JPS61170523A - Treatment of sintering raw material - Google Patents

Treatment of sintering raw material

Info

Publication number
JPS61170523A
JPS61170523A JP1045185A JP1045185A JPS61170523A JP S61170523 A JPS61170523 A JP S61170523A JP 1045185 A JP1045185 A JP 1045185A JP 1045185 A JP1045185 A JP 1045185A JP S61170523 A JPS61170523 A JP S61170523A
Authority
JP
Japan
Prior art keywords
particles
ore
powder
raw material
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1045185A
Other languages
Japanese (ja)
Other versions
JPH0261528B2 (en
Inventor
Hiroshi Saito
斎藤 汎
Noboru Sakamoto
登 坂本
Hiroshi Fukuyo
福与 寛
Yoshito Iwata
岩田 嘉人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1045185A priority Critical patent/JPS61170523A/en
Publication of JPS61170523A publication Critical patent/JPS61170523A/en
Publication of JPH0261528B2 publication Critical patent/JPH0261528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To optimize the constitution of the grain size of a charging raw material and to improve the productivity of a sintering machine by specifying the ratio of the wet particles which are formed by pelletizing part of pulverized ore to a prescribed grain size range with the particles having the prescribed grain size range below said range and charging such ore to a pelletizer. CONSTITUTION:The pulverized ore f1-fn of various brands unloaded from a ship 1 are piled in a crude ore yard 2 and are thereafter classifies to plural groups by grain sizes and are blended by each of the brand groups of the pulverized ore. Here the pulverized ore f1-fn-2 are stacked 3a as the coarse powder and the pulverized ore fn-1, fn are stacked 3b as pulverous powder. These powders are mixed at a specific ratio and are separately charged together with raw materials for limestone, pulverized coke and return fins to blending tanks 4. The raw materials are fed out continuously at prescribed ratios from the tanks 4 and are blended. The blended materials are fed to a primary mixer 5. On the other hand, part of the deposited 3b pulverous powder is preliminarily pelletized 21 to manufacture particles forming 1.0-5.0mm and the particles are fed to the mixer 5. The wet particles having the above-mentioned grain size range out of the pulverized ore of the mixer 5 are controlled to 50-70% of the entire weight including the wet particles having <=0.5mm grain size to improve the air permeability on a sintering machine 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼結原料の前処理方法を改良した焼結原料の
処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for treating sintered raw materials that is an improved pretreatment method for sintered raw materials.

(従来技術及びその問題点) 第1図は、粉鉱石を予備処理して、高炉原料である焼結
鉱を製造する一般的な処理方法を示す。この方法で゛は
、まず本船1から荷上げした各銘柄の粉鉱石/1〜/n
を粗鉱ヤード2に山−みする。次いでこれら粉鉱石f1
〜/、をブレンディングヤード3に層状に埋積し、これ
らを予じめ設定した割合でぺ、ディング法によシ混合し
てブレンディング粉(以下B粉と称する)とする。次に
B粉を石灰石、粉コークス及び返鉱等の各原料とともに
それぞれ別々の配合槽4に装入する。各配合槽4から各
原料を所定量連続的に切出して配合し、これを1次ミキ
サー5に送って水分添加及び造粒し、必要によシ2次ミ
キサー6で水分添加及び造粒する。このように造粒され
た原料(以下擬似粒子と称する)をホッ/47から焼結
機8のAlし、ト9に連続的に装入し、かつ原料中に配
合された粉コークスに点火炉10を用いて点火し、焼結
機下方に設置されている風箱11から強制的に吸引通風
することによシ焼結鉱を製造する。
(Prior art and its problems) FIG. 1 shows a general processing method for pre-processing fine ore to produce sintered ore, which is a raw material for a blast furnace. In this method, firstly, each brand of fine ore unloaded from ship 1 /1~/n
is piled up in rough ore yard 2. Next, these fine ore f1
~/, are buried in a layered manner in the blending yard 3, and mixed in a preset ratio by the pecking method to obtain a blending powder (hereinafter referred to as B powder). Next, the B powder is charged into separate mixing tanks 4 together with each raw material such as limestone, coke powder, and return ore. A predetermined amount of each raw material is continuously cut out from each blending tank 4 and blended, sent to a primary mixer 5 for water addition and granulation, and, if necessary, water addition and granulation in a secondary mixer 6. The raw material granulated in this way (hereinafter referred to as pseudo particles) is transferred from the hot plate 47 to the sintering machine 8 and continuously charged to the hot plate 9, and the coke powder mixed in the raw material is transferred to the ignition furnace. 10 is used to ignite the sintered ore, and sintered ore is produced by forcibly suctioning and ventilating it from the wind box 11 installed below the sintering machine.

