JP6467692B1 - Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same - Google Patents

Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same Download PDF

Info

Publication number
JP6467692B1
JP6467692B1 JP2017255444A JP2017255444A JP6467692B1 JP 6467692 B1 JP6467692 B1 JP 6467692B1 JP 2017255444 A JP2017255444 A JP 2017255444A JP 2017255444 A JP2017255444 A JP 2017255444A JP 6467692 B1 JP6467692 B1 JP 6467692B1
Authority
JP
Japan
Prior art keywords
heat
expandable
fire
thermally expandable
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017255444A
Other languages
Japanese (ja)
Other versions
JP2019116606A (en
Inventor
清典 藏田
清典 藏田
Original Assignee
清典 藏田
清典 藏田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清典 藏田, 清典 藏田 filed Critical 清典 藏田
Priority to JP2017255444A priority Critical patent/JP6467692B1/en
Application granted granted Critical
Publication of JP6467692B1 publication Critical patent/JP6467692B1/en
Publication of JP2019116606A publication Critical patent/JP2019116606A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】熱膨張性耐火断熱塗料およびこれを用いたケーブル用耐火断熱シートを提供する。【解決手段】樹脂バインダー、無機充填材、熱膨張性黒鉛、リン系化合物と多価アルコールとメラミンの混合物、銅酸化物、多価アルコール、熱膨張性マイクロスフェアーを含有することを特徴とする熱膨張性耐火断熱塗料。さらに、熱膨張性亜リン酸アルミを含有する前記熱膨張性耐火断熱塗料。また、熱膨張性耐火断熱塗料を基材シートの片面または両面に備えることを特徴とする。【選択図】図1A heat-expandable fire-resistant and heat-insulating paint and a fire-resistant and heat-insulating sheet for cables using the same are provided. A resin binder, an inorganic filler, thermally expandable graphite, a mixture of a phosphorus compound, a polyhydric alcohol and melamine, a copper oxide, a polyhydric alcohol, and a thermally expandable microsphere. Thermally expandable fireproof insulation coating. Furthermore, the said heat-expandable fireproof heat insulation coating material containing heat-expandable aluminum phosphite. Further, the present invention is characterized in that a heat-expandable fireproof and heat-insulating paint is provided on one or both sides of the base sheet. [Selection] Figure 1

Description

本発明は、熱膨張性耐火断熱塗料およびこれを用いたケーブル用耐火断熱シートに関するものである。The present invention relates to a heat-expandable fire-resistant and heat-insulating paint and a fire-resistant and heat-insulating sheet for cables using the same.

防火対象物等における消火設備、警報設備、避難設備等の消防用設備に使用される消防用ケーブルは、小勢力回路用耐熱ケーブルと耐火ケーブルとに大別される。小勢力回路用耐熱ケーブルは、被災時に一定時間消火設備と避難誘導設備等を作動させるための耐熱性を有する60V以下の弱電回路用のケーブルである。耐火ケーブルは一般的に、通常時の電力供給及び火災時において消火設備と避難誘導設備等を一定時間作動させるためのケーブルで、使用電圧が600V以下の電路に使用される600V対応の機器電源用の低圧ケーブルと、使用電圧が600Vを超える6600V対応の非常用電源幹線に使用される高圧ケーブルと、絶縁物保護被覆を構成する材料にハロゲンを含まない高難燃ノンハロゲン耐火ケーブルがある。特に耐火ケーブルの中でも高圧耐火ケーブルの構造は、従来導体上に耐火層、絶縁体層、半導電層、金属遮蔽層、押さえテープ、外部シース層から構成されている。このような耐火ケーブルにおいて、特に優れた性能を有するものとして様々な構造のものが開発されている。Fire fighting cables used for fire fighting equipment such as fire extinguishing equipment, alarm equipment, evacuation equipment and the like for fire prevention objects are roughly classified into heat resistant cables for small power circuits and fire resistant cables. The heat-resistant cable for a small power circuit is a cable for a weak electric circuit of 60 V or less having heat resistance for operating a fire extinguishing equipment and an evacuation guidance equipment for a certain period of time in the event of a disaster. Fireproof cables are generally used for power supply during normal times and fire extinguishing equipment and evacuation guidance equipment for a certain period of time in the event of a fire. Low-voltage cables, high-voltage cables used for emergency power supply trunks for 6600V, whose working voltage exceeds 600V, and highly flame-retardant non-halogen fire-resistant cables that do not contain halogen in the material constituting the insulator protective coating. In particular, the structure of a high-pressure fireproof cable among fireproof cables is composed of a fireproof layer, an insulator layer, a semiconductive layer, a metal shielding layer, a pressing tape, and an outer sheath layer on a conventional conductor. In such a refractory cable, cables having various structures have been developed as having particularly excellent performance.

