JPS61169601A - Gas turbine blade - Google Patents

Gas turbine blade

Info

Publication number
JPS61169601A
JPS61169601A JP836285A JP836285A JPS61169601A JP S61169601 A JPS61169601 A JP S61169601A JP 836285 A JP836285 A JP 836285A JP 836285 A JP836285 A JP 836285A JP S61169601 A JPS61169601 A JP S61169601A
Authority
JP
Japan
Prior art keywords
cooling fluid
passage
nozzle
blade
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP836285A
Other languages
Japanese (ja)
Inventor
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP836285A priority Critical patent/JPS61169601A/en
Publication of JPS61169601A publication Critical patent/JPS61169601A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To equally cool and entire blade by installing a supply passage and a exhaust passage inside the blade to allow a gradual increase of cooling fluid from the root section of the blade toward the central section, and a gradual decrease of cooling fluid from the central section toward the tip section. CONSTITUTION:The first flow passage 7 is formed inside a turbine nozzle 5 along the direction of a blade to communicate with a supply source of cooling fluid. The second flow passage 10 is formed, while being communicated with the above passage 7 through a plurality of small ports 8, and with its one end opened at the trailing edge of the nozzle 5 through a slit 9, and a plurality of pin fins 11 are installed inside the passage 10. By this constitution, cooling fluid introduced into the passage 7 flows out from the small ports 8 to cool the frontal section (A) of the nozzle 5, and especially efficiently to cool the central section. The cooling fluid introduced into the passage 10 cools the rear section (B) while passing through spaces among fins 11, and especially efficiently to cool the central section. Thus, the entire nozzle 5 is evenly cooled.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はガスタービンに係り、特に冷却構造を改良した
ガスタービン闘に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine, and more particularly to a gas turbine having an improved cooling structure.

[発明の技術的背景] ガスタービンは他の原動機と較べて小型軽量で大出力が
得られる等の利点を有しているため、航空用の発電プラ
ント用等に広く使用されている。
[Technical Background of the Invention] Gas turbines have advantages over other prime movers in that they are small and lightweight and can provide high output, and are therefore widely used in power generation plants for aircraft and the like.

ガスタービンでは通常、第3図に示すように、圧縮機1
で圧縮した高圧の空気を燃焼器2へ導き燃料ノズル3よ
り燃料を噴射して燃焼させ、この燃焼によって生じた高
温、高圧のガスをガスタービン4に導いてlI眼させる
ことにより回転動力を得るように構成されている。この
ようなガスタービンの性能向上を図るにはタービン4の
入口における燃焼ガス温度を上昇させることが最も効果
的であり、近年のガスタービンの燃焼ガス温度は益々高
められる傾向にある。しかし、燃焼ガス濃度が上昇する
につれて、構成部品の強度、寿命が低下するため、高温
の燃焼ガスにさらされる部品、特に高応力下で使用され
るノズル5や羽根6等のタービン翼では冷却が必要不可
欠となる。
In a gas turbine, normally a compressor 1 is installed as shown in Fig. 3.
The high-pressure air compressed by the gas turbine is guided to the combustor 2, where fuel is injected from the fuel nozzle 3 and combusted, and the high-temperature, high-pressure gas generated by this combustion is guided to the gas turbine 4 and rotated to generate rotational power. It is configured as follows. In order to improve the performance of such a gas turbine, it is most effective to increase the combustion gas temperature at the inlet of the turbine 4, and in recent years there has been a tendency to increase the combustion gas temperature of gas turbines. However, as the concentration of combustion gas increases, the strength and lifespan of component parts decreases, so parts that are exposed to high-temperature combustion gas, especially turbine blades such as nozzles 5 and blades 6 that are used under high stress, require cooling. It becomes essential.

[背景技術の問題点] ところで、第3図に示すようなガスタービンにおいて燃
焼が行なわれる際、火炎は燃焼器2のほぼ軸中心付近に
生じ、更にこの燃焼器2がその周囲を流れる空気等によ
り冷却されるため、軸中心付近の燃焼ガスが最も高温と
なる。このような燃焼ガスがタービン4へ導かれると、
ノズル5や羽根6の入口部では、第4図に示すように、
半径方向に不均一な温度分布となる。
[Problems with the Background Art] By the way, when combustion is performed in a gas turbine as shown in FIG. The combustion gas near the center of the shaft has the highest temperature. When such combustion gas is guided to the turbine 4,
At the inlet of the nozzle 5 and blade 6, as shown in FIG.
This results in non-uniform temperature distribution in the radial direction.

