JPS6117046A - Method for determining position of light source in reflected light measuring device - Google Patents

Method for determining position of light source in reflected light measuring device

Info

Publication number
JPS6117046A
JPS6117046A JP13509384A JP13509384A JPS6117046A JP S6117046 A JPS6117046 A JP S6117046A JP 13509384 A JP13509384 A JP 13509384A JP 13509384 A JP13509384 A JP 13509384A JP S6117046 A JPS6117046 A JP S6117046A
Authority
JP
Japan
Prior art keywords
sensor
light source
sample
aperture
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13509384A
Other languages
Japanese (ja)
Inventor
Shinichi Okano
伸一 岡野
Tadashi Uekusa
植草 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP13509384A priority Critical patent/JPS6117046A/en
Publication of JPS6117046A publication Critical patent/JPS6117046A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform accurate measurement, by providing a specified varying range before and after a measuring surface, moving and positioning light sources so that the peak value of the output of a sensor lies within said range with respect to the measuring surface, thereby reducing the effect of fluctuation of the position of a sample. CONSTITUTION:A measuring surface aperture 10a is formed on the upper surface of a sample table 10. A heat insulating filter 11 is attached to the inner side of the aperture. A plurality of illuminating lamps 12 are arranged under the filter at an equal interval so that the lamps can be moved. A lens 16 is fixed to a cylindrical lens holder 15. The image of light, which has passed the lens 16, is formed on an image forming aperture 17a, which is formed on a sensor attaching plate 17. An interference filter 18, which transmits only the light having a specified wavelength, is provided in front of the attaching plate 17. A sensor 19 arranged at the rear of the plate 17. An incubated chemical analysis slide 20 is mounted on the sample table 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反射濃度計等に利用される照明光源の位置決
め方法に関し、更に詳しくは試料位置の変動の影響を受
けにくいように照明光源を位置決めする方法に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for positioning an illumination light source used in a reflection densitometer, etc., and more specifically, to a method for positioning an illumination light source used in a reflection densitometer, etc. The present invention relates to a positioning method.

〔従来技術〕[Prior art]

反射濃度針は、各種の分野に利用されており、その一つ
として化学分析装置がある。この化学分析装置は、酵素
反応又は化学反応により発色する化学分析スライドを用
いて体液中に存在する被検成分を定量するものであり、
これはインキュベータと反射濃度針と演算制御装置とか
ら構成されている。前記インキュベータは、化学分析ス
ライドの発色反応を充分に進行させるために、所定の温
・度で所定の時間だけ化学分析スライドをインキュベー
トするためのものであり、前記反射濃度針はインキュベ
ート済みの化学分析スライドの発色濃度を測定するため
の′ものである。前記演算制御装置は、反射濃度と被検
成分の濃度との関係をプロットした検量線を参照して被
検成分濃度を算出したり、インキュベータを制御したり
する。前記化学分析スライドは、透明支持体の上に試薬
保持層を塗布したシート状測定エレメントと、点着用開
口と測光用開口とを備え、前記シート状測定エレメント
を収納したスライド枠とから構成されている。なお、化
学分析スライド及び化学分析装置の構造については、例
えば特開昭521−21566号に詳細に記載されてい
る。
Reflection density needles are used in various fields, one of which is chemical analysis equipment. This chemical analyzer quantifies test components present in body fluids using chemical analysis slides that develop color through enzymatic or chemical reactions.
This consists of an incubator, a reflection density needle, and a calculation control unit. The incubator is for incubating the chemical analysis slide at a predetermined temperature and degree for a predetermined time in order to sufficiently progress the coloring reaction of the chemical analysis slide, and the reflective density needle is for incubating the chemical analysis slide after the incubation. This is for measuring the color density of slides. The arithmetic and control device calculates the concentration of the test component and controls the incubator by referring to a calibration curve that plots the relationship between the reflection concentration and the concentration of the test component. The chemical analysis slide is composed of a sheet-like measurement element in which a reagent holding layer is coated on a transparent support, and a slide frame that includes a spotting aperture and a photometry aperture and houses the sheet-like measurement element. There is. The structure of the chemical analysis slide and chemical analysis device is described in detail in, for example, Japanese Patent Laid-Open No. 521-21566.

