JPS61170020A - Device for chemical vapor deposition - Google Patents

Device for chemical vapor deposition

Info

Publication number
JPS61170020A
JPS61170020A JP1010485A JP1010485A JPS61170020A JP S61170020 A JPS61170020 A JP S61170020A JP 1010485 A JP1010485 A JP 1010485A JP 1010485 A JP1010485 A JP 1010485A JP S61170020 A JPS61170020 A JP S61170020A
Authority
JP
Japan
Prior art keywords
wafer
material gas
step coverage
vapor deposition
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010485A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kotani
俊幸 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1010485A priority Critical patent/JPS61170020A/en
Publication of JPS61170020A publication Critical patent/JPS61170020A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide

Abstract

PURPOSE:To improve a step coverage by introducing a material gas vertically to the substrate. CONSTITUTION:A nozzle 1 is formed into T-shape by its cross section and the gas outlets face wafers 3. As a result, the material gas is introduced vertically to the wafers 3 and by introducing the material gas vertically to the substrate, a step coverage is improved by about 20%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1%に半導体装置の製造において用いられるC
VD装置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to C
Concerning improvements to VD devices.

〔従来の技術〕[Conventional technology]

従来の常圧CVD装置、特に誘導加熱炉は、第2図にこ
の模式図を示す様に、ノズル5に設けられた穴が半導体
ウェハー3に平行な方向に形成されているので、原料ガ
ス6はキャリヤーガスと共にウェハー3に平行に導入さ
れる構造となってぃた。なお、2は基板サセプタ、4は
誘導加熱コイルである。
Conventional atmospheric pressure CVD equipment, especially induction heating furnaces, have holes provided in nozzle 5 in a direction parallel to semiconductor wafer 3, as shown in the schematic diagram in FIG. was introduced in parallel to the wafer 3 together with the carrier gas. Note that 2 is a substrate susceptor and 4 is an induction heating coil.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような常圧CVD装置では、ウェハー3上にCVD
によって形成される膜のステ、プカパレッジが悪いとい
う欠点がある。すなわち、第3図(JR)に示す様に、
シリコン基板lOの表面を酸化膜11が選択的に覆って
いるウェハー3に対して、CVDによりて同図中)のよ
うに例えば多結晶シリコン層12を形成する場合、酸化
膜11による段差のために1段底部まで原料ガスが侵入
できず、この結果、段底部の膜厚tsが他部分の膜厚t
2に比してかなり薄くなるという欠点があった。
In such a normal pressure CVD apparatus, CVD is performed on the wafer 3.
The disadvantage is that the film formed by this method has poor stent and puckiness. That is, as shown in Figure 3 (JR),
When forming, for example, a polycrystalline silicon layer 12 by CVD on a wafer 3 whose surface is selectively covered with an oxide film 11, as shown in the figure (in the same figure), due to the step difference caused by the oxide film 11. As a result, the film thickness ts at the bottom of the stage becomes smaller than the film thickness t at other parts.
It had the disadvantage that it was considerably thinner than 2.

〔問題点を解゛決するための手段〕[Means for solving problems]

このようなステップカバレッジの問題点を解決するため
に1本発明のCVD装置は、ウェハーに対して垂直に原
料ガスを導入する構造になっていることを特徴とし、こ
の結果1段底部にも原料ガスが侵入できる様になりステ
ップカバレッジが改善され得る。
In order to solve this problem of step coverage, the CVD apparatus of the present invention is characterized by having a structure in which the raw material gas is introduced perpendicularly to the wafer. Step coverage may be improved by allowing gas to enter.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す縦断面図である。第1
図から明らかなように、本装置のノズル1は断面T字型
に形成されており、かつガス吹出口がウェハー3と対向
するように形成されている。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention. 1st
As is clear from the figure, the nozzle 1 of the present apparatus is formed to have a T-shaped cross section, and the gas outlet is formed to face the wafer 3.

この結果、原料ガスはウェハー3に対して垂直方向に導
入される。
As a result, the source gas is introduced perpendicularly to the wafer 3.