例えば、特許文献1には従来の高圧耐火ケーブルの構造にセラミック繊維及びセルロースを含むテープで、その外側がアルミテープで構成されたものと、両面がポリエチレンフィルムで構成されたセラミック系テープが開示されている。For example, Patent Document 1 discloses a conventional high-pressure fireproof cable having a tape containing ceramic fibers and cellulose, the outer side being made of aluminum tape, and the ceramic tape having both sides made of polyethylene film. ing.

また、特許文献2には、従来の高圧耐火ケーブルの構造のコア上にマイカ鱗片とセルロースパルプとの混抄層と補強層からなる断熱層と熱発泡性防火層で構成されたものが開示されている。Further, Patent Document 2 discloses a structure in which a heat insulating layer composed of a mixed layer of mica scale and cellulose pulp and a reinforcing layer and a heat-foaming fireproof layer are formed on the core of a conventional high-pressure fireproof cable structure. Yes.

さらには、特許文献3には無機物の不燃性シートへ発泡性防火塗料が塗布されたものが開示されている。Furthermore, Patent Document 3 discloses a foamed fireproof paint applied to an inorganic noncombustible sheet.

特許第3148079号公報Japanese Patent No. 3148079 特許第3287868号公報Japanese Patent No. 3287868 実公平1−26004号公報Japanese Utility Model Publication 1-26004

しかしながら、特許文献1、特許文献2、特許文献3に開示されている構造では、ケーブル外部層が火炎に曝された場合に熱膨張層の脱落飛散防止、熱伝導の低減、吸熱による内部構造への溶融回避や火炎の裏面への侵入防止に対して十分な構造とはいえない。However, in the structures disclosed in Patent Document 1, Patent Document 2, and Patent Document 3, when the cable outer layer is exposed to a flame, the thermal expansion layer is prevented from falling off, the heat conduction is reduced, and the internal structure is formed by heat absorption. It cannot be said that the structure is sufficient for avoiding melting of the steel and preventing the flame from entering the back surface.

そこで、本発明はケーブル外層が火炎に曝された場合、初期厚みが0.5mmから1mmであっても、火災時の熱源に触れると厚みで40倍から60倍、体積で50倍から80倍に膨張することにより、耐火断熱効果と熱伝導の低減、吸熱効果による内部構造物への溶融回避、火炎の裏面への侵入を防止する形状保持性に優れた強固な膨張層を形成する、薄膜の熱膨張性耐火断熱塗料を用いたケーブル用耐火断熱シートを提供することを目的とする。Therefore, according to the present invention, when the outer layer of the cable is exposed to a flame, even if the initial thickness is 0.5 mm to 1 mm, touching the heat source at the time of fire makes the thickness 40 to 60 times and the volume 50 to 80 times. A thin film that forms a strong expansion layer with excellent shape retention that prevents fire penetration into the internal structure and prevents the penetration of the flame into the back by reducing the heat insulation effect and heat conduction It aims at providing the fire-proof heat insulation sheet | seat for cables using the heat-expandable fire-proof heat insulation coating material of this.

本発明は、樹脂バインダー、無機充填材、熱膨張性黒鉛、リン系化合物と多価アルコールとメラミンの混合物、樹脂バインダーの固形分100重量部に対して配合量が20〜100重量部の銅酸化物、グリセリン、熱膨張性マイクロスフェアーを含有することを特徴とする熱膨張性耐火断熱塗料を提供するものである。The present invention relates to a resin binder, an inorganic filler, a thermally expandable graphite, a mixture of a phosphorus compound, a polyhydric alcohol and melamine, and a copper oxide having a blending amount of 20 to 100 parts by weight with respect to 100 parts by weight of the solid content of the resin binder. The present invention provides a heat-expandable fire-resistant and heat-insulating paint characterized by containing a product, glycerin , and heat-expandable microspheres.

また本発明は、熱膨張性亜リン酸アルミを含有する前記熱膨張性耐火断熱塗料を提供するものである。Moreover, this invention provides the said heat | fever expansible fireproof heat insulation coating material containing a heat | fever expansible aluminum phosphite.

