JPS61168528A - Truly spherical fine particle composed of titanium oxide - Google Patents

Truly spherical fine particle composed of titanium oxide

Info

Publication number
JPS61168528A
JPS61168528A JP1171485A JP1171485A JPS61168528A JP S61168528 A JPS61168528 A JP S61168528A JP 1171485 A JP1171485 A JP 1171485A JP 1171485 A JP1171485 A JP 1171485A JP S61168528 A JPS61168528 A JP S61168528A
Authority
JP
Japan
Prior art keywords
titanium oxide
particles
powder
particle size
colloidal liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1171485A
Other languages
Japanese (ja)
Other versions
JPH0425208B2 (en
Inventor
Goro Sato
護郎 佐藤
Yusaku Arima
悠策 有馬
Michio Komatsu
通郎 小松
Hirokazu Tanaka
博和 田中
Yoshitsune Tanaka
喜凡 田中
Takeo Shimada
武雄 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
JGC Catalysts and Chemicals Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Catalysts and Chemicals Industries Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP1171485A priority Critical patent/JPS61168528A/en
Publication of JPS61168528A publication Critical patent/JPS61168528A/en
Publication of JPH0425208B2 publication Critical patent/JPH0425208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve the fluidity and dispersibility of titanium oxide fine particle, by specifying the average particle diameter, particle size distribution, sphericity, and surface area of the particles. CONSTITUTION:The objective truly spherical fine titanium oxide particle has an average particle diameter of 1-20mu, a particle size distribution of 0.5-30mu, a sphericity of 0.85-1.00 and a surface area of 1-50m<2>/g. The titanium oxide powder can be produced from a colloidal liquid of titanium oxide or hydrated oxide or from a mixture obtained by adding titanium oxide gel to the above colloidal liquid, by spray-drying the colloidal liquid to form a sphere by the surface tension of the colloidal liquid, and sintering the particle to decrease its surface area.

Description

【発明の詳細な説明】 本発明は真球状で、シャープな粒度分布を有し、平均粒
子径が1〜20μである酸化チタンの微粉末に関するも
のであって、さらに詳しくのべれば、平均粒子径が1〜
20μで、粒度分布が0.5〜30μであり、真球度が
0.85〜1.00で、表面積が1〜50rrF/gで
ある酸化チタンの微粒子粉末に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fine titanium oxide powder that is perfectly spherical, has a sharp particle size distribution, and has an average particle size of 1 to 20μ. Particle size is 1~
20μ, particle size distribution of 0.5 to 30μ, sphericity of 0.85 to 1.00, and surface area of 1 to 50rrF/g.

従来知られている工業製品としての酸化チタンの粉末に
は大別して2種類ある。その1つはチタンの金属塩及び
/又はチタン酸塩を加水分解して得られる通常のチタン
顔料であり、他の1つは四塩化チタン等を気相酸化して
得られるチタン粉末である。前者の酸化チタン粉末は、
通常チタンの硫酸塩又は塩酸塩を水溶液中で加水分解す
ることにより含水酸化チタンのゲルを作り、これを洗浄
、乾燥、焼成する事により所望の結晶構造を持った数l
ll11大の塊状酸化チタンを作り、 これを平均粒子
径0.2〜03μに微粉砕したものである。この粉末は
形状が不定形で、また非常に付着性が強い為凝集が起り
、数μから百数拾μのルーズな2次凝集粒子を作り、そ
の形状も不定形である。従って、この粉末を例えば塗料
や化粧料に使用した場合、分散性が悪いとか、延びや流
動性が悪く多量に使用出来ないなどの欠点がある。
There are two types of titanium oxide powders that are conventionally known industrial products. One is a normal titanium pigment obtained by hydrolyzing a titanium metal salt and/or titanate, and the other is a titanium powder obtained by vapor phase oxidation of titanium tetrachloride or the like. The former titanium oxide powder is
Usually, a hydrous titanium oxide gel is created by hydrolyzing titanium sulfate or hydrochloride in an aqueous solution, and then washed, dried, and calcined to form a gel with a desired crystal structure.
A lump of titanium oxide with a size of 111 mm was prepared and then finely ground to an average particle size of 0.2 to 03 μm. This powder has an amorphous shape, and since it has very strong adhesiveness, agglomeration occurs to form loose secondary agglomerated particles ranging in size from several micrometers to over 100 micrometers, and their shape is also irregular. Therefore, when this powder is used, for example, in paints or cosmetics, it has drawbacks such as poor dispersibility, poor spreadability and fluidity, and cannot be used in large quantities.

