JPS6116781B2 - - Google Patents

Info

Publication number
JPS6116781B2
JPS6116781B2 JP52010256A JP1025677A JPS6116781B2 JP S6116781 B2 JPS6116781 B2 JP S6116781B2 JP 52010256 A JP52010256 A JP 52010256A JP 1025677 A JP1025677 A JP 1025677A JP S6116781 B2 JPS6116781 B2 JP S6116781B2
Authority
JP
Japan
Prior art keywords
weight
fire spread
cap
encapsulated
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52010256A
Other languages
Japanese (ja)
Other versions
JPS5396038A (en
Inventor
Masaru Harada
Toshio Ninomya
Seiji Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP1025677A priority Critical patent/JPS5396038A/en
Publication of JPS5396038A publication Critical patent/JPS5396038A/en
Publication of JPS6116781B2 publication Critical patent/JPS6116781B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Paints Or Removers (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は火災時の熱により強固な炭化層を形成
し延焼を防止する電線用防火塗料に関する。 近年、高層建築物や工場などにおいて照明はも
とより、動力源、及び運転機器の集中管理などに
電気機器の使用が増加しており、それに伴いエネ
ルギー供給及び制御信号の送受信などに極めて多
量の電気配線が施されるようになつた。これ等の
電線はシース材として常通ポリエチレンなどの高
分子材料が被覆されているが、極めて燃焼し易く
火災時に電線を伝わつて延焼が起るという大きな
問題点が有る。このため、被覆電線に防火塗料を
塗布し延焼を防止する方法が一般に行なわれてお
り、これに用いる種々の防火塗料が開発されてい
るが、これらは溶剤型塗料が大部分でありまた、
塗装作業のほとんどが建築物内部で行うため作業
者に対する毒性、引火などによる火災の危険性、
及び揮散溶剤による大気汚染の問題が有り、また
一方水希釈型塗料は上記溶剤型塗料の欠点がない
反面、耐水性が劣り、また架設時に電線を曲げた
ときに防火塗膜に大きなクラツクを発生し易く、
この部分から火災時に火炎が侵入して延焼を引き
起すため防炎効果が減殺されるなど致命的な欠点
を有している。 本発明は上記の問題点を解決し、耐火性、可撓
性が優れ、かつ延焼防止性の良好な電線用防火塗
料を提供することにある。 このような塗料は、 (1) (イ) 燐含有量がP2O5換算で約66〜75重量
%、窒素含有量がN換算で約12〜24重量%で
あるポリリン酸アンモン及び/又は変性ポリ
リン酸アンモン 1.0〜10.0重量部 (ロ) メラミン 0.1〜10.0重量部 (ハ) デンプン及び/又はセルロース類 1.0重量部 及び (ニ) ジペンタエリスリトール 1.0〜10.0重量部 の混合物に内包するカプセル化延焼防止剤
84〜95重量% (2) 繊維質 1〜15重量% (3) 及びゴム系ラテツクス及び/又はアクリル系
エマルジヨンが固形分で 4〜15重量% の均質な混合物により構成される。 本発明の防化塗料は、上記カプセル化延焼防止
剤が火炎に対して強固な炭化層を形成する機能
と、高熱による電線シース材の膨張により防化塗
膜にクラツクが生じてもこれを閉塞するいわゆる
ヒートシール性の機能を有するため、公知の防火
塗料に較べ特にそのヒートシール性の不足を解決
し延焼防止性が極めて大きいものである。またカ
プセル化により内包される延焼防止剤中の水可溶
性成分が塗膜中に保持されるため、長期に互り所
期の延焼防止性が維持される。 本発明の上記塗料構成々分及び配合比は広範囲
に亘る実験により求めたもので、その反応機構的
な解明はまだなされていないが、この有効範囲を
はずれると塗膜のヒートシール性及び延焼防止性
が著しく低下する。 ポリリン酸アンモン及び変性ポリリン酸は通常
市販されているものが使用でき、たとえばスミセ
ーフL、スミセーフP(以上住友化学工業製)、
タイエンS、タイエンA(太平化学製)、ゴーカ
ツトAF#100(日産化学製)、ホスチエツクP
#30(モンサントケミカル製)などがある。 上記ポリリン酸アンモン及び変性ポリリン酸ア
ンモンとしては塗料の延焼防止性を向上させる点
から燐含有量はP2O5換算で75重量%以下、また
窒素含有量はN換算で12重量%以上であることが
好ましい。即ち燐含有量がP2O5換算で75重量%
以上、窒素含有量がN換算で12重量%以下になる
と塗膜のヒートシール性の低下による延焼防止性
が悪化する。 前記デンプンはジヤガイモデンプン、コメデン
プン、コムギデンプン、トウモロコシデンプン、
タピオカデンプンなどの生デンプンや可溶性デン
プン、酸化デンプン、流動性デンプン、白色デキ
ストリン、黄色デキストリン、ブリテイツシユガ
ムリン酸デンプン等が使用出来る。 又、前記セルロース類としては木綿セルロー
ス、木材セルロース、ソーダセルロース、エチル
セルロース、カルボキシメチルセルロース;酢酸
セルロースやプロピオン酸セルロースなどの有機
酸エステルセルロース;リン酸セルロースや硫酸
セルロースなどの無機酸エステルセルロース等が
使用出来る。 カプセル化延焼防止剤は内包される延焼防止剤
に換算して塗料固形分中に84〜95重量%添加す
る。添加量が84重量%より少くなれば、火災に対
して強固な炭化層の形成及びヒートシール性等の
効果が充分に得られなくなり、一方添加量を95重
量%より多くしてもさらにこれらの効果の増加は
見られず、逆に繊維質及び結合材の添加量が減少
するためその特性が不充分になり好ましくない。 本発明において延焼防止剤をカプセル化する理
由は延焼防止剤中の一部が水に不溶のカプセル化
剤で被覆することにより塗膜中に延焼防止剤を保
持し塗膜の延焼防止性を長期に亘つて維持する点
にある。また本発明の延焼防止剤は前記(イ)〜(ニ)の
4成分が共存する場合のみ有効であるためカプセ
ル化延焼防止剤はすべての成分を内包しなければ
ならず、メラミン、ジペンタエリスリトール等の
水に不溶乃至難溶性の成分をカプセル化せずに塗
料中に配合しても本発明の効果は得られない。 前記繊維質は塗料をマスチツク状にして塗装作
業性及び密着性を向上し、塗膜のクラツクの防止
及び火炎により形成される炭化層の脱落防止など
のために添加し添加量が1重量%より少くなれば
これ等の特性を得ることが出来ず、又15重量%よ
り多くなれば塗料がパサパサした状態となり塗装
作業性が低下し、また塗膜のヒートシール性及び
可撓性が低下するため好ましくない。上記繊維質
の具体例としてはアスベスト、シリカアルミナ繊
維、ガラス繊維、シリコンカーバイド繊維、タル
ク繊維、シリコンカーバイドウイスカーなどの無
機繊維やウイスカー類、ビニロン繊維、セルロー
ス繊維、故紙パルプなどの有機繊維を挙げること
が出来る。 前記延焼防止剤を含む塗膜を形成するための結
合剤は、延焼防止剤のヒートシール性を阻害せ
ず、かつ被覆電線に対する密着性、可撓性、耐水
性等の諸特性に優れるものを用いる。このような
特性を有する結合剤としてゴム系ラテツクス及び
アクリル系エマルジヨンなどが使用出来る。 ゴム系ラテツクスの具体例としてはスチレンブ
タジエン系ラテツクス、クロロプレン系ラテツク
ス、イソプレン系ラテツクス、メチルメタアクリ
レートブタジエン系ラテツクス、カルボキシ変性
スチレンブタジエン系ラテツクス、天然ゴム系ラ
テツクスなどを挙げることが出来る。 アクリル系エマルジヨンは種々の単量体より合
成したものが使用でき、ガラス転移温度(Tg)
が10℃以下のものが好ましく、特に−20℃〜−50
℃のものが好適である。Tgが10℃より高くなれ
ば充分な可撓性を有する塗膜を得ることが出来
ず、電線の架設作業による折り曲げや、温度変化
による電線の伸縮により塗膜にクラツクが発生し
脱落し易くなる。一方Tgの低いものは塗膜を粘
着性にするが、これは前記繊維質の添加により減
殺することが出来る。また塗膜に多少の粘着性が
残つても実用上特に問題はない。例えば2−エチ
ルヘキシルアクリレートのホモポリマーからなる
Tg−88℃のエマルジヨンを結合剤として用いる
こともできる。塗膜に適度の可撓性を付与するア
クリル系エマルジヨンとしてはTgが0℃〜−50
℃のものが特に好ましい。アクリル系エマルジヨ
ンの合成に用いる単量体は例えばアクリル酸メチ
ル、アクリル酸エチル、メタクリル酸メチル、メ
タクリル酸エチル、アクリル酸ブチル、メタクリ
ル酸ブチル、アクリル酸−2−エチルヘキシル、
メタクリル酸−2−エチルヘキシル、メタクリル
酸ヒドロキシエチル、メタクリル酸、アクリル
酸、スチレン、無水マレイン酸、ビニルトルエ
ン、酢酸ビニル及びその他のα・β−不飽和カル
ボン酸エステルが挙げられる。 これ等の結合剤は固形分で4〜15重量%用い
る。添加量が4重量%より少くなれば、充分な密
着性、可撓性及び耐水性等を有する塗膜を形成す
ることが出来なくなり、一方15重量%より多い場
合はさらに密着性、可撓性、耐水性等の向上はな