さらに本発明は、前記熱膨張性耐火断熱塗料を基材シートの片面または両面に備えるケーブル用耐火断熱シートを提供するものである。Furthermore, this invention provides the fireproof heat insulation sheet | seat for cables provided with the said thermally expansible fireproof heat insulation coating material in the single side | surface or both surfaces of a base material sheet.

本発明の熱膨張性耐火断熱塗料およびこれを用いたケーブル用耐火断熱シートは、従来の耐火組成物、断熱組成物、発泡性防火塗料と比較して著しく耐火断熱と熱伝導の低減、吸熱による内部構造物の溶融回避、火炎の裏面への侵入防止等の効果に優れているので、従来一般的に耐火組成物として使用されているマイカテープの未使用化及び使用回数の削減が可能となり生産の効率化が図れる。The heat-expandable fire-resistant heat-insulating paint of the present invention and the fire-resistant heat-insulating sheet for cables using the same are significantly reduced in heat-resistant heat insulation, heat conduction, and heat absorption compared to conventional fire-resistant compositions, heat-insulating compositions, and foam fire-resistant paint Because it has excellent effects such as avoiding melting of internal structures and preventing the penetration of the flame into the back surface, it is possible to reduce the number of mica tapes that are conventionally used as fireproof compositions and reduce the number of times they are used. Efficiency.

本発明の熱膨張性耐火断熱塗料を基材シートの片面へ塗布一体化した断面図である。It is sectional drawing which apply | coated and integrated the heat-expandable fireproof heat insulation coating material of this invention to the single side | surface of the base material sheet. 本発明の熱膨張性耐火断熱塗料を基材シートの両面へ塗布一体化した断面図である。It is sectional drawing which apply | coated and integrated the heat-expandable fireproof heat insulation coating material of this invention on both surfaces of the base material sheet.

以下、本発明を実施するための形態について図1及び図2を用いて説明する。本発明のケーブル用耐火断熱シートは熱膨張性耐火断熱塗料1を基材シート2の片面または両面に備えるケーブル用耐火断熱シートである。Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. 1 and 2. The cable fireproof heat insulating sheet of the present invention is a cable fireproof heat insulating sheet provided with the heat-expandable fireproof heat insulating paint 1 on one or both surfaces of the base sheet 2.

熱膨張性耐火断熱塗料1は、火災による加熱時に膨張することで耐火性能、断熱性能、熱伝導の低減性能、吸熱性能、火炎のシート裏面への侵入を防止する形状保持性等に優れた強固な膨張層を形成する熱膨張性耐火断熱塗料である。The heat-expandable fire-resistant and heat-insulating paint 1 expands when heated by a fire, and has excellent fire resistance, heat insulation performance, heat conduction reduction performance, heat absorption performance, shape retention that prevents the flame from entering the back of the sheet, etc. It is a heat-expandable fireproof and heat-insulating coating material that forms a flexible expansion layer.

基材シート2は熱膨張性耐火断熱塗料1を担持する強度があり柔軟で薄膜のシート状成型物である。The base sheet 2 is a flexible, thin-film sheet-like molded product having a strength for supporting the heat-expandable fire-resistant and heat-insulating paint 1.

本発明に用いる熱膨張性耐火断熱塗料1を構成する成分について説明する。まずは、樹脂バインダーについて説明する。樹脂バインダーは特に限定されないが、例えばウレタン、アルキド、アクリル、シリコーン、エチレン酢酸ビニル、ポバール、エポキシ、フェノール等の樹脂バインダーが挙げられる。樹脂バインダーは、熱膨張性耐火断熱塗料を基材シート2へ固着出来るもので、柔軟性を有する樹脂バインダーであれば良い。その中でも柔軟性の高いウレタン、シリコーンが好ましい。The component which comprises the thermally expansible fireproof heat insulation coating material 1 used for this invention is demonstrated. First, the resin binder will be described. The resin binder is not particularly limited, and examples thereof include resin binders such as urethane, alkyd, acrylic, silicone, ethylene vinyl acetate, poval, epoxy, and phenol. The resin binder can fix the heat-expandable fire-resistant and heat-insulating paint to the base sheet 2 and may be a resin binder having flexibility. Among these, highly flexible urethane and silicone are preferable.