前記反射濃度計は、複数の照明光源が測定面に対して4
5度の角度で傾斜して配置されており、前記シート状測
定エレメントの下面を照明する。
In the reflection densitometer, a plurality of illumination light sources are arranged at four angles with respect to the measurement surface.
It is arranged inclined at an angle of 5 degrees and illuminates the lower surface of the sheet-like measuring element.

このシート状測定エレメントで反射した光は、レンズ及
び特定の波長域の光だけを透過する干渉フィルタを通っ
てセンサーに入射し、ここで光電変換される。このセン
サーの出力は、デジタル値に変換され、マイクロコンピ
ュータにより濃度値に変換される。
The light reflected by this sheet-like measurement element passes through a lens and an interference filter that transmits only light in a specific wavelength range, and enters the sensor, where it is photoelectrically converted. The output of this sensor is converted into a digital value and converted into a concentration value by a microcomputer.

前記反射濃度の測定を高精度に行うには、設計上で決め
た測定面に試料が正しくセットされるようにすることが
必要であり、試料位置が測定面からズレると照明状態が
変化し、そのためにセンサーの出力が表化して異なった
濃度値が出力されることになる。ところで、前記化学分
析スライドは、スライド枠の加工精度、液体試料の滴下
による測定エレメントのたわみ等により、試料位置が測
定面の前後に亘って僅か変動する。
In order to measure the reflection density with high precision, it is necessary to ensure that the sample is correctly set on the measurement surface determined in the design, and if the sample position deviates from the measurement surface, the illumination condition changes. Therefore, the output of the sensor is tabulated and different concentration values are output. Incidentally, in the chemical analysis slide, the sample position slightly fluctuates across the measurement surface due to processing accuracy of the slide frame, deflection of the measurement element due to dropping of the liquid sample, and the like.

試料位置のズレとセンサーの出力との関係について各種
の実験を9行ったところ、照明光源と試料位置との距離
を調節することにより、試料位置のズレの影響をあまり
受けない場合と、大きく受ける場合とがあることが分か
った。したがって、試料位置のズレの影響を受けない位
lに照明光源を配置することにより、高精度の測定を行
なうことができることを見いだして本発明を完成した。
We conducted nine different experiments on the relationship between sample position deviation and sensor output, and found that by adjusting the distance between the illumination light source and the sample position, we found that some cases were not affected by sample position deviation and others were greatly affected. I found out that there are cases. Therefore, the present invention was completed based on the discovery that highly accurate measurement can be performed by arranging the illumination light source at a position that is not affected by the displacement of the sample position.

〔発明の目的〕[Purpose of the invention]

それゆえ、本発明は、試料位置の変動の影響を最も少な
くして高精度の測定を行うことができるようにした照明
光源の位置決め方法を提供することを目的とするもので
ある。
Therefore, it is an object of the present invention to provide a method for positioning an illumination light source that can minimize the influence of variations in sample position and perform highly accurate measurements.

〔発明の構成〕[Structure of the invention]

上記した目的を達成するために、本発明は、試料位置が
変動する範囲を測定面の前後に定め、この変動範囲内に
センサーの出力のピークがくるように、照明光源の位置
を決めるものである。
In order to achieve the above object, the present invention determines the range in which the sample position fluctuates before and after the measurement surface, and determines the position of the illumination light source so that the peak of the sensor output falls within this fluctuation range. be.

〔実施例〕〔Example〕

第1図は化学分析装置心ご組み込まれた反射光測定部を
示すものである。試料台10は、その上面に測定面アパ
ーチャ10aが形成されており、その内側に防熱フィル
タ11が取り付けられている。
FIG. 1 shows a reflected light measuring section incorporated into the chemical analysis apparatus. The sample stage 10 has a measurement surface aperture 10a formed on its upper surface, and a heat shielding filter 11 is attached inside the measurement surface aperture 10a.

この防熱フィルタ11の下方には、複数の照明ランプ1
2が同心円上に等間隔で配置されている。
Below this heat protection filter 11, a plurality of lighting lamps 1 are provided.
2 are arranged at equal intervals on concentric circles.