従ってタービン翼の中央部付近が最も高温の燃焼ガスに
さらされることになるが、従来のタービン翼では翼の高
さ方向に沿って一様な冷却を行なっているため、胃中央
部付近で冷却効果が不足し、タービン翼が破損する可能
性が高い。一方、胃中央部付近の冷却効果を十分高める
ためには多量の冷却流体を必要とし、ガスタービンの性
能を損うという欠点を有している。
Therefore, the area near the center of the turbine blade is exposed to the highest temperature combustion gas, but with conventional turbine blades, cooling is performed uniformly along the height of the blade, so cooling occurs near the center of the stomach. There is a high possibility that the effect will be insufficient and the turbine blades will be damaged. On the other hand, in order to sufficiently enhance the cooling effect near the central part of the stomach, a large amount of cooling fluid is required, which has the disadvantage of impairing the performance of the gas turbine.

〔発明の目的] 本発明はこのような事情に鑑みてなされたもので、その
目的とするところは、最少の冷却流体で両全体を良好に
冷却でき、もって性能向上と信頼性向上とを図れるガス
タービン翼を提供することにある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to successfully cool both parts with a minimum amount of cooling fluid, thereby improving performance and reliability. Our objective is to provide gas turbine blades.

[発明の概要] 本発明に係るガスタービン翼は、翼の根元部から中央部
にかけて冷却流体の量が次第に増加し、一方、中央部か
ら先端部にかけて冷却流体の量が次第に減少するような
冷却流体の供給流路と排出流路とを翼内部に設けたこと
を特徴としている。
[Summary of the Invention] The gas turbine blade according to the present invention has a cooling system in which the amount of cooling fluid gradually increases from the root to the center of the blade, and the amount of cooling fluid gradually decreases from the center to the tip. It is characterized in that a fluid supply channel and a fluid discharge channel are provided inside the blade.

[発明の効果1 上記構成であると、最も高温の燃焼ガスにさらされてい
るタービン翼の中央部付近に集中して冷却流体を供給す
ることができるため、この部分を効果的に冷却すること
ができる。比較的低温の燃焼ガスにさらされる根元部、
または先端部に供給される冷却流体は少量であるため、
タービン翼全体を均一な温度に冷却することができる。
[Effect of the invention 1] With the above configuration, the cooling fluid can be supplied in a concentrated manner near the center of the turbine blade, which is exposed to the highest temperature combustion gas, so that this part can be effectively cooled. I can do it. The root part is exposed to relatively low temperature combustion gas,
Or because the cooling fluid supplied to the tip is small,
The entire turbine blade can be cooled to a uniform temperature.

その結果、温度差によって生ずる熱応力を緩和すること
ができ、タービン翼のか命を伸ばすことができる。
As a result, thermal stress caused by temperature differences can be alleviated, extending the life of the turbine blade.

このようにタービン翼の高さ方向に沿って冷却流体を適
切に配分することによって、従来の方法と比較して、両
全体としては冷却流体の量を大幅に低減できるため、ガ
スタービン性能の向上を図ることができる。
By properly distributing the cooling fluid along the height of the turbine blades, the overall amount of cooling fluid can be significantly reduced compared to conventional methods, resulting in improved gas turbine performance. can be achieved.

更に、主流中に排出される冷却流体の量は胃中央部で最
も多いためこの冷却流体が主流と混合することにより、
当該タービン翼の下流側では半径方向の温度分布を均一
化することができる。
Furthermore, since the amount of cooling fluid discharged into the mainstream is greatest in the central region of the stomach, this cooling fluid mixes with the mainstream,
The temperature distribution in the radial direction can be made uniform on the downstream side of the turbine blade.