一方、後者の酸化チタン粉末は、揮発性チタン化合物を
気化させ、気化状態の大きさのままこれを燃焼させて微
粒子としてものであるため、−欠粒子の形状はほぼ球状
で、平均粒子径は非常に小さく約0.03μである。又
この一次粒子は高温燃焼して作られている為、粒子の表
面活性が小さくなり、凝集力が弱い。しかし、あまりに
も−次粒子が小さい為ルーズな凝集を起して、2次凝集
粒子を作るばかりでなく、この凝集体同志がまたルーズ
に凝集して3次凝集粒子を作る。しかるに粒子間の凝集
力は弱いため非常に嵩だかくなり、運搬や取り扱いに問
題が起る。
On the other hand, the latter titanium oxide powder is made by vaporizing a volatile titanium compound and burning it in the same size as the vaporized state to form fine particles, so the shape of the missing particles is almost spherical and the average particle size is It is very small, about 0.03μ. Furthermore, since these primary particles are produced by high-temperature combustion, the surface activity of the particles is reduced and their cohesive force is weak. However, since the secondary particles are too small, they not only loosely aggregate to form secondary aggregated particles, but also loosely aggregate to form tertiary aggregated particles. However, since the cohesive force between the particles is weak, they become very bulky, causing problems in transportation and handling.

しかし、使用時には分散性が良い為、−次粒子にもどり
、この−次波子の大きさが可視光線の約11/10であ
ることから、透明で隠ペイ力がない為、白色顔料として
は使用出来ない。また、この酸化チタン粉末は製造過程
で結晶構造のコントロールがむずかしく、アナターゼと
ルチルの混合品である。
However, when used, it has good dispersibility, so it returns to -order particles, and since the size of these -order waves is about 11/10 of visible light, it is transparent and has no hiding power, so it is used as a white pigment. Can not. Furthermore, the crystal structure of this titanium oxide powder is difficult to control during the manufacturing process, and it is a mixture of anatase and rutile.

上記した従来の酸化チタン粉末とは対照的に、本発明の
酸化チタンからなる真球状微粉末は。
In contrast to the conventional titanium oxide powder described above, the true spherical fine powder made of titanium oxide of the present invention.

真球度0.85〜1.00、平均粒子径1〜20μ1粒
度分布0.5〜30μそして表面積が1〜50m2/g
であることを特徴とする。
Sphericity 0.85-1.00, average particle diameter 1-20μ1, particle size distribution 0.5-30μ, and surface area 1-50m2/g
It is characterized by

ここで言う真球度とは単一粒子が重ならないよう分散さ
せて走査型電子顕微鏡(SEM)にて2000倍に拡大
した電子顕微鏡写真を撮り、これを島津製のイメージア
ナライザーで画像解析し、単一粒子1ケ1ケの投影面の
面積と円周を測定し1面積から真円と仮定して得られる
相当直径をHDとし、又円周から真円と仮定して得られ
る組編直径をHdとし、これらの2つの比を真球度とし
た。
The sphericity referred to here refers to the fact that single particles are dispersed so that they do not overlap, and an electron micrograph is taken at a magnification of 2000 times using a scanning electron microscope (SEM), and this image is analyzed using a Shimadzu image analyzer. HD is the equivalent diameter obtained by measuring the area and circumference of the projected plane of one single particle and assuming that it is a perfect circle from one area, and the braiding diameter that is obtained from the circumference and assuming that it is a perfect circle. was defined as Hd, and the ratio of these two was defined as sphericity.

そしてこの値が0.850〜1.00のものを真球とし
た。かつサンプリングしたもののうち、真球が90%以
上認められるものを真球状微粒子と名付けた。尚、表面
上に小さい粒子の耐着、陥没などの認められる粒子は真
球とはしない。
A ball with this value of 0.850 to 1.00 was defined as a true sphere. Among the sampled particles, those in which 90% or more of the particles were true spheres were named true spherical fine particles. Incidentally, particles with small adhesion or depression on the surface are not considered to be true spheres.

本発明の酸化チタン粉末は、チタンの酸化物及び/又は
含水酸化物の□コロイド液もしくはこれに酸化チタンの
ゲルを加えた混合液を出発原料として製造することがで
きる。
The titanium oxide powder of the present invention can be produced using a colloidal solution of a titanium oxide and/or hydrous oxide or a mixed solution obtained by adding a titanium oxide gel thereto as a starting material.