しかしこの方法では、入荷粉鉱石の内から粉鉱石銘柄を
選択して配合しなければならないため、任意の選択がで
きない。その丸め化学成分を優先的に決めているが、粒
度についてはせいぜい造粒に適さない粒度の細かい粉鉱
石銘柄の配合量の上限を管理する程度で全く任意性がな
い。従ってドラム型造粒機では、微粉が十分付着しかつ
強固な擬似粒子を造粒しなければならないKもかかわら
ず、装入原料の粒度構成を維持することができない。こ
のため得られる擬似粒子を最適なも、のとすることがで
きず、この結果、焼結機上での原料の通気性が悪く、生
産性も低い。
However, with this method, it is not possible to make arbitrary selections because the brand of fine ore must be selected and blended from among the incoming fine ores. The chemical composition of the rounding is determined preferentially, but the particle size is not at all arbitrary, at most the upper limit of the blending amount of powder ore brands with fine particles unsuitable for granulation is controlled. Therefore, in the drum type granulator, it is not possible to maintain the particle size structure of the charged raw material, although it is necessary to granulate strong pseudo-particles with sufficient adhesion of fine powder. For this reason, the resulting pseudo particles cannot be made optimally, and as a result, the permeability of the raw material on the sintering machine is poor and the productivity is low.

このような問題を解決するため、現在までに数多くの提
案がなされている。例えば一般的に知られた方法として
、生石灰、消石灰等の造粒促進剤を添加して、通気性の
優れた擬似粒子を得る方法がある。しかし、生石灰、消
石灰等は通常配合されている石灰石に比べて高価である
ため、製造コストが高くなる問題がある。このため造粒
時の添加水分を温水として、生石灰の造粒促進効果を発
揮させるようにした方法が提案されている(特公昭58
−38494号)。しかしこの方法も、やはシ製造コス
トが高いという問題は残されズいる。
Many proposals have been made to date to solve these problems. For example, a commonly known method is to add a granulation accelerator such as quicklime or slaked lime to obtain pseudo particles with excellent air permeability. However, since quicklime, slaked lime, etc. are more expensive than the limestone that is usually mixed, there is a problem in that the manufacturing cost becomes high. For this reason, a method has been proposed in which hot water is added as water during granulation to promote the granulation effect of quicklime.
-38494). However, this method still has the problem of high manufacturing costs.

一方、微粉原料を使用する方法として、例えばフォアベ
レット法やセミベレット法がある。
On the other hand, methods using fine powder raw materials include, for example, the Foreverette method and the Semi-Bellet method.

フォアベレット法は、全焼結原料をドラム型または皿型
造粒機等によって造粒処理してから焼結機に装入する方
法である。またセミペレット法は、微粉原料及び微粉原
料に一部粗粒を含有している粉原料を造粒機によって2
〜10m程度の小球状生ベレットとなし、これを−穀粉
鉱石および粉原料に混合して焼結機に供給する方法であ
る。
The Foreverette method is a method in which all sintering raw materials are granulated using a drum-type or dish-type granulator, and then charged into a sintering machine. In addition, in the semi-pellet method, fine powder raw materials and powder raw materials containing some coarse particles are pulverized by a granulator.
This is a method in which a small spherical raw pellet of about 10 m in length is formed, which is mixed with flour ore and powder raw material and fed to a sintering machine.

7オアベレ、ト法は、数多くの製鉄所でドラム型造粒機
を用いて採用されている方法であるが、1次および2次
ミキサーを設置した現在でも、得られる擬似粒子に微粉
が十分付着しておらず、しかも十分な強度を有していな
い。このことから3次ミキサーを設置することも考えら
れるが、設備コストが増加する。
The 7-or-bere method is a method that is used in many steel mills using drum-type granulators, but even now that primary and secondary mixers are installed, the resulting pseudo-particles do not have sufficient adhesion of fine powder. Moreover, it does not have sufficient strength. For this reason, it is possible to install a tertiary mixer, but this increases the equipment cost.

一方セミペレット法は、微粉原料以外の原料、即ちセミ
ペレット化を行なっていない原料中に存在する微粉につ
いては考慮していないため、焼結機上での原料の通気性
の向上、しいては生産性の向上に限界がある。またセミ
ペレット法の改善案として、特公昭39−1801号に
開示された方法がある。この方法は、セミペレット法と
フォアベレット法とを組合せた方法で、セミペレットを
行なった原料とセミペレット化を行なっていない原料と
を更に造粒機に装入して造粒を強化する方法である。こ
の方法は、非常に有効な方法であるが、微粉原料及び微
粉原料に一部粗粒を含有している粉原料を全量セミペレ
、ト化する必要があるため、処理すべき微粉原料が多量
にある現状では設備コストの増加は避けられない。
On the other hand, the semi-pellet method does not take into consideration the fine powder present in raw materials other than fine powder raw materials, that is, raw materials that have not been semi-pelletized, so it improves the air permeability of the raw materials on the sintering machine, and There are limits to productivity improvement. Furthermore, as an improvement to the semi-pellet method, there is a method disclosed in Japanese Patent Publication No. 39-1801. This method is a combination of the semi-pellet method and the fore pellet method, in which the semi-pelletized raw material and the non-semi-pelletized raw material are further charged into a granulator to strengthen the granulation. It is. This method is very effective, but since it is necessary to semi-pelletize the entire amount of fine powder raw materials and powder raw materials containing some coarse particles, it requires a large amount of fine powder raw materials to be processed. Under certain circumstances, an increase in equipment costs is unavoidable.

