
Aを介して大気が圧力調整タンク33に供給され、タン
ク圧力が上げられて、槽内圧力を上げ調整する。この過
程は、圧力設定値の変化に追従するように行なわれるた
め、1内圧力は連続的な昇圧調整が行なわれる。その後
、槽内圧力が上昇して減圧制御系と加圧調整系とが重複
する圧力制御領域(0,895〜0.900 bar 
)に入ると、予定された条件のもとで加圧制御系が選択
されて減圧調整弁、補助減圧調整弁および吸気弁が閉じ
られ、加圧用開閉弁が開放される。引続いて、槽内圧力
は加圧制御系のもとで設定された上限圧力に向けて連続
的に制御れる。すなわち、加圧制御系では、減圧制御系
と同じように、変化する圧力設定値に追従するように加
圧調整弁の開度制御が行なわれ、空気タンクの圧縮空気
が圧力調整タンクに供給される。すると、タンク圧力は
上昇し、それに伴って4内圧力が上げ調整される。その
後、槽内圧力が設定された上限圧力に到達すると、加圧
調整弁が閉じられ、実験を終了する。
Then, when the C1 pressure set value is continuously changed toward increasing pressure, this pressure set value and the detected pressure value are finally compared and a difference is determined. This difference is immediately subjected to PID calculation, and at the same time, a pressure reduction control system is selected from the detected pressure value. Subsequently, a pressure adjustment valve opening command signal is output based on the result of the PID calculation, and the intake valve 74 and the pressure adjustment valve 71
Atmospheric air is supplied to the pressure adjustment tank 33 through A, and the tank pressure is increased to increase and adjust the pressure inside the tank. Since this process is performed to follow changes in the pressure setting value, the internal pressure is continuously increased and adjusted. After that, the pressure inside the tank increases and the pressure control region (0,895 to 0.900 bar) where the pressure reduction control system and the pressure adjustment system overlap
), the pressurization control system is selected under predetermined conditions, the pressure reduction adjustment valve, auxiliary pressure reduction adjustment valve, and intake valve are closed, and the pressurization on-off valve is opened. Subsequently, the pressure inside the tank is continuously controlled toward the upper limit pressure set under the pressurization control system. In other words, in the pressurization control system, like the pressure reduction control system, the opening of the pressure adjustment valve is controlled to follow the changing pressure setting value, and compressed air from the air tank is supplied to the pressure adjustment tank. Ru. Then, the tank pressure increases, and the internal pressure in 4 is adjusted accordingly. Thereafter, when the internal pressure in the tank reaches the set upper limit pressure, the pressure adjustment valve is closed and the experiment ends.

なお、上記実施例の動作説明では、槽内圧力を低から高
に変化する制御について述べたが、その逆の動作も可能
である。また、減圧制御系と加圧制御系の2系統に跨が
る圧力制御について述べたが、同一制御系内における可
変圧力制御もできる。
In addition, in the explanation of the operation of the above embodiment, the control for changing the tank internal pressure from low to high was described, but the reverse operation is also possible. Moreover, although pressure control that spans two systems, the pressure reduction control system and the pressurization control system, has been described, variable pressure control within the same control system is also possible.