く逆に前記延焼防止剤及び繊維質の添加量が少く
なるためこれ等の持つ特性が充分に得れなくな
る。また必要により塗料中に適当量の着色顔料、
染料等の着色剤を加えることが出来る。 前記マイクロカプセル化延焼防止剤は(イ)〜(ニ)成
分の混合物を公知のマイクロカプセル化方法によ
つてカプセル化したものである。 利用できるマイクロカプセル化方法としては界
面重合法、in situ重合法、液中硬化法、相分離
法、液中乾燥法、融解分散冷却法、スプレードラ
イング法、粉床法などが挙げられる。使用するマ
イクロカプセル化剤は耐水性が良好で水系結合剤
との親和性及び密着性が良いものでなければなら
ない。 このようなマイクロカプセル化剤としては塩化
ビニル樹脂、塩化ビニリデン樹脂、エポキシ樹
脂、ウレタン樹脂、アクリル樹脂、フエノール樹
脂、酢酸ビニル樹脂、セルロース系樹脂、アルキ
ツド樹脂、セラツク樹脂、ジアリルフタレート樹
脂、ポリアミド樹脂、メラミン樹脂、尿素樹脂な
どを挙げることが出来単独または併用して使用す
ることができる。またマイクロカプセル粒子の粒
子径は1〜500μ程度のものが好ましく、粒子径
が1μより小さくなればカプセル化延焼防止剤に
占めるカプセル化剤の割合が極度に多くなり、又
500μより大きくなれば均質にカプセル化されて
いないものが多くなるため長期に亘り延焼防止性
を維持することが困難になり、又、塗料中に均一
に分散させるときにカプセルが機械的破壊を起し
易くなる。 本発明の塗料の製造は、水系結合材及びカプセ
ル延焼防止剤を通常の撹拌機、例えばバタフライ
ミキサー、かい型撹拌機、プロペラ型撹拌機、タ
ービン型撹拌機、往復動撹拌機等で粗練合した
後、繊維質及び必要により着色剤を加えニーダー
ミキサー、インターナルミキサー、ミユラーミキ
サー、ポニーミキサー等の〓和機で混練する方法
が用い得る。 均一に混練して得られた塗料は必要により水で
適当な粘度に希釈し、ヘラ塗り、ハケ塗り、スプ
レー塗り等の方法により塗装することが出来る。 以下実施例により本発明を説明する。 実施例で用いる各塗料は第1表に示す配合成分
(重量部)をデイスパーで均一に撹拌混合して、
本発明防火塗料(実施例1〜4)と比較対照用塗
料(比較例1〜9)を調製した。 尚比較例1〜3は各々延焼防止剤をカプセル化
せず塗料化した。 得られた塗料の物理特性試験は、上記塗料をポ
リエチレンシース材を使用した外径15mm長さ50cm
の被覆電線上に1mm厚に塗布し、常温で3日間乾
燥した試料について行われた。試験結果を第2表
に示す。実施例に前もつてカプセル化延焼防止剤
としてCAP−A,CAP−B,CAP−C及びCAP
−J並びに比較例のためCAP−D〜CAP−Iを
以下の通り調製した。 CAP−A; ジペンタエリスリトール640g、メラミン130
g、小麦デンプン430g及びポリリン酸アンモ
ン〔商品名スミセーフL、住友化学製、固形分
35重量%を乾燥固化したもの燐酸含有量
(P2O5換算)66重量%、窒素含有量(N換算)
24重量%〕1070gを乳鉢中で粉砕混合し、延焼
防止剤とする。ポリ酢酸ビニル樹脂100gをク
ロロホルム5000mlに溶解した溶液を40℃に保持
し、充分に撹拌しながら上記延焼防止剤を徐々
に加え均質に分散させる。 この分散液中にエタノール5000mlを徐々に加
え、延焼防止剤の周囲にポリ酢酸ビニルを包囲
相分離させる。徐々に室温まで冷却後、デカン
テーシヨンにより、カプセル化物を集め、エタ
ノールで1回洗滌し、遠心分離により回収、乾
燥して2300gのカプセル化延焼防止剤CAP−
Aを得た。 CAP−B; ジペンタエリスリトール100g、メラミン25
g、ジヤガイモデンプン41g、及びポリリン酸
アンモン(前記スミセーフLを乾燥固化したも
の)123gをよく粉砕混合し、延焼防止剤とす
る。 メラミン樹脂(商品名スミマールMC−1住
友化学製、不揮発分80%)30gを500mlのエタ
ノールに溶解し、40℃に保持する。この容液に
上記延焼防止剤を徐々に加え、よく撹拌し、均
質な分散液とする。これに硬化剤溶液(重量比
で重合リン酸/35%塩酸/メタノール=11.0/
19.0/70.0の混合溶液)2.5gを加え、15分間撹
拌後、さらにn−ヘキサン200mlとトルエン300
mlを加え、15分間撹拌した後液相をデカンテー
シヨンし、トルエンで1回洗つた後、遠心分離
し、風乾して300gのカプセル化延焼防止剤
CAP−Bをえた。 CAP−C; ジペンタエリスリトール350g、メラミン150
g、リン酸デンプン60g及びポリリン酸アンモ
ン〔商品名スミセーフP、住友化学製、固形分
80重量%を乾燥固化したもの。燐酸含有量
(P2O5換算)71〜73重量%窒素含有量(N換
算)14〜16重量%〕420gをよく粉砕混合し延
焼防止剤とする。 イソシアネート樹脂(商品名タケネート
D102武田薬品工業製、不揮発分90重量%)50
gを酢酸エチルエステル2000mlに溶解した溶液
中に上記延焼防止剤を徐々に加え、充分に撹拌
して均質な分散液とする。 この分散液中にエチレンジアミン3gを加え
更に30分撹拌した後、デカンテーシヨンでカプ
セル化物を分離し、酢酸エチルで1回洗滌後遠
心分離及び風乾し1010gのカプセル化延焼防止
剤CAP−Cをえた。 CAP−D; 小麦デンプン430g、ポリリン酸アンモン(前
記スミセーフLの固形分)215g、メラミン430
g及びジペンタエリスリトール860gをよ粉砕
混合し、これを延焼防止剤とし、ポリ酢酸ビニ
ル樹脂90gを用いて、CAP−Aと同様にして
カプセル化し1970gカプセル化延焼防止剤
CAP−Dをえた。 CAP−E; 小麦デンプン143g、ポリリン酸アンモン(前
記スミセーフLの固形分)1576g、メラミン
143g及びジペンタエリスリトール286gをよく
粉砕混合し、これを延焼防止剤としポリ酢酸ビ
ニル樹脂100gを用いてCAP−Aと同様にして
カプセル化し2180gのカプセル化延焼防止剤
CAP−Eを得た。 CAP−F; 小麦デンプン375g、メラミン19g、ジペンタ
エリスリトール750g、ポリリン酸アンモン
(前記スミセーフLの固形分)1125gをよく粉
砕混合し、これを延焼防止剤とし、ポリ酢酸ビ
ニル樹脂100gを用いてCAP−Aと同様にして
カプセル化し2300gのカプセル化延焼防止剤
CAP−Fをえた。 CAP−G; 小麦デンプン1000g、ポリリン酸アンモン(上
記スミセーフLの固形分)4000g、ジペンタエ
リスリトール5000g及びメラミン1100gをよく
粉砕混合し、これを延焼防止剤とし、ポリ酢酸
ビニル樹脂100gを用いてCAP−Aと同様にし
てカプセル化し、2130gのカプセル化延焼防止
剤CAP−Gをえた。 CAP−H; 小麦デンプン137g、メラミン1100g、ジペン
タエリスリトール69g及びポリリン酸アンモン
(上記スミセーフLの固形分)963gをよく粉砕
混合しイソシアネート樹脂(前記タケネート
D102)110gを用いてCAP−Cと同様にしてカ
プセル化し、2310gのカプセル化延焼防止剤
CAP−Hをえた。 CAP−I; 小麦デンプン100g、メラミン500g、ジペンタ
エリスリトール1100g及びポリリン酸アンモン
(前記スミセーフLの固形分)500gをよく粉砕
混合し、イソシアネート樹脂(上記タケネート
D102)110gを用いて、CAP−Cと同様にして
カプセル化し2240gカプセル化延焼防止剤
CAP−Iをえた。 CAP−J; 小麦デンプン130g、メラミン778g、ジペンタ
エリスリトール1167g及びポリリン酸アンモン
(前記スミセーフPの固形分)195gをよく粉砕
混合しメラミン樹脂(前記スミマールMC−
1)120gを用いて、CAP−Bと同様にしてカ
プセル化し2310gのカプセル化延焼防止剤
CAP−Jをえた。
The present invention relates to a fireproof coating for electric wires that forms a strong carbonized layer due to heat during a fire to prevent the spread of fire. In recent years, the use of electrical equipment in high-rise buildings and factories has increased, not only for lighting, but also for power sources and centralized control of operating equipment.As a result, an extremely large amount of electrical wiring is required for energy supply and the transmission and reception of control signals. began to be applied. These electric wires are usually coated with a polymeric material such as polyethylene as a sheath material, but they are extremely flammable and have a major problem in that in the event of a fire, the fire can spread through the wires. For this reason, it is common practice to apply fire retardant paint to coated wires to prevent the spread of fire, and various fire retardant paints have been developed for this purpose, but most of these are solvent-based paints.