これらの各照明ランプ12は、先端にレンズ12aが一
体に設けられており、ランプホルダー13に保持されて
いる。また、照明ランプ12は、レンズホルダー13内
で移動可能であり、位置調節後にビス14で固定される
Each of these illumination lamps 12 is integrally provided with a lens 12a at its tip, and is held in a lamp holder 13. Further, the illumination lamp 12 is movable within the lens holder 13, and is fixed with screws 14 after position adjustment.

レンズホルダー15は、円筒状をしており、その中にレ
ンズ16が固着されている。このレンズ16を通った光
は、センサー取り付は板17に形成した結像面アパーチ
ャ17aに結像される。このセンサー取り付は板17の
前方には、所定の波長域の光だけを透過する干渉フィル
タ18が配置され、また結像面アパーチャ17aの背後
にはセンサー19が配置されている。
The lens holder 15 has a cylindrical shape, and a lens 16 is fixed therein. The light passing through this lens 16 forms an image on an image forming surface aperture 17a formed in a plate 17 for mounting the sensor. In this sensor installation, an interference filter 18 that transmits only light in a predetermined wavelength range is placed in front of the plate 17, and a sensor 19 is placed behind the imaging plane aperture 17a.

前記試料台10の上には、インキュベータ(図示せず)
でインキュベートされた化学分析スライド20が載置さ
れる。この化学分析スライド20は、シート状をした測
定エレメント21と、この測定エレメント21を収納保
持するスライド枠22とから構成されている。
An incubator (not shown) is placed on the sample stage 10.
A chemical analysis slide 20 that has been incubated with is placed thereon. This chemical analysis slide 20 is composed of a sheet-shaped measurement element 21 and a slide frame 22 that houses and holds this measurement element 21.

化学分析スライド20を用いて体液例えば血液中に存在
するグルコース濃度を測定する場合には、ヘパリン採血
した新鮮面を一定量例えば10μpをスライド枠22の
上部に形成した点着用開口から滴下する。この点着後に
、化学分析スライド20を37℃のもとて6分間だけイ
ンキュベートする。インキュベート終了後に、化学分析
スライド20が試料台10の上にくると、測定エレメン
ト21が照明ランプ12で照明される。測定エレメント
21で反射した光は、レンズ16.干渉フィルタ18を
通ってセンサー19に入射し、光電変換される。
When measuring the glucose concentration present in a body fluid, such as blood, using the chemical analysis slide 20, a fixed amount of fresh heparinized blood, for example 10 μp, is dropped from a spotting opening formed at the top of the slide frame 22. After this spotting, the chemical analysis slide 20 is incubated at 37° C. for 6 minutes. After the incubation is completed, when the chemical analysis slide 20 is placed on the sample stage 10, the measurement element 21 is illuminated with the illumination lamp 12. The light reflected by the measurement element 21 passes through the lens 16. The light passes through the interference filter 18 and enters the sensor 19, where it is photoelectrically converted.

測定エレメント21は、本実施例の場合に、スライド枠
22の下面から9.5mm上に取り付けられている。こ
れに合わせて、測定面は試料台10の上面からQ、5n
+上に設定されており、測定工レメント21が常に測定
面にくる場合には、照明条件が同しであるため4、正し
い濃度値を得ることができる。しかし、実際の試料位置
は、スライド枠22の加工精度または液体試料の点着に
よる測定エレメント21のたわみ等により変化する。こ
の試料位置の変化は、測定面の前後0.2mmであるが
、照明ライプ12の位置によっては濃度値が大きく変動
する。
In this embodiment, the measuring element 21 is mounted 9.5 mm above the lower surface of the slide frame 22. Accordingly, the measurement surface is Q, 5n from the top surface of the sample stage 10.
+ above, and if the measuring element 21 is always on the measuring surface, the illumination conditions are the same, so a correct density value can be obtained. However, the actual sample position changes depending on the machining accuracy of the slide frame 22 or the deflection of the measuring element 21 due to spotting of the liquid sample. Although this change in sample position is 0.2 mm before and after the measurement surface, the density value varies greatly depending on the position of the illumination lamp 12.