(発明の技術的課題) 本発明は上記事情に鑑みてなされたもので、その目的と
するところは、簡単な方法でドラム型造粒機における装
入原料の粒度構成を適正な範囲とし、とれKよって得ら
れる擬似粒子を最適性状とし、もって焼結機上での通気
性を向上させ、焼結機の生産性を高めることができる焼
結原料の処理方法を得んとするものである。
(Technical Problem of the Invention) The present invention has been made in view of the above circumstances, and its purpose is to adjust the particle size composition of the charged raw material in a drum-type granulator to an appropriate range by a simple method, and to The present invention aims to provide a method for processing sintering raw materials that can improve the permeability on the sintering machine and increase the productivity of the sintering machine by giving the pseudo particles obtained by K K the optimum properties.

(発明の構成) 本発明は、各種焼結原料用粉鉱石銘柄を粒度別に複数の
グループに分類し、各粉鉱石銘柄グループ毎にブレンデ
ィングした後1又は2以上のドラム型造粒ラインで造粒
を行なう際、粒度の細かい粉鉱石銘柄についてはその一
部を予備造粒して湿潤状態で粒径1.0〜5.0龍の粒
子を作りてから造粒機に装入することにより、造粒機に
装入される焼結原料のうち湿潤状態で1.0〜5.On
の粒径を持つ粒子の重量割合を、湿潤状態で1.0〜5
.Onの粒径を持つ粒子と0.5龍以下の粒径を持つ粒
子の合計重量に対して50〜70重量%とした焼結原料
の処理方法である。
(Structure of the Invention) The present invention classifies various fine ore brands for sintering raw materials into a plurality of groups according to particle size, blends each fine ore brand group, and then granulates it in one or more drum-shaped granulation lines. When carrying out this process, for fine-grained ore brands, a portion of the powder ore is pre-granulated to produce particles with a particle size of 1.0 to 5.0 in a wet state, and then charged into the granulator. Of the sintered raw materials charged into the granulator, the content in the wet state is 1.0 to 5. On
The weight proportion of particles with a particle size of 1.0 to 5 in the wet state is
.. This is a method for processing a sintering raw material in which the amount is 50 to 70% by weight based on the total weight of particles having a particle size of On and particles having a particle size of 0.5 or less.

更に本発明の実施態様は、予備造粒する粉鉱石銘柄とし
て粒度が細かくかつ湿潤強度が相対的に高いものを用い
た焼結原料の処理方法である。
Furthermore, an embodiment of the present invention is a method for processing a sintering raw material using a grade of fine ore having fine particle size and relatively high wet strength for pre-granulation.

(詳細な説明) ドラム型造粒機内で製造される擬似粒子は、その構造に
ついて数多くの報きがあるが、′要約すると「1.0〜
5.0 m、程度の粒子が核となってその周囲に0.5
 Wa以下の粒子が付着している構造」と考えられてい
る。仁の点につき本発明者らも確認をとりたところ、#
1は同様の結果を得ている。
(Detailed explanation) Pseudo-particles produced in a drum-type granulator have many characteristics regarding their structure.
A particle with a diameter of about 5.0 m forms a core and around it a particle of about 0.5 m.
It is considered to be a structure in which particles of Wa or smaller are attached. The inventors also confirmed this point and found that #
1 obtained similar results.

更に本発明者らは、擬似粒子の強度(擬似粒子に一定の
衝撃を加えた後の粉率で表示)に及はすドラム内での原
料の占積率及び造粒水分量の影響、更には1.0〜5.
 Otaの核として作用する粒子と0.5 im以下の
付着粉として作用する粒子の比の影響について調べた。
Furthermore, the present inventors investigated the influence of the space factor of the raw material in the drum and the granulation water content on the strength of the pseudo particles (expressed as the powder percentage after applying a certain impact to the pseudo particles), and is 1.0-5.
The influence of the ratio of particles acting as Ota nuclei to particles smaller than 0.5 im and acting as attached powder was investigated.

その結果の一例(1,0〜5.0 mの核として作用す
る粒子と0.5鶴以下の付着粉として作用する粒子の比
の影響)を第2図に示す。
An example of the results (influence of the ratio of particles of 1.0 to 5.0 m that act as nuclei and particles of 0.5 m or less that act as attached powder) is shown in Fig. 2.