〔発明の効果〕〔Effect of the invention〕

上述のとおシ、本発明によれば、減圧制御系における昇
圧調整に大気を使用し、この大気の流量制御を加圧調整
弁で行なうようにしたから、加圧制御系での負圧領域の
制御が容易となυ、標準大気圧時の槽内圧力を含めた広
い範囲の槽内圧力を精度よく制御することができるとと
もに、調節計に内蔵された!ログラムによシ減圧制御系
と加圧制御系を組合せた圧力範囲における連続的な圧力
制御が可能となり、実験適用範囲が拡大され、キャビテ
ーション水槽の能率的な利用が図れる。
As described above, according to the present invention, atmospheric air is used to adjust the pressure increase in the pressure reduction control system, and the flow rate of this atmospheric air is controlled by the pressure adjustment valve, so that the negative pressure region in the pressure reduction control system is controlled. Easy to control υ, it is possible to accurately control a wide range of tank pressures, including the tank pressure at standard atmospheric pressure, and it is built into the controller! The program enables continuous pressure control in the pressure range by combining the depressurization control system and the pressurization control system, expanding the range of experimental applications and making efficient use of the cavitation water tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るキャビテーション水槽の圧力制御
装置を示す構成図、第2図は設定圧力と槽内圧力の関係
図、第3図は従来のキャビテーション水槽の圧力mlj
御装置を示す構成図である。 21・・・キャビテーション水槽、 33・・・圧力調整タンク、 61・・・減圧調整手段、 71・・・加圧調整手段、 72・・・加圧用開閉弁、 74・・・吸気弁、 100・・・プログラマブル調整計。 ■や六二・賀コ3
Fig. 1 is a configuration diagram showing a pressure control device for a cavitation water tank according to the present invention, Fig. 2 is a relationship diagram between set pressure and pressure in the tank, and Fig. 3 is a pressure mlj of a conventional cavitation water tank.
FIG. 2 is a configuration diagram showing a control device. 21... Cavitation water tank, 33... Pressure adjustment tank, 61... Pressure adjustment means, 71... Pressure adjustment means, 72... Pressurization on/off valve, 74... Intake valve, 100. ...Programmable adjustment meter. ■ Ya62 Kako 3

Claims (1)

【特許請求の範囲】[Claims] 循環流路に圧力調整タンクを接続し、該圧力調整タンク
に圧力調整機構を設けるとともに、前記圧力調整機構を
循環流路の計測部圧力に基いて動作させ、前記圧力調整
タンクの圧力を制御して槽内圧力を調整するキャビテー
ション水槽用圧力制御装置において、前記圧力調整タン
クに減圧調整手段を介して真空源と加圧調整手段を介し
て加圧源を夫々接続し、前記加圧調整手段と加圧源との
間に加圧用開閉弁を介装し、かつ前記加圧調整手段と加
圧用開閉弁との間の管路に吸気弁を有する大気に開放し
た吸気管を接続するとともに、前記各調整手段および各
弁を前記計測部の検出圧力に基いて制御する調節計を備
えた圧力調整機構を有し、前記調節計は圧力調整タンク
の圧力を減圧調整手段の操作によつて減圧し、かつ加圧
調整手段の操作によつて大気を導入して昇圧し、槽内圧
力を調整する減圧制御系および圧力調整タンクの圧力を
加圧調整手段の操作によつて加圧源から圧縮空気を供給
して昇圧し、かつ減圧調整手段の操作によつて減圧し、
槽内圧力を調整する加圧制御系のいずれか一方の制御系
による単独運転と、前記両制御系を組合せて槽内圧力を
連続的に可変制御する自動切換運転ができるように構成
されたキャビテーション水槽用圧力制御装置。
A pressure adjustment tank is connected to the circulation flow path, a pressure adjustment mechanism is provided in the pressure adjustment tank, and the pressure adjustment mechanism is operated based on the pressure of a measurement section of the circulation flow path to control the pressure of the pressure adjustment tank. In a pressure control device for a cavitation water tank that adjusts the pressure inside the tank, a vacuum source is connected to the pressure adjustment tank via a pressure reduction adjustment means, and a pressure source is connected to the pressure adjustment means via a pressure adjustment means, and the pressure adjustment means and A pressurization on-off valve is interposed between the pressurization source and an intake pipe having an intake valve and open to the atmosphere is connected to the pipe line between the pressurization adjustment means and the pressurization on-off valve, and the The pressure adjustment mechanism includes a controller that controls each adjustment means and each valve based on the detected pressure of the measuring section, and the controller reduces the pressure in the pressure adjustment tank by operating the pressure reduction adjustment means. , and a pressure reduction control system that introduces atmospheric air and raises the pressure by operating the pressure adjustment means and adjusts the pressure inside the tank, and a pressure reduction control system that adjusts the pressure in the pressure adjustment tank by introducing compressed air from the pressurized source by operating the pressure adjustment means. is supplied to increase the pressure, and reduce the pressure by operating a pressure reduction adjustment means,
A cavitation system configured to allow independent operation using either one of the pressurization control systems that adjusts the pressure inside the tank, and automatic switching operation that continuously varies the pressure inside the tank by combining both control systems. Aquarium pressure control device.
JP1151885A 1985-01-24 1985-01-24 Pressure control device for cavitation tank Pending JPS61170633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151885A JPS61170633A (en) 1985-01-24 1985-01-24 Pressure control device for cavitation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151885A JPS61170633A (en) 1985-01-24 1985-01-24 Pressure control device for cavitation tank