次に、無機充填材について説明する。無機充填材は特に限定されないが、シリカ、炭酸カルシウム、炭酸マグネシウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、アルミナ、珪藻土、中空ガラスビーズ、シラスバルーン、フライアッシュバルーン、パーライト、酸化亜鉛、酸化チタン等が挙げられる。これらは、熱膨張層の形状を保持するもので1種類または、2種類以上を使用しても良い。Next, the inorganic filler will be described. The inorganic filler is not particularly limited, but silica, calcium carbonate, magnesium carbonate, talc, clay, mica, montmorillonite, bentonite, alumina, diatomaceous earth, hollow glass beads, shirasu balloon, fly ash balloon, perlite, zinc oxide, titanium oxide, etc. Is mentioned. These hold | maintain the shape of a thermal expansion layer, and may use 1 type or 2 types or more.

次に、熱膨張性黒鉛について説明する。熱膨張性黒鉛は従来公知の物質であり火災による加熱により体積比で50倍〜350倍に膨張し耐火断熱層を形成する。熱膨張性黒鉛は鱗片状グラファイト構造の層間に硫酸、硝酸、過酸化水素、ニクロム酸等を含有した炭素の層間化合物で、それをさらにアンモニア、脂肪族低級アミン等で中和処理したものでる。Next, the thermally expandable graphite will be described. Thermally expandable graphite is a conventionally known substance and expands 50 to 350 times in volume ratio by heating by fire to form a refractory heat insulating layer. Thermally expandable graphite is a carbon intercalation compound containing sulfuric acid, nitric acid, hydrogen peroxide, dichromic acid, etc. between the layers of the scaly graphite structure, and is further neutralized with ammonia, an aliphatic lower amine or the like.

熱膨張性黒鉛の粒度は30〜100メッシュである。100メッシュ以上だと熱膨張倍率が小さくなり十分な耐火断熱層を形成できない。また、30メッシュ以下だと耐火断熱層の形成には良いが、塗料化するときの分散性と基材シートへの固着が悪くなり、シートの柔軟性が失われる。The particle size of the thermally expandable graphite is 30 to 100 mesh. When it is 100 mesh or more, the thermal expansion ratio becomes small, and a sufficient fireproof heat insulating layer cannot be formed. Moreover, when it is 30 mesh or less, although it is good for formation of a fireproof heat insulation layer, the dispersibility at the time of forming a paint and the adhering to a base material sheet worsen, and the softness | flexibility of a sheet | seat is lost.

また、熱膨張性黒鉛の膨張開始温度は低温領域で膨張する180℃〜230℃のものが好ましい。膨張倍率は体積比で50倍〜350倍のものである。好ましくは、体積比で150倍〜350倍である。The expansion temperature of the thermally expandable graphite is preferably 180 ° C. to 230 ° C. that expands in a low temperature region. The expansion ratio is 50 to 350 times in volume ratio. Preferably, the volume ratio is 150 to 350 times.

また、熱膨張性黒鉛の配合量は、樹脂バインダーの固形分100重量部に対して100重量部〜400重量部である。100重量部未満では耐火断熱の効果が十分ではなく、400重量部以上だと効果は増すが、膨張層が脱落飛散しやすくなり耐火断熱効果が得られない場合がある。好ましくは、150重量部〜350重量部である。Moreover, the compounding quantity of thermally expansible graphite is 100 weight part-400 weight part with respect to 100 weight part of solid content of a resin binder. If it is less than 100 parts by weight, the effect of fireproof insulation is not sufficient, and if it is 400 parts by weight or more, the effect is increased, but the expansion layer tends to fall off and may not provide the fireproof insulation effect. Preferably, it is 150 to 350 weight part.

次に、リン系化合物と多価アルコールとメラミン系化合物との混合物について説明する。リン系化合物は赤リン、トリエチルフォスフェート、トリメチルフォスフェート、トリフェニルフォスフェート、トリクレジルフォスフェート、トリキシレニルフォスフェート、クレジルフェニルホスフェート、リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム、ポリリン酸アンモニウム等が挙げられるが、特にポリリン酸アンモニウムの使用が好ましい。多価アルコールはエチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、セルロース、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられが、特にペンタエリスリトールの使用が好ましい。メラミン系化合物はメラミン、メラミンシアヌラート、メチロール化メラミン、ヘキサメトキシメチルメラミン、ピロリン酸メラミン、オルトリン酸メラミン等が挙げられるが、特にメラミンの使用が好ましい。Next, a mixture of a phosphorus compound, a polyhydric alcohol, and a melamine compound will be described. Phosphorus compounds include red phosphorus, triethyl phosphate, trimethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl phenyl phosphate, sodium phosphate, potassium phosphate, magnesium phosphate, polyphosphorus Although ammonium acid etc. are mentioned, use of ammonium polyphosphate is particularly preferable. Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylol propane, cellulose, glycerin, pentaerythritol, dipentaerythritol and the like, and the use of pentaerythritol is particularly preferable. Examples of melamine compounds include melamine, melamine cyanurate, methylolated melamine, hexamethoxymethyl melamine, melamine pyrophosphate, melamine orthophosphate, and the use of melamine is particularly preferable.