第2図から明らかなように、占積率、水分を適正に保て
ば、擬似粒子の強度は、核として作用する粒子(1,0
〜5. Owx、の径)と、付着粉として作用する粒子
(0,5m以下の径)との比でほぼ決定され、核として
作用する粒子が雨粒子の総和に対して50重量−以上存
在すれば、擬似粒子の強度を十分高くできることがわか
り九。
As is clear from Figure 2, if the space factor and moisture are maintained appropriately, the strength of the pseudoparticles will increase with respect to the particles (1,0
~5. It is approximately determined by the ratio of the particle size (diameter of owx) and the particles (diameter of 0.5 m or less) that act as attached powder, and if there are particles that act as nuclei by 50 weight or more with respect to the total rain particles, It was found that the strength of the pseudoparticles could be made sufficiently high9.

また粒径0.5〜1.0 mのものは、付着粉としても
核粒子としても作用しないことがわかった。
Furthermore, it was found that particles with a particle size of 0.5 to 1.0 m did not act as adhesion powder or core particles.

換言すると、ドラム型造粒機では、微粉が最大50重量
qIIまで配合されても十分に造粒可能であシ、微粉鉱
石の全量を予備造粒によシセミペレット化しなくとも最
大50重量9gまでは、微粉鉱石のままドラム型造粒機
へ装入することができることがわかる。
In other words, the drum-type granulator can sufficiently granulate even if fine powder is blended up to a maximum of 50 weight qII, and it is possible to sufficiently granulate fine powder up to a maximum of 50 weight qII without converting the entire amount of fine ore into semi-pellets by preliminary granulation. It can be seen that the fine ore can be charged directly to the drum-type granulator.

しかるに、微粉鉱石が多量に入荷している現状では、微
粉を50重量%配合したとしても、未だ微粉鉱石の余剰
がでてしまう。この余剰微粉鉱石について、全ズセミペ
レ、ト化する方法も考えられるが、この場合予備造粒量
が多い問題がある。
However, in the current situation where a large amount of fine ore is received, even if 50% by weight of fine powder is added, there will still be a surplus of fine ore. A method of converting this excess fine ore into semi-pellized or tormented ore may be considered, but in this case there is a problem in that the amount of preliminary granulation is large.

本発明はこのような問題に鑑みてなされたもので、余剰
微粉鉱石のうち、一部を予備造粒して核として作用する
1、0〜5.0簡の粒子を作シ、残シの余剰微粉鉱石を
この核に付着する付着粉として使用することにより、予
備造粒量を少なくする方法である。例えば、微粉鉱石の
全量を予備造粒する方法と比較すると、予備造粒量を最
大1/4に、また余剰微粉鉱石をセミペレット化する方
法と比較すると最大機にする事が出来る。
The present invention was made in view of these problems, and involves pre-granulating a portion of surplus fine ore to produce particles of 1.0 to 5.0 grains that act as nuclei, and removing the remaining particles. This is a method of reducing the amount of preliminary granulation by using excess fine ore as adhering powder that adheres to the cores. For example, compared to a method in which the entire amount of fine ore is pre-granulated, the amount of preliminary granulation can be reduced to a maximum of 1/4, and compared to a method in which excess fine ore is semi-pelletized, it is possible to maximize the amount.

更に本発明では、予備造粒して核粒子とする微粉鉱石と
して、単味銘柄の造粒性試駿において比較的擬似粒子の
強度の高い銘柄を使用する。
Furthermore, in the present invention, as the fine ore to be pre-granulated into core particles, a brand with relatively high pseudo-particle strength is used in a granulation test of a single brand.

この方法によれば、ドラム型造粒機内での造粒−までに
、予備造粒した核粒子がバンドリングによ)粉を発生す
るのを防止する。
According to this method, it is possible to prevent the pre-granulated core particles from generating powder (due to bundling) before granulation in the drum-type granulator.

しかしてこの方法によれば1.少ない予備造粒量で擬似
粒子に微粉を十分付着しかつ強固なものとすることがで
き、その結果、焼結機上での原料の通気性を向上させ、
しいては焼結機の生産性を高めることができる。
However, according to this method, 1. With a small amount of preliminary granulation, it is possible to sufficiently attach fine powder to the pseudo particles and make them strong.As a result, the permeability of the raw material on the sintering machine is improved,
As a result, the productivity of the sintering machine can be improved.

なお、予備造粒を行なう鉱石として粒度の細かい鉱石を
用いた理由は、細かい鉱石を予備造粒した方が粗粉すな
わち核とするために必要な予備造粒量が少なくなるため
である。また1、0〜5. Otmの粒子と0.5 y
nr以下の粒子の比率を50〜70重量%とした理由は
、70%を越えるとセミベレット法と同様に予備造粒量
が増加し。
The reason why a fine-grained ore is used as the ore to be pre-granulated is that if a fine ore is pre-granulated, the amount of pre-granulation required to form a coarse powder, that is, a core, will be smaller. Also 1, 0-5. Otm particles and 0.5 y
The reason why the ratio of particles of nr or less is set to 50 to 70% by weight is that if it exceeds 70%, the amount of preliminary granulation increases as in the semi-vellet method.