[発明の実施例] 本発明の一実施例を図を用いて説明する。第1図は本発
明をタービンノズルに適用した例を示すものである。す
なわち、ノズル5内部に開方向に沿って、冷却流体供給
源と連通ずる第1の流路7と、前記流路7と複数の小孔
8を連通し、かつ一端側がスリット9を介してノズル5
の後縁に開口する第2の流路10とを設け、更に前記第
2の流路10の内部に複数個のビンフィン11を配設す
る。前記小孔8はノズル5の中央部付近に多数設け、中
央部から根元部または先端部へ向うにつれて次第に数が
減少するように配列する。また、前記スリット9の幅は
、ノズル5の中央部付近で広く、中央部から離れるにつ
れて次第に狭くなるように構成する。
[Embodiment of the Invention] An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a turbine nozzle. That is, along the opening direction inside the nozzle 5, there is a first channel 7 that communicates with a cooling fluid supply source, and a plurality of small holes 8 that communicate with the channel 7, and one end of which is connected to the nozzle through a slit 9. 5
A second flow path 10 that opens at the rear edge is provided, and a plurality of bottle fins 11 are further disposed inside the second flow path 10. A large number of the small holes 8 are provided near the center of the nozzle 5 and arranged so that the number gradually decreases from the center toward the root or tip. Further, the width of the slit 9 is wide near the center of the nozzle 5 and gradually narrows as it moves away from the center.

本発明は上記構成によるものであり、第1の流路7に導
かれた冷却流体は、第2図に示されるように小孔8より
噴出して、ノズル5の前方部分Aを冷却するが(インピ
ンジメント冷却)、小孔8は最も高温のガスにさらされ
るノズル5の中央部付近に多数設けられているため、供
給される冷却流体量も最も多くなり、中央部を効果的に
冷却することができる。一方、根元部または先端部では
、小孔8の数が少く冷却流体量も減少するため、結局前
述したような種々の優れた効果が得られることになる。
The present invention has the above configuration, and the cooling fluid guided to the first flow path 7 is ejected from the small hole 8 as shown in FIG. 2 to cool the front portion A of the nozzle 5. (Impingement cooling), since a large number of small holes 8 are provided near the center of the nozzle 5, which is exposed to the highest temperature gas, the amount of cooling fluid supplied is also the largest, effectively cooling the center. be able to. On the other hand, at the root or tip, the number of small holes 8 is small and the amount of cooling fluid is also reduced, resulting in various excellent effects as described above.

一方、第2の流路10に導かれた冷却流体は、複数個の
ビンフィン11の間を通路する間にノズル5の後方部分
Bを冷却するが(ビンフィン冷却)先と同様の理由によ
り、中央部付近を最も効果的に冷却する。この後、冷却
流体は最終的にスリット9より主流中へ排出されるが、
排出量はほぼスリット幅に比例するため、ノズル5の中
央部付近で最も多く、中央部から離れるにつれて次第に
減少する。主流温度が最も高い中央部付近に多くの冷却
冷体が排出されるため、主流と混合することにより、ノ
ズル5の下流側では、温度分布が半径方向に均一化され
ることになる。
On the other hand, the cooling fluid guided to the second flow path 10 cools the rear part B of the nozzle 5 while passing between the plurality of bin fins 11 (bin fin cooling). Most effectively cools the area around the area. After this, the cooling fluid is finally discharged into the mainstream through the slit 9,
Since the discharge amount is approximately proportional to the slit width, it is highest near the center of the nozzle 5 and gradually decreases as it moves away from the center. Since most of the cooling body is discharged near the center where the mainstream temperature is highest, by mixing with the mainstream, the temperature distribution is made uniform in the radial direction on the downstream side of the nozzle 5.

なお、第1図は本発明をノズル5に適用した例を示した
が、必ずしもノズルである必要はなく、羽根6に適用し
ても同様に優れた効果が得られる。
Although FIG. 1 shows an example in which the present invention is applied to the nozzle 5, it is not necessarily necessary to apply the present invention to the nozzle, and even when applied to the blade 6, similar excellent effects can be obtained.