Since most painting work is done inside buildings, there is a risk of toxicity to workers, fire hazards due to ignition, etc.
On the other hand, while water-diluted paints do not have the drawbacks of solvent-based paints, they have poor water resistance and also cause large cracks in the fire protection coating when electric wires are bent during installation. easy to do,
In the event of a fire, flames can enter through this part and cause the fire to spread, resulting in a fatal drawback such as the flame-retardant effect being diminished. The present invention solves the above-mentioned problems and provides a fireproof coating for electric wires that has excellent fire resistance, flexibility, and good fire spread prevention properties. Such a paint is made of (1) (a) ammonium polyphosphate and/or having a phosphorus content of approximately 66 to 75% by weight in terms of P 2 O 5 and a nitrogen content of approximately 12 to 24% by weight in terms of N; Encapsulated fire spread encapsulated in a mixture of modified ammonium polyphosphate 1.0 to 10.0 parts by weight (b) melamine 0.1 to 10.0 parts by weight (c) starch and/or cellulose 1.0 parts by weight, and (d) dipentaerythritol 1.0 to 10.0 parts by weight inhibitor
It consists of a homogeneous mixture of 84-95% by weight (2) fibrous material 1-15% by weight (3) and rubber latex and/or acrylic emulsion with a solid content of 4-15% by weight. The protective coating of the present invention has the function of the encapsulated fire spread preventive agent forming a strong carbonized layer against flames, and even if cracks occur in the protective coating due to expansion of the wire sheath material due to high heat, it blocks the cracks. Since it has a so-called heat-sealing function, it solves the lack of heat-sealing properties and has extremely high fire spread prevention properties compared to known fire prevention paints. In addition, since the water-soluble components in the fire spread preventive agent contained in the encapsulation are retained in the coating film, the desired fire spread preventive properties are maintained over a long period of time. The above-mentioned components and compounding ratio of the paint of the present invention were determined through extensive experiments, and the reaction mechanism has not yet been elucidated. Sexuality is significantly reduced. Commercially available ammonium polyphosphates and modified polyphosphoric acids can be used, such as Sumisaf L, Sumisaf P (manufactured by Sumitomo Chemical Industries),
Taien S, Taien A (Taihei Kagaku), Gokatsu AF#100 (Nissan Kagaku), Hostik P
#30 (manufactured by Monsanto Chemical) etc. The above ammonium polyphosphate and modified ammonium polyphosphate should have a phosphorus content of 75% by weight or less in terms of P 2 O 5 and a nitrogen content of 12% by weight or more in terms of N, in order to improve the fire spread prevention properties of the paint. It is preferable. In other words, the phosphorus content is 75% by weight calculated as P 2 O 5 .
As mentioned above, when the nitrogen content is 12% by weight or less in terms of N, the fire spread prevention property deteriorates due to a decrease in the heat sealing property of the coating film. The starch includes potato starch, rice starch, wheat starch, corn starch,
Raw starches such as tapioca starch, soluble starches, oxidized starches, fluid starches, white dextrin, yellow dextrin, British gum starch phosphate, etc. can be used. Examples of the celluloses that can be used include cotton cellulose, wood cellulose, soda cellulose, ethyl cellulose, and carboxymethyl cellulose; organic acid ester cellulose such as cellulose acetate and cellulose propionate; and inorganic acid ester cellulose such as cellulose phosphate and cellulose sulfate. . The encapsulated fire spread preventive agent is added in an amount of 84 to 95% by weight in terms of the encapsulated fire spread preventive agent in the solid content of the paint. If the amount added is less than 84% by weight, effects such as the formation of a strong carbonized layer against fire and heat sealability will not be sufficiently obtained, while even if the amount added is more than 95% by weight, these effects