また50チ未満では造粒後の擬似粒子の強度が低下する
ためである。また粒径0.5〜1. Otaxの粒子に
ついて言及していないのは、先に述べたようにこの粒子
が付着粉としても核粒子としても作用しないためである
Moreover, if it is less than 50 inches, the strength of the pseudo particles after granulation decreases. Also, the particle size is 0.5 to 1. The reason why Otax particles are not mentioned is that, as mentioned above, these particles do not act as adhesion powder or core particles.

(実施例) ′第5図は、本発明方法を実機に適用した一実施例を示
す。この実施例では、本船1から荷上げした各銘柄の粉
鉱石f1〜Inを粗鉱ヤード2に山積みする。次いでこ
れら粉鉱石f1〜Inを粒度別に複数のグループに分類
し、各粉鉱石銘柄グループ毎にブレンディングする。ζ
こでは、粉鉱石f、〜/n−xを粗粉としてブレンディ
ングヤード31に埋積する。また粉鉱石ft1−1ef
nを微粉としてブレンディングヤード3bに埋積する。
(Embodiment) Figure 5 shows an embodiment in which the method of the present invention is applied to an actual machine. In this embodiment, fine ore f1 to In of each brand unloaded from the ship 1 is piled up in a rough ore yard 2. Next, these fine ore f1 to In are classified into a plurality of groups according to particle size, and blended for each fine ore brand group. ζ
Here, fine ore f, ~/n-x is buried in the blending yard 31 as coarse powder. Also fine ore ft1-1ef
n as a fine powder and buried in the blending yard 3b.

次いでこれらを予じめ設定した割合でベツディング法に
よシ混合してB粉とし、これを石灰石、粉コークス及び
返鉱等の各原料とともに別々の配合槽4に装入する。各
配合槽4から各原料を所定量連続的に切出して配合し、
1次ミキサー5に送る。一方ペンディングヤード3bに
埋積した微粉の一部を予備造粒機21に送って予備造粒
して、1.0〜s、 o mの核として作用する粒子を
作プ、これを1次ミキサー5に送る。1次ミキサー5に
送る粉鉱石のうち、湿潤状態で1.0〜5. Onの粒
径を持つ粒子(予備造粒によシ成形されたものを含む)
と、0.511N以下の粒径を持つ粒子の割合は、その
合計重量に対して1.0〜5.0龍の粒径を持つ粒子が
重量%で50〜70チとする。1次ミキサー5では、水
分添加及び造粒を行ない、必要に応じて2次ミキサー6
でさらに造粒する。このように造粒された擬似粒子を第
1図に示す従来法と同様に焼結機8に投入して焼結鉱を
製造する。
Next, these are mixed by a bedding method in a preset ratio to form B powder, which is charged into a separate mixing tank 4 together with each raw material such as limestone, coke powder, and return ore. A predetermined amount of each raw material is continuously cut out from each blending tank 4 and blended,
Send to primary mixer 5. On the other hand, a part of the fine powder buried in the pending yard 3b is sent to the preliminary granulator 21 for preliminary granulation to produce particles of 1.0 to 1.0 m that act as nuclei, which are then passed to the primary mixer. Send to 5. Of the fine ore sent to the primary mixer 5, 1.0 to 5. Particles with a particle size of On (including those formed by pre-granulation)
The ratio of particles having a particle size of 0.511N or less is 50 to 70% by weight of particles having a particle size of 1.0 to 5.0N to the total weight. The primary mixer 5 performs water addition and granulation, and the secondary mixer 6 is used as necessary.
further granulate. The thus granulated pseudoparticles are fed into a sintering machine 8 to produce sintered ore in the same manner as in the conventional method shown in FIG.

(実験例) 下記表1に示す粒度および湿潤強度の異なる5銘柄(A
−E)を20重量%ずつ配合し、これを基本配合組成と
した。ここで鉱石(C−E)は、一般に微粉鉱石と言わ
れているものである。
(Experiment example) Five brands (A
-E) was blended in an amount of 20% by weight, and this was used as the basic blending composition. The ore (C-E) here is generally referred to as fine ore.

また湿潤強度は、それぞれ所定粒度に調整した単味鉱石
を用いて造粒した擬似粒子の強度を示している。
In addition, the wet strength indicates the strength of pseudo particles granulated using simple ore adjusted to a predetermined particle size.

この基本配合組成の焼結原料について以下(1)〜(l
iDの方法で造粒した。
Regarding the sintering raw materials with this basic composition, the following (1) to (l
It was granulated by the iD method.