さらに、リン系化合物に代えてまたはリン系化合物と併用してホウ素化合物用いることが出来る。ホウ素化合物はホウ酸、ホウ酸亜鉛、ホウ酸ナトリウム、トリメチルボレート、トリブチルボレートなどが挙げられる。Furthermore, a boron compound can be used in place of or in combination with a phosphorus compound. Examples of the boron compound include boric acid, zinc borate, sodium borate, trimethyl borate, and tributyl borate.

また、特にポリリン酸アンモニウムとペンタエリスリトールとメラミンの混合物は、火炎による加熱状況下でポリリン酸アンモニウムとペンタエリスリトールが反応し、火炎による輻射熱を遮断する炭化層を形成するとともに、脱水吸熱効果を発揮する。また、ポリリン酸アンモニウムはリン酸ガラス質となることで熱膨張層の脱落飛散を防止するバインダー効果を発揮する。メラミンは熱分解により不活性窒素ガスを発生させ、熱伝導を遅らせる効果を発揮する。In particular, a mixture of ammonium polyphosphate, pentaerythritol, and melamine reacts with ammonium polyphosphate and pentaerythritol under heating by a flame to form a carbonized layer that blocks radiant heat from the flame, and exhibits a dehydration endothermic effect. . Moreover, ammonium polyphosphate exhibits the binder effect which prevents the thermal expansion layer from falling off by becoming a phosphate glass. Melamine produces an inert nitrogen gas by thermal decomposition and exhibits the effect of delaying heat conduction.

ポリリン酸アンモニウムとペンタエリスリトールとメラミンとの混合物は市販されておりこれを使用することができる。配合は100重量部〜400重量部である。100重量部未満では、炭化層の形成が十分ではなく火炎による輻射熱を阻止出来ない。400重量部以上だとバインダー樹脂と混錬する際に分散性が悪くなり、均一な塗膜が得られず塗膜の物性が低下する。好ましくは150重量部〜350重量部である。A mixture of ammonium polyphosphate, pentaerythritol and melamine is commercially available and can be used. The blending is 100 to 400 parts by weight. If it is less than 100 parts by weight, the formation of the carbonized layer is not sufficient, and radiant heat due to the flame cannot be prevented. When it is 400 parts by weight or more, dispersibility deteriorates when kneading with the binder resin, and a uniform coating film cannot be obtained, and the physical properties of the coating film decrease. The amount is preferably 150 to 350 parts by weight.

次に、銅酸化物とグリセリンについて説明する。銅酸化物は、火炎による加熱状況下で銅酸化物が触媒となりグリセリンの分解を促進する、いわゆるレドックス反応が繰り返されることにより、脱水反応による吸熱効果が可逆的に継続されるので、従来一般的に脱水吸熱効果を目的に多量に使用されていた不可逆的な水酸化アミ、水酸化マグネシウムなどの金属水和物を使用しなくても、これらの代わりに少量の銅酸化物とグリセリンを使用することで、継続的な吸熱効果をもつ連続生産に適した薄膜の長尺化シートを得ることが出来る。Next, copper oxide and glycerin will be described. Since copper oxide is a catalyst that promotes the decomposition of glycerin under the heating condition by flame , the so-called redox reaction is repeated, so that the endothermic effect due to the dehydration reaction is reversibly continued. dehydration endothermic effect irreversible hydroxide a Le Mi which had been used in a large amount for the purpose of, without using metal hydrates such as magnesium hydroxide, these small amounts of copper oxide and glycerin instead By using it, an elongated sheet of a thin film suitable for continuous production having a continuous endothermic effect can be obtained.