will be further reduced. No increase in effectiveness is observed, and on the contrary, the added amount of fibers and binder decreases, resulting in insufficient properties, which is not preferable. The reason why the fire spread preventive agent is encapsulated in the present invention is that by covering a part of the fire spread preventive agent with an encapsulating agent that is insoluble in water, the fire spread preventive agent is retained in the coating film and the fire spread preventive properties of the paint film are maintained for a long period of time. The goal is to maintain this for a long time. Furthermore, since the fire spread inhibitor of the present invention is effective only when the four components (a) to (d) above coexist, the encapsulated fire spread inhibitor must contain all the components, including melamine, dipentaerythritol, The effects of the present invention cannot be obtained even if water-insoluble or sparingly soluble components are incorporated into the paint without being encapsulated. The fibers are added to make the paint into a mastic state to improve painting workability and adhesion, to prevent cracks in the paint film and to prevent the charred layer formed by flames from falling off, and the amount added is less than 1% by weight. If the amount is too low, these characteristics cannot be obtained, and if it is more than 15% by weight, the paint will become dry and workability will decrease, and the heat sealability and flexibility of the paint film will decrease. Undesirable. Specific examples of the above-mentioned fibers include inorganic fibers and whiskers such as asbestos, silica alumina fibers, glass fibers, silicon carbide fibers, talc fibers, and silicon carbide whiskers, and organic fibers such as vinylon fibers, cellulose fibers, and waste paper pulp. I can do it. The binder for forming the coating film containing the fire spread preventive agent should be one that does not inhibit the heat sealing properties of the fire spread preventive agent and has excellent properties such as adhesion to coated wires, flexibility, and water resistance. use Rubber latexes, acrylic emulsions, and the like can be used as binders having such characteristics. Specific examples of rubber-based latexes include styrene-butadiene-based latex, chloroprene-based latex, isoprene-based latex, methyl methacrylate-butadiene-based latex, carboxy-modified styrene-butadiene-based latex, and natural rubber-based latex. Acrylic emulsions can be synthesized from various monomers, and have a glass transition temperature (Tg) of
is preferably 10°C or less, especially -20°C to -50°C.
℃ is preferred. If the Tg is higher than 10°C, it will not be possible to obtain a coating film with sufficient flexibility, and the coating will crack and easily fall off due to bending during cable installation work or expansion and contraction of the cable due to temperature changes. . On the other hand, those with low Tg make the coating film sticky, but this can be reduced by adding the above-mentioned fibers. Further, even if some tackiness remains in the coating film, there is no particular problem in practical use. For example, it consists of a homopolymer of 2-ethylhexyl acrylate.
Emulsions with Tg -88°C can also be used as binders. An acrylic emulsion that imparts appropriate flexibility to the coating film has a Tg of 0°C to -50.
℃ is particularly preferred. Monomers used in the synthesis of acrylic emulsions include, for example, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate,
Examples include 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, methacrylic acid, acrylic acid, styrene, maleic anhydride, vinyltoluene, vinyl acetate and other α/β-unsaturated carboxylic acid esters. These binders are used in an amount of 4 to 15% by weight on a solid basis. If the amount added is less than 4% by weight, it will not be possible to form a coating film with sufficient adhesion, flexibility, water resistance, etc., while if it is more than 15% by weight, the adhesion and flexibility will be even worse. However, there is no improvement in water resistance, etc., and on the contrary, since the amounts of the fire spread preventive agent and fibrous material added are reduced, the characteristics possessed by these agents cannot be sufficiently obtained. In addition, if necessary, add an appropriate amount of colored pigment to the paint.