(1)  焼結原料を予備造粒することなく直接ドラム
型造粒機へ装入して造粒した。
(1) The sintered raw material was directly charged into a drum-type granulator and granulated without pre-granulation.

Gl)  A及びB鉱石からなる粗粒鉱石グループと、
C,D及びE鉱石からなる微粉鉱石グループとに粒度別
に分類し、微粉鉱石グループの全量又は一部をパン型の
造粒機にて予備造粒、し、これを残りの原料とともにド
ラム型造粒様に装入して造粒した。
Gl) A coarse ore group consisting of A and B ores,
The fine ore group consisting of C, D, and E ores is classified by particle size, and all or part of the fine ore group is pre-granulated in a pan-shaped granulator, and this is then granulated in a drum-type granulator together with the remaining raw materials. The mixture was charged in the form of grains and granulated.

4iD  粒度が細かくかつ湿潤強度の高いD鉱石と、
A、B、CおよびE鉱石からなるその他の鉱石グループ
とに分類し、D鉱石の全量又は一部をノクン型の造粒機
で予備造粒し、これを残シの原料とともにドラム型の造
粒機に装入し造粒した。
4iD D ore with fine particle size and high wet strength,
All or part of D ore is pre-granulated in a Nokun-type granulator, and this is then granulated in a drum-type granulator together with the remaining raw material. The mixture was charged into a granulator and granulated.

なおここで、(11)の方法のうちC,D、E鉱石の全
量を予備造粒する方法は、特公昭39−13012に開
示されたセミペレット法の改善案に相当する。
Of the methods (11), the method of pre-granulating all of the C, D, and E ores corresponds to an improvement on the semi-pellet method disclosed in Japanese Patent Publication No. 39-13012.

このようにして得られた造粒後原料について、充項層と
した時の通気度及び鍋試験による焼結時間(分)を調べ
た。その結果を表2に示す。
Regarding the raw material after granulation thus obtained, the air permeability when formed into a full layer and the sintering time (minutes) by a pan test were investigated. The results are shown in Table 2.

また表2に示す通気度と、核となる粒子と付着粉となる
粒子の合計重量に対する核となる粒子の重量比(0,5
m以下の粉及び1.0〜5.0話の粒子の合計重量に対
する1、 0〜5.0關の粒子の重量比)との関係を第
3図に1また同重量比と表2に示す焼結時間との関係を
第4図に示す。
In addition, the air permeability shown in Table 2 and the weight ratio of core particles to the total weight of core particles and attached powder particles (0,5
Figure 3 shows the relationship between the weight ratio of particles of 0 to 5.0 m to the total weight of powders of 1.0 to 5.0 m or less, and the same weight ratios are shown in Table 2. The relationship with the sintering time shown in FIG. 4 is shown in FIG.

これらの結果から、以下のことがわかる。From these results, the following can be seen.

(1)  ドラム型造粒様に装入する原料として、0、
5 m以下及び1.0〜5.0 tmの粉および粒子の
合計重量に対する1、 0〜5.0 mの粒子の重量の
比を0.5以上に確保すれば、通気度が十分高くかつ焼
結時間も非常に短かく出来る。
(1) As raw materials to be charged into the drum type granulation system, 0,
If the ratio of the weight of particles of 1.0 to 5.0 m to the total weight of powder and particles of 5 m or less and 1.0 to 5.0 tm is maintained at 0.5 or more, air permeability is sufficiently high and Sintering time can also be very short.

Gl)  0.5 mm以下及U 1. O〜5.0 
wto粉>ヨU粒子の合計重量に対する比を0.5以上
に保つために予備造粒を行なうが、予備造粒に供する鉱
石または鉱石グループの粒度が細かい方が予備造粒量が
少なくてすむ。
Gl) 0.5 mm or less and U1. O~5.0
Pre-granulation is performed to maintain the ratio of wto powder>yo U particles to the total weight of 0.5 or more, but the smaller the particle size of the ore or ore group to be subjected to pre-granulation, the smaller the amount of pre-granulation will be required. .

例えばAおよびB鉱石からなる粗粒鉱石グループを予備
造粒に供した場合、A、B鉱石グループの601すなわ
ち全原料の24%を予備造粒しなければ、0.5 tm
以下および1.0〜5.0簡の粉または粒子の重量に対
する1、0〜5. Owxtの粒子の重量の比を0.5
以上に確保できない。
For example, when a coarse ore group consisting of ores A and B is subjected to pre-granulation, if 601 of the A and B ore groups, i.e. 24% of the total raw material, is not pre-granulated, 0.5 tm
1, 0 to 5 for the weight of powder or particles below and 1.0 to 5. Owxt particle weight ratio 0.5
It is not possible to secure more than that.