チタンの酸化物及び/又は含水酸化物のコロイド液は、
一般的には、チタンの鉱酸塩、有機酸塩及びチタン酸塩
の1種又は2種以上を加水分解して得られるメタチタン
酸をアンモニア水で中和し、純水で良く洗浄後塩酸を加
えてPH2以下にすれば得られる。但しコロイド液の製
法に関しては、上記した製法に限定されるものではなく
、いかなる方法で製造されたものでもよい。しかし、コ
ロイドの平均粒径は2500Å以下であることが必要で
あり、 好ましくは800Å以下である。平均粒径が2
500Å以上であると乾燥時の粒子間強度が弱く、乾燥
中に破損するため粒度分布が広くなるばかりでなく、非
球状粒子の混入が懸念されるからである。
The colloidal liquid of titanium oxide and/or hydrous oxide is
Generally, metatitanic acid obtained by hydrolyzing one or more of titanium mineral acid salts, organic acid salts, and titanate salts is neutralized with aqueous ammonia, washed well with pure water, and then treated with hydrochloric acid. In addition, it can be obtained by lowering the pH to 2 or less. However, the method for producing the colloidal liquid is not limited to the above-mentioned method, and may be produced by any method. However, the average particle size of the colloid needs to be 2500 Å or less, preferably 800 Å or less. Average particle size is 2
This is because if it is 500 Å or more, the interparticle strength during drying will be weak and breakage will occur during drying, resulting in not only a wide particle size distribution but also a concern that non-spherical particles may be mixed in.

必要に応じて上記のコロイド液に混合される酸化チタン
のゲルはヒドロゲル及び/又はキセロゲルのどちらかで
あっても差支えない。例えば気相酸化法で得られるチタ
ンのエアロジルとか、通常の顔料酸化チタン等どの様な
ものでも使用可能である。しかし、ゲルの平均粒子径は
11z以下であることが必要で、好ましくは0.5μ以
下のものが適している。又混合状態は出来るだけ均一で
あることが好ましい。又その時の粘度は500cp以下
である事が必要であり、50cp以下であることが一層
好ましい。
The titanium oxide gel that is mixed into the colloidal liquid as necessary may be either a hydrogel and/or a xerogel. For example, any material such as titanium Aerosil obtained by a gas phase oxidation method or ordinary pigmented titanium oxide can be used. However, the average particle diameter of the gel needs to be 11z or less, and preferably 0.5μ or less. Further, it is preferable that the mixed state be as uniform as possible. Further, the viscosity at this time must be 500 cp or less, more preferably 50 cp or less.

かくして得られたコロイド液又はゲルを含むコロイド液
は、噴霧乾燥法で乾燥される。この際コロイド液は液体
の表面張力によって球状に造粒される。この様にして造
粒された微粒子は、乾燥だけでは強度が不足し、例えば
化粧料とか、塗料に分散する時の機械的力によって形状
を保てない場合が起りうる為、造粒された微粒子を焼成
することにより微粒子を構成している1次粒子間及び2
次粒子間の焼結を促し、機械的強度を増大させることを
可とする。この焼結よって必然的に粒子の表面積は50
m2/g以下に低下する。ちなみに50m2/g以上の
表面積の粉末を。
The colloidal liquid or gel-containing colloidal liquid thus obtained is dried by a spray drying method. At this time, the colloidal liquid is granulated into spherical particles due to the surface tension of the liquid. The fine particles granulated in this way do not have enough strength when dried alone, and may not be able to maintain their shape due to mechanical force when dispersed in cosmetics or paints. By firing the primary particles that make up the fine particles and the secondary
It is possible to promote sintering between secondary particles and increase mechanical strength. This sintering inevitably increases the surface area of the particles to 50
m2/g or less. By the way, powder with a surface area of 50m2/g or more.

例えば化粧料に使用した場合には、表面活性が強い為、
香料などの有機物の酸化、還元、もしくは分解等がおこ
り、これを変質させるおそれがある。
For example, when used in cosmetics, due to its strong surface activity,
Oxidation, reduction, or decomposition of organic substances such as fragrances may occur, leading to deterioration of their quality.