Publications (1)

Publication Number Publication Date
JPS61170633A true JPS61170633A (en) 1986-08-01

Family

ID=11780211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151885A Pending JPS61170633A (en) 1985-01-24 1985-01-24 Pressure control device for cavitation tank

Country Status (1)

Country Link
JP (1) JPS61170633A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065345A (en) * 2006-01-17 2013-04-11 Mks Instruments Inc Pressure regulation in remote zone
CN103149011A (en) * 2013-03-06 2013-06-12 中国船舶重工集团公司第七○二研究所 Test device and method for forming high-speed stable flow field
CN103954431A (en) * 2014-04-26 2014-07-30 沈阳航天新光集团有限公司 Flow resistance measurement test system
CN108489707A (en) * 2018-06-25 2018-09-04 哈尔滨工程大学 The super-silent depressure tank experimental provision of Magnetic force tracting formula

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145614A (en) * 1984-12-20 1986-07-03 Ulvac Corp Pressure adjusting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145614A (en) * 1984-12-20 1986-07-03 Ulvac Corp Pressure adjusting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689822B2 (en) 2004-03-09 2014-04-08 Mks Instruments, Inc. Pressure regulation in remote zones
JP2013065345A (en) * 2006-01-17 2013-04-11 Mks Instruments Inc Pressure regulation in remote zone
CN103149011A (en) * 2013-03-06 2013-06-12 中国船舶重工集团公司第七○二研究所 Test device and method for forming high-speed stable flow field
CN103149011B (en) * 2013-03-06 2015-04-15 中国船舶重工集团公司第七○二研究所 Test device and method for forming high-speed stable flow field
CN103954431A (en) * 2014-04-26 2014-07-30 沈阳航天新光集团有限公司 Flow resistance measurement test system
CN108489707A (en) * 2018-06-25 2018-09-04 哈尔滨工程大学 The super-silent depressure tank experimental provision of Magnetic force tracting formula

Similar Documents

Publication Publication Date Title
JP3606754B2 (en) Vacuum pressure control valve
JP3801570B2 (en) Flow control device
US7658200B2 (en) Semiconductor manufacturing apparatus and control method thereof
JPS61170633A (en) Pressure control device for cavitation tank
CN109237111B (en) Pressure regulating hydraulic system of self-balancing pressure regulating valve and control method thereof
JP2824443B2 (en) Preparative liquid chromatography equipment
JPH05208016A (en) Pneumoperitoneum system
US7406910B2 (en) Device and method for controlling the position of a pneumatic actuator
JP2008069787A (en) Vacuum pressure control system
US3405629A (en) Automatic decompression system
JPS5898916A (en) Manufacturing device of semiconductor
JPH09225698A (en) Pneumatic pressure control device of press machine
JPH08300136A (en) Reproduced pressure suction casting method and apparatus thereof
JP4327314B2 (en) Vacuum pressure control system
JP3309128B2 (en) Automatic booster for low pressure casting machine
JPS6278615A (en) Pressure control method
JP2000161236A (en) Vacuum pressure control system
JPH0244926Y2 (en)
JP2776021B2 (en) Airtightness inspection method for hollow containers
JPH0318674A (en) Gas pressure controlling method and vacuum device
JPH07276031A (en) Pressure controller for low pressure casting machine
JP2004319412A (en) Gas pressure reducing device of fuel cell system
JPH08206890A (en) Pressure reducing method and device for cold isostatic pressurization device
JPH05119846A (en) Automatic regulating device for pressure in pneumatic vessel
JPS6143287A (en) Operation control for compressor