次に、本発明の効果を具体的に説明する。第1図及び第
2図の装置にて、例えば第3図(a)のごとき、酸化膜
11の開口幅1=L2μmの段差に8iH4ガス、70
0℃で第3図(b)のようにポリシリコン層12の成長
を行った時のステ、プカバレッジを種々の段差について
調べた。ステ、プカバレッジは開口底部と表面との膜厚
比で見ることができるので、第3図(b)のt3/l−
と考えればよいことがわかる。その結果を第4図に示す
。第4図によれば本発明の基板に対して垂直に原料ガス
を導入する第1図の装置の方が約20−程度ステップカ
バレッジが改善されていることがわかる。
Next, the effects of the present invention will be specifically explained. In the apparatus shown in FIGS. 1 and 2, for example, as shown in FIG. 3(a), 8iH4 gas and 70
The step coverage when the polysilicon layer 12 was grown at 0° C. as shown in FIG. 3(b) was investigated for various step differences. Step coverage can be seen by the film thickness ratio between the bottom of the opening and the surface, so t3/l- in Figure 3(b)
If you think about it, you will understand. The results are shown in FIG. According to FIG. 4, it can be seen that the step coverage of the apparatus of FIG. 1, which introduces the raw material gas perpendicularly to the substrate of the present invention, is improved by about 20 degrees.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基板に垂直に原料ガス管
・導入することによりステップカバレッジを約2G%改
善できる。
As explained above, according to the present invention, the step coverage can be improved by about 2G% by introducing the raw material gas pipe perpendicularly to the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す模式断面図、第2図に
従来例の装置断面図、第3図(a)はウェハー断面口、
第3図(b)はCVD成長後のウェノ・−断面図、第4
図は成長膜厚比を示す特性グラフ。 1・・・・・・ガスノズル、2・・・・・・SiCサセ
プター、3・・・・・・ウェハー、4・・・・・・誘導
加熱コイル、5・・・・・・従来の原料ガスノズル、6
・・・・・・原料ガス、10・・・°°°シリコン基板
、11・・・・・・酸化膜、12・・・・・・ポリシリ
コン。 第2図 篤 3 回 (L) Z 筋 3  図  (トノ
FIG. 1 is a schematic sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view of a conventional device, and FIG. 3(a) is a wafer cross-sectional view.
Figure 3(b) is a cross-sectional view of the weno layer after CVD growth.
The figure is a characteristic graph showing the growth film thickness ratio. 1... Gas nozzle, 2... SiC susceptor, 3... Wafer, 4... Induction heating coil, 5... Conventional raw material gas nozzle ,6
... Raw material gas, 10...°°° Silicon substrate, 11... Oxide film, 12... Polysilicon. Figure 2 Atsushi 3 times (L) Z muscle Figure 3 (Tonneau

Claims (1)

【特許請求の範囲】[Claims] CVD膜を成長させるウェハーに対してそのウェハーの
主面に垂直に原料ガスを導入することを特徴とするCV
D装置。
CVD characterized by introducing source gas perpendicularly to the main surface of the wafer on which the CVD film is to be grown.
D device.
JP1010485A 1985-01-23 1985-01-23 Device for chemical vapor deposition Pending JPS61170020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010485A JPS61170020A (en) 1985-01-23 1985-01-23 Device for chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010485A JPS61170020A (en) 1985-01-23 1985-01-23 Device for chemical vapor deposition

Publications (1)

Publication Number Publication Date
JPS61170020A true JPS61170020A (en) 1986-07-31

Family

ID=11741005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010485A Pending JPS61170020A (en) 1985-01-23 1985-01-23 Device for chemical vapor deposition

Country Status (1)

Country Link
JP (1) JPS61170020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827738B2 (en) * 2004-09-28 2011-11-30 株式会社Ptp Remote controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827738B2 (en) * 2004-09-28 2011-11-30 株式会社Ptp Remote controller

Similar Documents

Publication Publication Date Title
GB1269431A (en) Improvements in or relating to methods for depositing material upon heated semiconductor crystals
JPS5444482A (en) Mos type semiconductor device and its manufacture
KR910019113A (en) Method of forming titanium nitride on semiconductor wafer by reaction of titanium and nitrogen containing gas in integrated process system
JPS62125642A (en) Wafer susceptor
EP0363689A3 (en) Semiconductor devices manufacture using selective epitaxial growth and poly-si deposition in the same apparatus
EP1031641A3 (en) Method and apparatus for depositing an insulating film
EP0164928A3 (en) Vertical hot wall cvd reactor
EP1394844A4 (en) Method of fabricating semiconductor device
JP2017199810A (en) Method of manufacturing silicon carbide epitaxial wafer, method of manufacturing silicon carbide semiconductor device, and device of manufacturing silicon carbide epitaxial wafer
JPS61170020A (en) Device for chemical vapor deposition
GB1260233A (en) Improvements in or relating to the epitaxial deposition of crystalline material from the gas phase
EP0193298A3 (en) Method for the formation of epitaxial layers for integrated circuits
JP3214109B2 (en) Method for manufacturing silicon oxide film
JP3015710B2 (en) Semiconductor manufacturing method
JP2762576B2 (en) Vapor phase growth equipment
JPS6315426A (en) Semiconductor device
JPS607133A (en) Plasma cvd device
JP3112796B2 (en) Chemical vapor deposition method
JPH0251230A (en) Forming method for cvd oxide film
JPS61131434A (en) Manufacture of semiconductor device
JPS6154616A (en) Gas exhausting process
JPS60158672A (en) Manufacture of semiconductor device
JPH01217910A (en) Manufacture of semiconductor device
JPH03245533A (en) Coated metal wiring structure and formation thereof
JPS61198628A (en) Selective growth method for tungsten film