本発明に係る酸化チタンの真球状微粒子は、通常の酸化
チタン粉末に比して非常の平均粒子径が大きく、真球状
であるため、粉末の取り扱い時に於ける流動性が非常に
良く、又凝集性がないため、他の物と混合する場合の分
散性が極めて良好である。又、白色顔料として特に重要
な隠蔽力は通常の白色顔料と同等であり、かつ付着力は
強くないので、これを化粧料として使用した場合、隠蔽
性を失わず、のびが良く、中皿圧縮成型品の場合には経
時使用においてもケーキングを生じることなしに、中味
どれが良好なメーキャップ化粧料とする事ができる。又
これを紫外線カツト用化粧料に使用した場合、凝集性が
なく、真球状であるため、肌への延びが良くなり、厚化
粧することなく透明感のある紫外線カツト用化粧料とす
ることができる。
The true spherical fine particles of titanium oxide according to the present invention have a very large average particle diameter and a true spherical shape compared to ordinary titanium oxide powder, so they have very good fluidity when handling the powder, and they also have excellent fluidity when handling the powder. Since it has no properties, it has extremely good dispersibility when mixed with other substances. In addition, the hiding power, which is particularly important as a white pigment, is the same as that of ordinary white pigments, and the adhesion is not strong, so when used as a cosmetic, it does not lose its hiding power, spreads well, and has a high level of compaction. In the case of molded products, makeup cosmetics with good contents can be obtained without causing caking even after use over time. In addition, when this product is used in UV-blocking cosmetics, it has no agglomeration and is perfectly spherical, so it spreads well on the skin, making it possible to create transparent UV-blocking cosmetics without the need for thick makeup. can.

又この酸化チタン微粒子の表面をチタンカプリング剤等
で疎水化し、これを透明な樹脂塗料に高分散させた後シ
ョウウィンドなどのガラスの表面に塗布し薄い膜を作れ
ば、透明の紫外線カツトガラスになり、ショウウィンド
中の商品の紫外線による変色がなくなり、非常に有効で
ある。又この酸化チタンは樹脂のフィラーとして働くた
め、紫外線樹脂膜のハードコート剤にもなる。又これと
同様な方法によって、紫外線カツトフィルムを作り、農
業用ビニールハウスに使用すれば、ある種の植物の成長
が早くなる効果が出現する。さらに、平均粒子径1〜2
0μの真球状酸化チタンを凸版印刷用紙に使用すれば、
インクののりが良くなり、インクのにじみがなくなる等
色々有効な効果が出る。
In addition, if the surface of these titanium oxide fine particles is made hydrophobic with a titanium coupling agent, etc., and this is highly dispersed in a transparent resin paint, it can be applied to the surface of glass such as a show window to create a thin film, resulting in transparent UV-cut glass. It is very effective as it eliminates the discoloration of products in the show window due to ultraviolet rays. Furthermore, since this titanium oxide acts as a filler for the resin, it also serves as a hard coating agent for the ultraviolet resin film. Furthermore, if a UV-cutting film is made using a similar method and used in agricultural greenhouses, it will have the effect of speeding up the growth of certain plants. Furthermore, the average particle size is 1 to 2.
If 0μ true spherical titanium oxide is used for letterpress printing paper,
It has various beneficial effects such as improving ink adhesion and eliminating ink smearing.

実施例−1 酸化物として14.2wt%のチタンを含有する硫酸チ
タンをアンモニア水で加水分解し、これを純水でよく洗
浄後、塩酸を加えpH2以下とし。
Example 1 Titanium sulfate containing 14.2 wt% of titanium as an oxide was hydrolyzed with aqueous ammonia, and after washing thoroughly with pure water, hydrochloric acid was added to adjust the pH to 2 or less.