また、第1図では冷却流体を翼後縁から主流中へ排出す
る例を示したが、必ずしも後縁である必要はなく、ター
ビン翼の表面に泊って排出する場合(フィルム冷却)に
適用してもさしつかえない。
Also, although Figure 1 shows an example in which the cooling fluid is discharged from the trailing edge of the blade into the mainstream, it does not necessarily have to be from the trailing edge, but can also be applied to the case where it is discharged from the surface of the turbine blade (film cooling). I don't mind.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るガスタービン翼を示す
断面図、第2図は第1図のll−ff線に沿って切断し
た断面図、第3図は従来のガスタービンを一部切所して
示す側面図、第4図はタービン入口部における燃焼ガス
の半径方向の温度分布を示す説明図である。 1・・・圧縮機、2・・・燃焼器、3・・・燃料ノズル
、4・・・タービン、5・・・ノズル、6・・・羽根、
7・・・第1の流路、8・・・小孔、9・・・スリット
、10・・・第2の流路、11・・・ピンフィン代理人
 弁理士 則近憲佑(ほか1名)第1図 第3図
FIG. 1 is a sectional view showing a gas turbine blade according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line ll-ff in FIG. 1, and FIG. 3 is a sectional view of a conventional gas turbine blade. FIG. 4 is a partially cutaway side view and is an explanatory diagram showing the radial temperature distribution of combustion gas at the turbine inlet. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Combustor, 3... Fuel nozzle, 4... Turbine, 5... Nozzle, 6... Vane,
7...First flow path, 8...Small hole, 9...Slit, 10...Second flow path, 11...Pinfin agent, patent attorney Kensuke Norichika (and one other person) ) Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] タービン翼の内部に、前記翼の根元部から中央部に向う
に従って冷却流体の量が次第に増加し、中央部から先端
部に向うに従って逆に冷却流体の量が次第に減少するよ
うな冷却流体の供給流路と排出流路とを設けたことを特
徴とするガスタービン翼。
Supply of cooling fluid inside a turbine blade such that the amount of cooling fluid gradually increases from the root to the center of the blade, and conversely the amount of cooling fluid gradually decreases from the center to the tip. A gas turbine blade characterized by having a flow path and a discharge flow path.
JP836285A 1985-01-22 1985-01-22 Gas turbine blade Pending JPS61169601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP836285A JPS61169601A (en) 1985-01-22 1985-01-22 Gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP836285A JPS61169601A (en) 1985-01-22 1985-01-22 Gas turbine blade

Publications (1)

Publication Number Publication Date
JPS61169601A true JPS61169601A (en) 1986-07-31

Family

ID=11691117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP836285A Pending JPS61169601A (en) 1985-01-22 1985-01-22 Gas turbine blade

Country Status (1)

Country Link
JP (1) JPS61169601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483826A (en) * 1987-09-25 1989-03-29 Toshiba Corp Blade for gas turbine
US5320483A (en) * 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483826A (en) * 1987-09-25 1989-03-29 Toshiba Corp Blade for gas turbine
US5320483A (en) * 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine

Similar Documents

Publication Publication Date Title
JP4341248B2 (en) Crossover cooled airfoil trailing edge
US6099252A (en) Axial serpentine cooled airfoil
US5356265A (en) Chordally bifurcated turbine blade
US5482435A (en) Gas turbine blade having a cooled shroud
US5498133A (en) Pressure regulated film cooling
US4992026A (en) Gas turbine blade
US6036441A (en) Series impingement cooled airfoil
US6402471B1 (en) Turbine blade for gas turbine engine and method of cooling same
US6499950B2 (en) Cooling circuit for a gas turbine bucket and tip shroud
US5100293A (en) Turbine blade
JP4659206B2 (en) Turbine nozzle with graded film cooling
US8657576B2 (en) Rotor blade
US6174135B1 (en) Turbine blade trailing edge cooling openings and slots
EP3498975B1 (en) Cooled airfoil for a gas turbine, the airfoil having means preventing accumulation of dust
JP4311919B2 (en) Turbine airfoils for gas turbine engines
US4859147A (en) Cooled gas turbine blade
US6183198B1 (en) Airfoil isolated leading edge cooling
US7246999B2 (en) Stepped outlet turbine airfoil
US3994622A (en) Coolable turbine blade
JP2002364305A (en) Blade or vane to be cooled for turbine engine
JP2001020702A (en) Cooling of separated leading edge of airfoil portion
KR20030030849A (en) Turbine airfoil with enhanced heat transfer
JP2002235502A (en) Turbine blade for gas turbine engine, and cooling method of turbine blade
US7001141B2 (en) Cooled nozzled guide vane or turbine rotor blade platform
JP2001200704A (en) Cooled blade part of gas turbine engine, and method of manufacturing the same