Colorants such as dyes can be added. The microencapsulated fire spread inhibitor is obtained by encapsulating a mixture of components (a) to (d) by a known microencapsulation method. Examples of microencapsulation methods that can be used include interfacial polymerization, in situ polymerization, in-liquid curing, phase separation, in-liquid drying, melt-dispersion cooling, spray drying, and powder bed methods. The microencapsulating agent used must have good water resistance and good affinity and adhesion with the aqueous binder. Examples of such microencapsulating agents include vinyl chloride resin, vinylidene chloride resin, epoxy resin, urethane resin, acrylic resin, phenolic resin, vinyl acetate resin, cellulose resin, alkyd resin, shellac resin, diallylphthalate resin, polyamide resin, Melamine resins, urea resins and the like can be used alone or in combination. In addition, the particle size of the microcapsule particles is preferably about 1 to 500 μm; if the particle size is smaller than 1 μm, the proportion of the encapsulating agent in the encapsulated fire spread inhibitor becomes extremely large;
If the size is larger than 500μ, there will be many particles that are not homogeneously encapsulated, making it difficult to maintain fire spread prevention properties over a long period of time, and the capsules may mechanically break when uniformly dispersed in the paint. It becomes easier to do. The coating material of the present invention is produced by roughly kneading the water-based binder and the capsule fire spread prevention agent using a conventional stirrer, such as a butterfly mixer, paddle-type stirrer, propeller-type stirrer, turbine-type stirrer, or reciprocating stirrer. After that, a method can be used in which fibers and, if necessary, a coloring agent are added and kneaded using a mixing machine such as a kneader mixer, internal mixer, Müller mixer, or pony mixer. The paint obtained by uniformly kneading can be diluted with water to an appropriate viscosity if necessary, and applied by methods such as spatula coating, brush coating, and spray coating. The present invention will be explained below with reference to Examples. Each paint used in the examples was prepared by uniformly stirring and mixing the ingredients (parts by weight) shown in Table 1 using a disper.
Fireproof paints of the present invention (Examples 1 to 4) and comparative paints (Comparative Examples 1 to 9) were prepared. In Comparative Examples 1 to 3, the fire spread preventive agent was not encapsulated but was made into a paint. A physical property test of the obtained paint was conducted using a polyethylene sheath material with an outer diameter of 15 mm and a length of 50 cm.
The test was performed on a sample that was coated on a coated wire to a thickness of 1 mm and dried at room temperature for 3 days. The test results are shown in Table 2. CAP-A, CAP-B, CAP-C and CAP were used as encapsulated fire spread inhibitors before the examples.
-J and CAP-D to CAP-I for comparative examples were prepared as follows. CAP-A; dipentaerythritol 640g, melamine 130g
g, wheat starch 430g and ammonium polyphosphate [trade name Sumisaf L, manufactured by Sumitomo Chemical, solid content
Phosphoric acid content (in terms of P 2 O 5 ): 66% by weight, nitrogen content (in terms of N)
24% by weight] 1070g was ground and mixed in a mortar to prepare a fire spread preventive agent. A solution prepared by dissolving 100 g of polyvinyl acetate resin in 5000 ml of chloroform is maintained at 40° C., and the above fire spread inhibitor is gradually added to the solution with sufficient stirring to homogeneously disperse it. 5,000 ml of ethanol is gradually added to this dispersion to phase-separate the polyvinyl acetate surrounding the fire spread inhibitor. After gradually cooling to room temperature, the encapsulated material was collected by decantation, washed once with ethanol, collected by centrifugation, and dried to yield 2300 g of encapsulated fire spread inhibitor CAP-
I got an A. CAP-B; dipentaerythritol 100g, melamine 25