第2図は基準濃度値として用いられる白板からの反射光
を測定した時のセンサーの出力波形を示すものである。
FIG. 2 shows the output waveform of the sensor when measuring the reflected light from the white plate used as the reference density value.

横軸は光源12から試料位置までの高さくh)を示し゛
、点線で囲まれた範囲は、試料位置が変動する範囲であ
り、本実施例では測定面の前後0.2mmである。曲線
Aは、試料位置と照明ランプ12との距離lを短く設定
し、この状態で試料位置を変化させ時のセンサー19の
出力を示すものであり、曲線Bは距離lが中位の場合を
゛示し、曲線Cは距離βが長い場合を示す。照明ランプ
12をランプホルダー13内で移動し、距離lを短くす
るにつれて曲線Cがら曲線Aに向がって変化する。
The horizontal axis indicates the height (h) from the light source 12 to the sample position, and the range surrounded by the dotted line is the range in which the sample position changes, which in this example is 0.2 mm before and after the measurement surface. Curve A shows the output of the sensor 19 when the distance l between the sample position and the illumination lamp 12 is set short and the sample position is changed in this state, and curve B shows the output when the distance l is medium. The curve C shows the case where the distance β is long. As the illumination lamp 12 is moved within the lamp holder 13 and the distance l is shortened, the curve C changes toward the curve A.

曲線Aは、試料位置の変動範囲では、センサー19の出
力が右下がりに大きく変化しているから、同じ反射濃度
を持ったものでも、試料位置によって測定結果は大きく
変化する。曲線Cでは、右上がりに大きく変化している
から、曲線Aと同様に試料位置の変動が測定結果に大き
く影響する。曲線Bは、試料位置の変動範囲内にピーク
値がきており、そのために試料位置の変動による影響が
最も少ない。
In curve A, the output of the sensor 19 changes significantly downward to the right in the variation range of the sample position, so even if the reflection density is the same, the measurement results vary greatly depending on the sample position. In curve C, since the curve changes greatly upward to the right, as in curve A, variations in the sample position greatly affect the measurement results. Curve B has a peak value within the variation range of the sample position, and therefore is least affected by sample position variation.

そこで、照明ランプ12をランプホルダー13内で移動
させながらセンサー19の出力を調べ、曲線Bのように
、センサー19のピーク値がi&R位置の変動範囲内に
くるランプ位置を見つけ、ビス14を締めて照明ランプ
12を固定する。
Therefore, while moving the illumination lamp 12 within the lamp holder 13, check the output of the sensor 19, find the lamp position where the peak value of the sensor 19 is within the variation range of the i&R position, as shown in curve B, and tighten the screw 14. to fix the illumination lamp 12.

〔発明の効果〕〔Effect of the invention〕

上記構成を有する本発明は、照明光源を測定面に対して
移動し、試料位置の変動範囲内に、センサーの出力のピ
ーク値がくるランプ位置を求め、この位置に照明光源を
位置決めするようにしたから、試料位置の変動による影
響が最も少なくなり、高精度の測定を行うことができる
The present invention having the above configuration moves the illumination light source with respect to the measurement surface, finds the lamp position where the peak value of the sensor output occurs within the variation range of the sample position, and positions the illumination light source at this position. Therefore, the influence of fluctuations in the sample position is minimized, and highly accurate measurements can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反射光測定部の断面図である。 第2図は試料位置を変化させた時のセンサー出力を示す
波形図である。 工0・・試料台    12・・照明ランプ13・・ラ
ンプホルダー 16・・レンズ    18・・干渉フィルタ19・・
センサー 20・・化学分析スライド 21・・測定エレメント 22・・スライド枠。
FIG. 1 is a sectional view of the reflected light measuring section. FIG. 2 is a waveform diagram showing the sensor output when changing the sample position. Process 0... Sample stand 12... Illumination lamp 13... Lamp holder 16... Lens 18... Interference filter 19...
Sensor 20...Chemical analysis slide 21...Measurement element 22...Slide frame.