これに対し、C,D、E鉱石からなる微粉鉱石グループ
を予備造粒に供する場合、C,D。
On the other hand, when a fine ore group consisting of C, D, and E ores is subjected to preliminary granulation, C, D.

E鉱石グループの20チすなわち全原料の12チを予備
造粒するだけで上記重量比を確保できる。
The above weight ratio can be ensured by simply pre-granulating 20 pieces of E ore group, that is, 12 pieces of the total raw material.

4iD  予備造粒に供する原料として粒度が細かくし
かも湿潤強度が高い鉱石又は鉱石グループを用いた場合
、上記(II)項よシも更に予備造粒量が少なくてすむ
4iD If an ore or ore group with fine grain size and high wet strength is used as the raw material for pre-granulation, the amount of pre-granulation can be even smaller than in item (II) above.

例えば、C,D、E鉱石グループ(微粉鉱石であるが湿
潤強度は高くない)を予備造粒に供する場合、上述の如
(C,D、E鉱石グループの201すなわち全原料の1
2%を予備造粒する必要がある。これに対し、粒度が細
かく、かつ湿潤強度の高いD鉱石を予備造粒に供する場
合、D鉱石の40tlbすなわち全原料の8%を予備造
粒するだけでよい。
For example, when subjecting C, D, E ore groups (fine ores but not high wet strength) to pre-granulation, as described above (201 of C, D, E ore groups, i.e. 1 of the total raw materials)
2% needs to be pre-granulated. On the other hand, when D ore having a fine particle size and high wet strength is subjected to pre-granulation, only 40 tlb of D ore, that is, 8% of the total raw material, needs to be pre-granulated.

特公昭39−18012号の方法では、全原料の60%
の予備造粒が必要であるが1本発明方法によシその約1
3−程度の予備造粒量でよい。
In the method of Special Publication No. 39-18012, 60% of the total raw materials
The method of the present invention requires preliminary granulation of approximately 1
A pre-granulation amount of about 3-degrees is sufficient.

なお上述した実施例では、パン型造粒機で予備造粒を行
りたが、1.0〜5.ORの粒子を造粒できる造粒機で
あれば、特に限定され表い。
In addition, in the above-mentioned example, preliminary granulation was performed using a pan-type granulator, but 1.0 to 5. As long as it is a granulator that can granulate OR particles, it is particularly limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な焼結原料の処理方法を示す説明図、第
2図はドラム型造粒機で造粒し【得た擬似粒子の強度に
及t!す原料中の0.5關以下の粉の量と1.0〜5.
0 mmの粒子の量の比を示す実験結果説明図、第3図
はドラム型造粒様に装入する直前の原料中に存在する0
、 5 wK以下の粉の量と1.0〜5.0 wxの粒
子の合計量に対する1、θ〜5.Ontの粒子の量の比
と、これをドラム型造粒機で造粒して充填層とした時の
通気度との関係を示す実験結果説明図、第4図はドラム
型造粒機に装入する直前の原料中に存在する0、 5 
mtx以下の粉の量と1.0〜5.0 mの粒子の量の
合計量に対する1、0〜5.0鶴の粒子の量の比と、こ
の焼結原料をドラム型造粒機で造粒して試験焼結鍋で焼
結させた時の焼結時間との関係を示す実験結果説明図、
第S図は本発明の一実施例を示す焼結原料の処理方法を
示す説明図である。 1・・・本船、2・・・粗鉱ヤード、3.3a、3b・
・・ブレンディングヤード、4−・・配合槽、5・・・
1次ミキサー、6・・・2次ミキサー、7・−ホ、)母
、8−焼結機、9−・Δレット、1o・一点火炉、11
・・・風箱、21・−予備焼結機。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 am苫<、tlc#しT;α5mrvtffのlllm
t *1.0−0−5i)T1木m剥v1【第3図 ドラム’ffi!L[Mの05mm以′Ff)豪外シ1
1◆1.0−5.0ηmのa−W第4図
Figure 1 is an explanatory diagram showing a general method for processing sintered raw materials, and Figure 2 shows the strength of the pseudo particles obtained by granulation using a drum-type granulator. The amount of powder of 0.5 or less in the raw material and 1.0 to 5.
Figure 3 is an explanatory diagram of experimental results showing the ratio of the amount of particles with a diameter of 0 mm.
, 1 for the amount of powder below 5 wK and the total amount of particles from 1.0 to 5.0 wx, θ to 5. Figure 4 is an explanatory diagram of the experimental results showing the relationship between the ratio of the amount of Ont particles and the air permeability when the particles are granulated in a drum-type granulator to form a packed bed. 0, 5 present in the raw material just before entering
The ratio of the amount of particles of 1.0 to 5.0 m to the total amount of powder of mtx or less and the amount of particles of 1.0 to 5.0 m An explanatory diagram of experimental results showing the relationship with sintering time when granulated and sintered in a test sintering pot,
FIG. S is an explanatory diagram showing a method for processing sintering raw materials according to an embodiment of the present invention. 1... Ship, 2... Rough ore yard, 3.3a, 3b.
...Blending yard, 4-...Blending tank, 5...
Primary mixer, 6...Secondary mixer, 7--E,) mother, 8-Sintering machine, 9--Δlet, 1o/single-ignition furnace, 11
...Wind box, 21.-Preliminary sintering machine. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2
t *1.0-0-5i) T1 wood m strip v1 [Figure 3 drum'ffi! L [05mm or more of M'Ff) Outside Australia 1
1◆1.0-5.0ηm a-W Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)各種焼結原料用粉鉱石銘柄を粒度別に複数のグル
ープに分類して各粉鉱石銘柄グループ毎にブレンディン
グした後1又は2以上のドラム型造粒ラインで造粒を行
なう際、粒度の細かい粉鉱石銘柄についてはその一部を
予備造粒して湿潤状態で粒径1.0〜5.0mmの粒子
を作ってから造粒機に装入することにより、造粒機に装
入される焼結原料のうち湿潤状態で1.0〜5.0mm
の粒径を持つ粒子の重量割合を、湿潤状態で1.0〜5
.0mmの粒径を持つ粒子と0.5mm以下の粒径を持
つ粒子の合計重量に対して50〜70重量%としてなる
焼結原料の処理方法。
(1) When granulating various powdered ore brands for sintering raw materials into multiple groups according to particle size and blending each powdered ore brand group, one or more drum-type granulation lines are used. For fine powder ore brands, a part of it is pre-granulated to produce particles with a particle size of 1.0 to 5.0 mm in a wet state, and then charged into the granulator. 1.0 to 5.0 mm of the sintered raw material in the wet state
The weight proportion of particles with a particle size of 1.0 to 5 in the wet state is
.. A method for processing a sintering raw material in which the amount is 50 to 70% by weight based on the total weight of particles having a particle size of 0 mm and particles having a particle size of 0.5 mm or less.
(2)予備造粒してから造粒機に装入する粉鉱石銘柄は
、粒度が細かく、かつ湿潤強度が相対的に高い銘柄であ
る特許請求の範囲第1項記載の焼結原料の処理方法。
(2) Processing of the sintered raw material according to claim 1, wherein the powder ore brand that is pre-granulated and then charged into the granulator is a brand that has fine grain size and relatively high wet strength. Method.
JP1045185A 1985-01-23 1985-01-23 Treatment of sintering raw material Granted JPS61170523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1045185A JPS61170523A (en) 1985-01-23 1985-01-23 Treatment of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1045185A JPS61170523A (en) 1985-01-23 1985-01-23 Treatment of sintering raw material