T10.として濃度31 、7wt%のチタニアゾルを
得た。このゾルを対i式2流体ノズルに供給し、□ 処理液量60Q/Hrで、空/液比=2100、空気流
速=マツハ1.1に調整しつつ、乾燥雰囲気温度70℃
、湿度6.6vo1%になるよう風量を調節して乾燥し
た。得られた乾燥粉末を600℃で3時間焼成後、板場
製の粒度分布測定機Capa−500にて測定した。又
これを日本電子層J SM−T20走査形電子顕微鏡(
SEM)にて写真撮影し、これを島津製のイメージアナ
ライザーで画像解析して単一粒子1ケ1ケの投影面より
真球度を求めた。又表面積はBET法にて測定した。結
果を表−1に示す。この粉末の電子顕微鏡写真を第1図
に示す6 実施例−2 空/液比= 3500に変えた以外は実施例−1と同様
な方法にて酸化チタン粉末を得た。この粉末の電子顕微
鏡写真を第2図に示す。
T10. A titania sol with a concentration of 31% and 7wt% was obtained. This sol was supplied to the i-type two-fluid nozzle, and the drying atmosphere temperature was 70°C while adjusting the processing liquid amount to 60Q/Hr, the air/liquid ratio = 2100, and the air flow rate = Matsuha 1.1.
The air volume was adjusted so that the humidity was 6.6 vol. 1%. The obtained dry powder was calcined at 600° C. for 3 hours and then measured using a particle size distribution analyzer Capa-500 manufactured by Itaba. This was also measured using a JEOL JSM-T20 scanning electron microscope (
A photograph was taken using a SEM), and the image was analyzed using an image analyzer manufactured by Shimadzu, and the sphericity was determined from the projection surface of each single particle. Moreover, the surface area was measured by the BET method. The results are shown in Table-1. An electron micrograph of this powder is shown in FIG. 16. Example 2 Titanium oxide powder was obtained in the same manner as in Example 1 except that the air/liquid ratio was changed to 3500. An electron micrograph of this powder is shown in FIG.

実施例−3 焼成温度を800°Cに変えた以外は、実施例−1と同
様な方法にて酸化チタン粉末を得た。この粉末の電子顕
微鏡写真を第3図に示す。
Example-3 Titanium oxide powder was obtained in the same manner as in Example-1 except that the firing temperature was changed to 800°C. An electron micrograph of this powder is shown in FIG.

実施例−4 実施例−1で用いたチタニアゾルに代えて。Example-4 In place of the titania sol used in Example-1.

このチタニアシルア0部と二酸化チタンのエアロジル(
日本エアロジル・P−25)30部の混合物を使用した
以外は実施例−1と同様な方法にて酸化チタン粉末を得
た。この粉末の電子顕微鏡写真を第4図に示す。
This titanium silua (0 parts) and titanium dioxide Aerosil (
Titanium oxide powder was obtained in the same manner as in Example 1, except that 30 parts of Nippon Aerosil P-25) was used. An electron micrograph of this powder is shown in FIG.

各実施例で得た酸化チタン粉末の性状をまとめて表−1
に示す。
Table 1 summarizes the properties of titanium oxide powder obtained in each example.
Shown below.

表−1Table-1

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第4図はそれぞれ実施例1〜4で得た酸化チタン
粉末の電子顕微鏡写真である。 特許出願人 触媒化成工業株式会社 勢 1 図 −C−)、k 第 3 図 傘〕;     第4厘
1 to 4 are electron micrographs of titanium oxide powders obtained in Examples 1 to 4, respectively. Patent applicant Catalysts & Chemicals Co., Ltd. 1 Figure-C-), k Figure 3 Umbrella]; 4th ring

Claims (1)

【特許請求の範囲】[Claims] 1、微粒子の平均粒子径が1〜20μで、かつ粒度分布
が0.5〜30μ、真球度が0.85〜1.00、表面
積が1〜50m^2/gであることを特徴とする酸化チ
タンからなる真球状微粒子粉末。
1. The fine particles have an average particle diameter of 1 to 20 μ, a particle size distribution of 0.5 to 30 μ, a sphericity of 0.85 to 1.00, and a surface area of 1 to 50 m^2/g. True spherical fine particle powder made of titanium oxide.
JP1171485A 1985-01-23 1985-01-23 Truly spherical fine particle composed of titanium oxide Granted JPS61168528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171485A JPS61168528A (en) 1985-01-23 1985-01-23 Truly spherical fine particle composed of titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171485A JPS61168528A (en) 1985-01-23 1985-01-23 Truly spherical fine particle composed of titanium oxide

Publications (2)

Publication Number Publication Date
JPS61168528A true JPS61168528A (en) 1986-07-30
JPH0425208B2 JPH0425208B2 (en) 1992-04-30

Family

ID=11785706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171485A Granted JPS61168528A (en) 1985-01-23 1985-01-23 Truly spherical fine particle composed of titanium oxide

Country Status (1)