Claims (1)

【特許請求の範囲】 測定面に対して45度の角度で照明光源を配置し、測定
面に位置している試料で反射した光を測定面に対して垂
直に配置したセンサーで測定する反射光測定装置におい
て、 前記測定面の前後に所定の変動範囲を設定し、この変動
範囲内に前記センサーの出力のピーク値がくるように、
前記照明光源を測定面に対して前後動させて位置決めす
ることを特徴とする照明光源位置決め方法。
[Claims] Reflected light that is obtained by arranging an illumination light source at an angle of 45 degrees with respect to the measurement surface, and measuring the light reflected by a sample located on the measurement surface with a sensor arranged perpendicular to the measurement surface. In the measuring device, a predetermined fluctuation range is set before and after the measurement surface, and the peak value of the output of the sensor is within this fluctuation range.
A method for positioning an illumination light source, characterized in that the illumination light source is positioned by moving the illumination light source back and forth with respect to a measurement surface.
JP13509384A 1984-07-02 1984-07-02 Method for determining position of light source in reflected light measuring device Pending JPS6117046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13509384A JPS6117046A (en) 1984-07-02 1984-07-02 Method for determining position of light source in reflected light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13509384A JPS6117046A (en) 1984-07-02 1984-07-02 Method for determining position of light source in reflected light measuring device

Publications (1)

Publication Number Publication Date
JPS6117046A true JPS6117046A (en) 1986-01-25

Family

ID=15143668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13509384A Pending JPS6117046A (en) 1984-07-02 1984-07-02 Method for determining position of light source in reflected light measuring device

Country Status (1)

Country Link
JP (1) JPS6117046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198736A (en) * 1986-02-26 1987-09-02 Fuji Photo Film Co Ltd Measuring instrument for reflection density
JPS6316247A (en) * 1985-07-25 1988-01-23 カ−ル・ツアイス−スチフツング Diffuse reflectance measuring device for noncontact measurement
JPH0365953U (en) * 1989-10-30 1991-06-26
US9804025B2 (en) 2015-03-12 2017-10-31 Seiko Epson Corporation Spectrometry device and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316247A (en) * 1985-07-25 1988-01-23 カ−ル・ツアイス−スチフツング Diffuse reflectance measuring device for noncontact measurement
JPS62198736A (en) * 1986-02-26 1987-09-02 Fuji Photo Film Co Ltd Measuring instrument for reflection density
JPH0572976B2 (en) * 1986-02-26 1993-10-13 Fuji Photo Film Co Ltd
JPH0365953U (en) * 1989-10-30 1991-06-26
US9804025B2 (en) 2015-03-12 2017-10-31 Seiko Epson Corporation Spectrometry device and image forming apparatus

Similar Documents

Publication Publication Date Title
US5307144A (en) Photometer
US4291230A (en) Fluorometric analyzer including shutter means for simultaneously shielding sample and photodetector during sample change
JP2730680B2 (en) Inspection cell
US4892409A (en) Photometric apparatus for multiwell plates having a positionable lens assembly
US7224470B2 (en) Method and apparatus for measuring surface configuration
EP0026885B1 (en) Filterphotometer
US3885878A (en) Colour measuring devices
JPS6222066A (en) Latex agglutination reaction measuring instrument
US3582659A (en) Spectrophotometer circuit with linear response to absorbance
US5039225A (en) Apparatus for measurement of reflection density
US3523737A (en) Cuvette positioning device for optical density analytical apparatus
JPH058975B2 (en)
US20230324307A1 (en) Circuit board with onboard light sources
JPS6117046A (en) Method for determining position of light source in reflected light measuring device
US3676007A (en) Direct reading filter photometer
JP7386326B2 (en) Photometer optical coupling device for double incubation ring using periscope structure
GB2150704A (en) Filter assembly for fluorescence spectroscopy
US4443104A (en) Fluorimeter sampling apparatus
US2871370A (en) High sensitivity exposure head
CN220120704U (en) Protein detection device
JPH01142440A (en) Cuvet holder for automatic chemical analyser
JPS601412Y2 (en) Automatic inspection device for chemical reaction test pieces
US2850941A (en) Device for measuring light transmission
JPH023459B2 (en)
JPS6398544A (en) Reaction container