g, 41 g of ginger starch, and 123 g of ammonium polyphosphate (dry solidification of the above-mentioned Sumisaf L) were thoroughly ground and mixed to prepare a fire spread preventive agent. 30 g of melamine resin (trade name Sumimaru MC-1 manufactured by Sumitomo Chemical, non-volatile content 80%) is dissolved in 500 ml of ethanol and kept at 40°C. The fire spread preventive agent is gradually added to this solution and stirred thoroughly to form a homogeneous dispersion. Add to this a hardening agent solution (weight ratio of polymerized phosphoric acid/35% hydrochloric acid/methanol = 11.0/
Add 2.5 g of a mixed solution of 19.0/70.0 and stir for 15 minutes, then add 200 ml of n-hexane and 300 ml of toluene.
ml, stirred for 15 minutes, then decanted the liquid phase, washed once with toluene, centrifuged, air-dried to obtain 300 g of encapsulated fire spread inhibitor.
I got CAP-B. CAP-C; dipentaerythritol 350g, melamine 150g
g, starch phosphate 60g and ammonium polyphosphate [trade name Sumisaf P, manufactured by Sumitomo Chemical, solid content
80% by weight dried and solidified. Phosphoric acid content (in terms of P 2 O 5 ): 71 to 73% by weight Nitrogen content (in terms of N): 14 to 16% by weight] 420 g was thoroughly ground and mixed to prepare a fire spread preventive agent. Isocyanate resin (product name: Takenate)
D102 Manufactured by Takeda Pharmaceutical, non-volatile content 90% by weight) 50
The fire spread preventive agent is gradually added to a solution prepared by dissolving . After adding 3 g of ethylenediamine to this dispersion and stirring for another 30 minutes, the encapsulated product was separated by decantation, washed once with ethyl acetate, centrifuged, and air-dried to obtain 1010 g of encapsulated fire spread inhibitor CAP-C. . CAP-D: Wheat starch 430g, ammonium polyphosphate (solid content of Sumisafe L) 215g, melamine 430g
Thoroughly pulverize and mix 860g of dipentaerythritol and 860g of dipentaerythritol, use this as a fire spread preventive agent, and encapsulate it in the same manner as CAP-A using 90g of polyvinyl acetate resin to obtain 1970g of encapsulated fire spread preventive agent.
I got CAP-D. CAP-E; Wheat starch 143g, ammonium polyphosphate (solid content of Sumisaf L) 1576g, melamine
Thoroughly grind and mix 143 g and dipentaerythritol 286 g, use this as a fire spread preventive agent, and encapsulate it in the same manner as CAP-A using 100 g of polyvinyl acetate resin to obtain 2180 g of encapsulated fire spread preventive agent.
Obtained CAP-E. CAP-F; 375 g of wheat starch, 19 g of melamine, 750 g of dipentaerythritol, and 1125 g of ammonium polyphosphate (solid content of the above-mentioned Sumisaf L) were thoroughly ground and mixed, and this was used as a fire spread prevention agent, and CAP was prepared using 100 g of polyvinyl acetate resin - 2300g of encapsulated fire spread prevention agent encapsulated in the same manner as A
I got CAP-F. CAP-G: 1000g of wheat starch, 4000g of ammonium polyphosphate (solid content of Sumisafe L above), 5000g of dipentaerythritol and 1100g of melamine are thoroughly ground and mixed, and this is used as a fire spread preventive agent, and CAP is made using 100g of polyvinyl acetate resin. -A was encapsulated in the same manner as in A to obtain 2130 g of encapsulated fire spread inhibitor CAP-G. CAP-H: 137 g of wheat starch, 1100 g of melamine, 69 g of dipentaerythritol, and 963 g of ammonium polyphosphate (the solid content of the above Sumisaf L) were thoroughly ground and mixed, and an isocyanate resin (the above Takenate
D102) encapsulated in the same manner as CAP-C using 110g, and 2310g of encapsulated fire spread prevention agent
I got CAP-H. CAP-I: 100 g of wheat starch, 500 g of melamine, 1100 g of dipentaerythritol, and 500 g of ammonium polyphosphate (solid content of the above Sumisaf L) were thoroughly ground and mixed, and an isocyanate resin (the above Takenate
D102) Using 110g, encapsulate in the same manner as CAP-C and 2240g encapsulated fire spread prevention agent.
I got CAP-I. CAP-J; 130 g of wheat starch, 778 g of melamine, 1167 g of dipentaerythritol, and 195 g of ammonium polyphosphate (the solid content of the above-mentioned Sumisafe P) were thoroughly ground and mixed to make a melamine resin (the above-mentioned Sumimaru MC-J).
1) Using 120g, encapsulate 2310g of encapsulated fire spread inhibitor in the same manner as CAP-B.
I got CAP-J.