Country Link
JP (1) JPS61168528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279841A (en) * 1985-10-02 1987-04-13 Teikoku Kako Kk Production of inorganic spherical body
US5009879A (en) * 1988-11-29 1991-04-23 Bayer Aktiengesellschaft Titanium dioxide, a process for its production and its use
JPH0867505A (en) * 1994-08-26 1996-03-12 Catalysts & Chem Ind Co Ltd Inorganic oxide particle
EP0675086A3 (en) * 1992-07-28 1996-04-10 Ishihara Sangyo Kaisha Process for producing particles of titanium oxide, their use as photocatalyst and a process for removing noxious materials.
US6306361B1 (en) * 1999-04-23 2001-10-23 Nano Co., Ltd. Method for manufacturing photocatalytic anatase titanium dioxide powder
JP2009083224A (en) * 2007-09-28 2009-04-23 Jgc Catalysts & Chemicals Ltd Base material with hard coat film and coating solution for forming hard coat film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523090A (en) * 1978-06-19 1980-02-19 Montedison Spa Spherical titanium dioxide grains and manufacture
JPS58223606A (en) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd Preparation of ultrafine hollow microsphere of metallic oxide
JPS5942392A (en) * 1982-09-03 1984-03-08 Nippon Soda Co Ltd Lead-containing compound metal oxide precursor composition and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523090A (en) * 1978-06-19 1980-02-19 Montedison Spa Spherical titanium dioxide grains and manufacture
JPS58223606A (en) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd Preparation of ultrafine hollow microsphere of metallic oxide
JPS5942392A (en) * 1982-09-03 1984-03-08 Nippon Soda Co Ltd Lead-containing compound metal oxide precursor composition and its preparation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279841A (en) * 1985-10-02 1987-04-13 Teikoku Kako Kk Production of inorganic spherical body
US5009879A (en) * 1988-11-29 1991-04-23 Bayer Aktiengesellschaft Titanium dioxide, a process for its production and its use
EP0675086A3 (en) * 1992-07-28 1996-04-10 Ishihara Sangyo Kaisha Process for producing particles of titanium oxide, their use as photocatalyst and a process for removing noxious materials.
JPH0867505A (en) * 1994-08-26 1996-03-12 Catalysts & Chem Ind Co Ltd Inorganic oxide particle
US6306361B1 (en) * 1999-04-23 2001-10-23 Nano Co., Ltd. Method for manufacturing photocatalytic anatase titanium dioxide powder
JP2009083224A (en) * 2007-09-28 2009-04-23 Jgc Catalysts & Chemicals Ltd Base material with hard coat film and coating solution for forming hard coat film

Also Published As

Publication number Publication date
JPH0425208B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JP3307667B2 (en) Process for producing particulate titanium dioxide, particulate titanium dioxide and aqueous suspension thereof
US6077341A (en) Silica-metal oxide particulate composite and method for producing silica agglomerates to be used for the composite
KR100209815B1 (en) Photochromic ultra-violet ray shield powder method of manufacturing the same and skin external preparation using the same
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
US6113682A (en) Method for preparation of composite pigments for make-up cosmetics and make-up cosmetic compositions containing composite pigments made thereby
JPH09272815A (en) Composite metal oxide fine particle and production of the same
JP2631963B2 (en) Ultraviolet ray shielding composite fine particles, method for producing the same, and cosmetics
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
KR19990083339A (en) Ultraviolet Absorbent
JP2013249229A (en) Titanium dioxide coated with silica
JP6813594B2 (en) Treatment method of fumed metal oxide
TWI468348B (en) Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
JPS61168528A (en) Truly spherical fine particle composed of titanium oxide
JPH07257923A (en) High concentration titanium dioxide aqeous dispersion
WO2020059190A1 (en) White pigment for cosmetics, and cosmetic
JP4201880B2 (en) Butterfly-like rutile titanium oxide, method for producing the same, and use thereof
KR101763357B1 (en) Preparation method of rutile titanium dioxide powder
JP2008094917A (en) Surface-coated zinc oxide and its manufacturing method, and ultraviolet ray-shielding composition comprising the same
JPH0733255B2 (en) Titania sol and method for producing the same
Prakash et al. An investigation on optimization of instantaneous synthesis of TiO2 nanoparticles and it’s thermal stability analysis in PP-TiO2 nanocomposite
JPH04164814A (en) Production of ultra-fine zinc oxide powder having excellent dispersibility
JP4177920B2 (en) Method for producing high-purity titanium oxide powder
JP3398640B2 (en) Manufacturing method of oriented flake zinc oxide
JP4382612B2 (en) Cosmetics
JPS63215520A (en) Neutral titania and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term