Publications (2)

Publication Number Publication Date
JPS61170523A true JPS61170523A (en) 1986-08-01
JPH0261528B2 JPH0261528B2 (en) 1990-12-20

Family

ID=11750504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1045185A Granted JPS61170523A (en) 1985-01-23 1985-01-23 Treatment of sintering raw material

Country Status (1)

Country Link
JP (1) JPS61170523A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893830A (en) * 1981-12-01 1983-06-03 Nippon Steel Corp Pelletizing method of minipellet for sintering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893830A (en) * 1981-12-01 1983-06-03 Nippon Steel Corp Pelletizing method of minipellet for sintering

Also Published As

Publication number Publication date
JPH0261528B2 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
EP0415146A1 (en) Method for manufacturing agglomerates of sintered pellets
JP6459724B2 (en) Method for producing sintered ore
JPS61170523A (en) Treatment of sintering raw material
JPS621824A (en) Manufacture of cold-briquetted ore
JP2000256756A (en) Method for granulating sintering raw material
JPH0971824A (en) Production of non-calcined agglomerate
JPS6256533A (en) Method for pelletizing mixed material for sintering
JP4317316B2 (en) Pretreatment method of sintering raw materials
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JP2000290734A (en) Pretreatment of sintering raw material
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JPS61177333A (en) Treatment of sintering material
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JPS60121232A (en) Pretreatment of starting material to be sintered
JPS5817813B2 (en) A method to improve productivity in the production of sintered ore using fine iron ore
JPS61177334A (en) Treatment of sintering raw material
JP7067372B2 (en) Granulation method for compounded raw materials
JPS61177336A (en) Treatment of sintering raw material
JPS59232238A (en) Production of sintered ore
JPS60248827A (en) Preliminary treatment of sintered raw material
JPS6191334A (en) Pretreatment of sintering material
JPS5953636A (en) Manufacture of sintered ore
JPS5917171B2 (en) Pre-treatment method for sintering raw materials
JPS5933646B2 (en) Manufacturing method of sintered raw material
KR101572144B1 (en) Method for manufacturing a high compressive strength pellet by using iron making byproducts that have high moisture content and fine powder, and pellets produced by the same