【表】【table】

【表】【table】

【表】【table】

【表】 なお第1表において比較例4はポリリン酸アン
モンが下限の規定の1.0重量部より小さい場合、
比較例5はポリリン酸アンモンが上限の規定の10
重量部より大きい場合、比較例6はメラミンが下
限の規定の0.1重量部より小さい場合、比較例7
はメラミンが上限の規定10重量部より多い場合、
比較例8はジペンタエリスリトールが下限の規定
の1.0重量部よにり小さい場合、比較例9はジペ
ンタエリスリトールが上限の規定の10重量部より
多い場合をそれぞれ示す。これらの比較例ではい
づれも本願発明の効果が得られないことが判明す
る。 実施例 5 実施例1において小麦デンプンの代りにエチル
セルロースを使用する以外は同様の塗料を使用
し、以下同様にして物理特性試験をした。 可撓性、耐水性、防炎防火性とも実施例1同様
良好であり、発泡培率66であつた。 実施例 6 実施例3においてリン酸デンプンの代りにリン
酸セルロースを使用する以外は同様の塗料を使用
し、以下同様にして物理特性試験をした。 可撓性、耐水性、防炎防火性とも実施例3と同
様良好であり、発泡倍率65であつた。
[Table] In Table 1, in Comparative Example 4, when ammonium polyphosphate was less than the lower limit of 1.0 parts by weight,
Comparative Example 5 is ammonium polyphosphate, which is the upper limit of 10
If the melamine content is less than the lower limit of 0.1 parts by weight, Comparative Example 6 will be used.
If melamine is more than the upper limit of 10 parts by weight,
Comparative Example 8 shows a case in which dipentaerythritol is smaller than the lower limit of 1.0 parts by weight, and Comparative Example 9 shows a case in which dipentaerythritol is more than 10 parts by weight as an upper limit. It is found that the effects of the present invention cannot be obtained in any of these comparative examples. Example 5 The same paint as in Example 1 was used except that ethyl cellulose was used instead of wheat starch, and the physical properties were tested in the same manner. The flexibility, water resistance, and flame retardant properties were as good as in Example 1, and the foaming ratio was 66. Example 6 The same paint as in Example 3 was used except that cellulose phosphate was used instead of starch phosphate, and the physical properties were tested in the same manner. The flexibility, water resistance, and flame retardant properties were as good as in Example 3, and the expansion ratio was 65.

Claims (1)

【特許請求の範囲】 1 (1) (イ) 燐酸有量がP2O5換算で約66〜75重
量%、窒素含有量がN換算で約12〜24重量%
であるポリリン酸アンモン及び/又は変性ポ
リリン酸アンモン 1.0〜10.0重量部 (ロ) メラミン 0.1〜10.0重量部 (ハ) デンプン及び/又はセルロース類
1.0重量部 (ニ) ジペンタエリスリトール 1.0〜10.0重量部 よりなる混合物を内包するカプセル化延焼防
止剤 84〜95重量% (2) 繊維質 1〜15重量% 及び (3) ゴム系ラテツクス及び/又はアクリル系エマ
ルジヨンが固形分で4〜15重量%の均質な混合
物からなることを特徴とする電線用発泡防火塗
料。
[Claims] 1 (1) (a) Phosphoric acid content is approximately 66 to 75% by weight in terms of P 2 O 5 , and nitrogen content is approximately 12 to 24% by weight in terms of N.
Ammonium polyphosphate and/or modified ammonium polyphosphate 1.0 to 10.0 parts by weight (b) Melamine 0.1 to 10.0 parts by weight (c) Starch and/or cellulose
1.0 parts by weight (d) Encapsulated fire spread inhibitor containing a mixture of 1.0 to 10.0 parts by weight of dipentaerythritol 84 to 95% by weight (2) Fibrous 1 to 15% by weight and (3) Rubber latex and/or A foaming fireproofing paint for electric wires, comprising a homogeneous mixture of acrylic emulsion with a solid content of 4 to 15% by weight.
JP1025677A 1977-02-03 1977-02-03 Intumescent coating for electric wire Granted JPS5396038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025677A JPS5396038A (en) 1977-02-03 1977-02-03 Intumescent coating for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025677A JPS5396038A (en) 1977-02-03 1977-02-03 Intumescent coating for electric wire

Publications (2)

Publication Number Publication Date
JPS5396038A JPS5396038A (en) 1978-08-22
JPS6116781B2 true JPS6116781B2 (en) 1986-05-02

Family

ID=11745226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025677A Granted JPS5396038A (en) 1977-02-03 1977-02-03 Intumescent coating for electric wire

Country Status (1)

Country Link
JP (1) JPS5396038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138378U (en) * 1986-02-26 1987-09-01

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243231B4 (en) * 2002-09-17 2004-10-28 Clariant Gmbh Fire protection coating
CN100551659C (en) 2004-05-20 2009-10-21 雅宝公司 Make granular brominated anionic styrenic polymers and preparation thereof and application
KR101184790B1 (en) * 2011-02-10 2012-09-20 제이에스씨 파이로 치미카 Standalone Means for Firefighting
JP6181489B2 (en) * 2013-09-19 2017-08-16 大日本塗料株式会社 Water-based foamable coating composition and coated body
CN104610794B (en) * 2013-11-01 2017-07-11 中国科学技术大学先进技术研究院 Phosphorus-nitrogen expanding fire retardant, its synthetic method and its application
DE102014216761A1 (en) * 2014-08-22 2016-02-25 Leoni Bordnetz-Systeme Gmbh Cable set and method of making such
JP6467692B1 (en) * 2017-12-26 2019-02-13 清典 藏田 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138378U (en) * 1986-02-26 1987-09-01

Also Published As

Publication number Publication date
JPS5396038A (en) 1978-08-22

Similar Documents

Publication Publication Date Title
US4360440A (en) Insulating fiber mixture, adhesive, and process
JPS6116781B2 (en)
SA96160631B1 (en) Pre-mixed quick-setting compound
BRPI0614216B1 (en) microcapsules with a polymeric capsule wall, process for their preparation and use thereof
US4267089A (en) Adherent, flame-resistant acrylic decorative coating composition for wall board and the like
US4039492A (en) Synthetic fiber water base surface coating composition
JPH10182213A (en) Inorganic expanded system
US2632743A (en) Fire-resistant coating composition for fiberboard and the like
US2566964A (en) Fire-retardant paints
CN109321051A (en) A kind of fire retardant coating of aquosity cable and preparation method thereof
JP4152931B2 (en) Water-based paint composition
JP3727015B2 (en) Multi-color paint composition
JP2005350598A (en) Adhesive composition and mixed powder for adhesive preparation
WO1987000852A1 (en) Fire retardant composition
CN104693911A (en) Inorganic nano spraying material and preparation method thereof
JPS61236866A (en) Coating agent for open-air storage deposit
JP7477870B2 (en) Irregularly shaped colored gel particles, method for producing irregularly shaped colored gel particles, paint containing irregularly shaped colored gel particles, and method for producing paint containing irregularly shaped colored gel particles
JPS61120872A (en) Flame-retardant paint composition
JP7440767B2 (en) water-based paint composition
JPS61293291A (en) Putty-like fireproof composition
JPS63176566A (en) Conductive resin mortar floor
KR20010061695A (en) Fire-resistant paste
SU903342A1 (en) Polymer-cement mix
JPH10152633A (en) Release agent for fire spread preventive coating
JPS62501151A (en) Material mixtures for forming composite fire protection systems and their applications