銅酸化物としては酸化第一銅、酸化第二銅が挙げられるが、酸化度の高い酸化第二銅が好ましい。配合量は、20〜100重量部である。20重量部未満だとグリセリンの分解を促進する効果は十分ではなくまた、100重量部を超えても触媒効果が増すことはない。好ましくは20〜80重量部である。Examples of the copper oxide include cuprous oxide and cupric oxide, but cupric oxide having a high degree of oxidation is preferable. A compounding quantity is 20-100 weight part. If it is less than 20 parts by weight, the effect of promoting the decomposition of glycerin is not sufficient, and if it exceeds 100 parts by weight, the catalytic effect does not increase. Preferably it is 20-80 weight part.

また、グリセリンのほかにはエチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、セルロースペンタエリスリトール、ジペンタエリスリトール等が挙げられるが、酸化第二銅との分解反応性の良いグリセリンが好ましく純度99%以上の精製品がより好ましい。配合量は30〜200重量部である。30重量部未満では十分な脱水吸熱効果が発揮されない。200重量部以上だとシート化した時に塗料にタック感が残りブロッキングの原因とる。好ましくは、30〜150重量部である。In addition to glycerin, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylol propane, cellulose , pentaerythritol, dipentaerythritol, etc. can be mentioned, but the decomposition reactivity with cupric oxide Good glycerin is preferable, and a purified product having a purity of 99% or more is more preferable. The amount is 30 to 200 parts by weight. If it is less than 30 parts by weight, sufficient dehydration endothermic effect is not exhibited. When it is 200 parts by weight or more, when the sheet is formed, a tacky feeling remains in the paint and causes blocking. Preferably, it is 30-150 weight part.

次に、熱膨張性マイクロスフェアーについて説明する。熱膨張性マイクロスフェアーは比較的低温短時間の加熱により体積比で50〜100倍に膨張する平均粒径5〜50μmの熱可塑性樹脂の外殻を持ち、内部に膨張剤である低沸点炭化水素を内包した熱膨張性カプセルである。外殻の熱可塑性樹脂は、塩化ビニリデン、アクリロニトリル、アクリル酸エステル、メタクリル酸エステルなどの共重合体からなる熱可塑性樹脂で、内部に内包されている膨張剤はイソブタン、ペンタン、ヘキサン、ヘプタンなどの低沸点炭化水素である。Next, the thermally expandable microsphere will be described. Thermally expandable microspheres have an outer shell of a thermoplastic resin having an average particle size of 5 to 50 μm that expands 50 to 100 times in volume ratio by heating at a relatively low temperature for a short time. This is a thermally expandable capsule containing hydrogen. The outer shell thermoplastic resin is a thermoplastic resin made of a copolymer such as vinylidene chloride, acrylonitrile, acrylic acid ester, methacrylic acid ester, etc., and the expansion agent contained inside is isobutane, pentane, hexane, heptane, etc. It is a low boiling point hydrocarbon.

熱膨張性マイクロスフェアーは、外殻樹脂が軟化点以上に加熱されると、外殻が軟化を始め、同時に内包されている低沸点炭化水素がガス化されることで内圧が上がり膨張する。さらに加熱されると熱膨張性マイクロスフェアーは消失するが、加熱膨張した熱膨張性黒鉛の膨張層の内部で加熱消失した熱膨張性マイクロスフェアーは多孔質の空隙を形成し、この多孔質の空隙により熱伝導を低減することが出来る。In the thermally expandable microsphere, when the outer shell resin is heated above the softening point, the outer shell starts to soften, and at the same time, the low-boiling hydrocarbons contained therein are gasified to increase the internal pressure and expand. When heated further, the thermally expandable microspheres disappear, but the thermally expandable microspheres that have been heated and lost inside the expanded layer of thermally expanded graphite expand to form porous voids. Heat conduction can be reduced by the gap.

また、熱膨張性マイクロスフェアーの膨張は、厚み方向だけてなく平面方向へも均一に膨張するので、シート状成型物の裏面への火炎の侵入を防止することができる。また、シート間に多少の隙間が生じた場合にも、平面方向への膨張により隙間を閉ざすことが出来るので、隙間からの火炎の侵入を防止することができる。Further, since the expansion of the thermally expandable microspheres expands uniformly not only in the thickness direction but also in the plane direction, it is possible to prevent the flame from entering the back surface of the sheet-like molded product. Further, even when a slight gap is generated between the sheets, the gap can be closed by the expansion in the plane direction, so that intrusion of flame from the gap can be prevented.

熱膨張性マイクロスフェアーの平均粒子径は10〜50μmが好ましく、より好ましくは20〜30μmである。平均粒子径が小さいと膨張度が小さくなり、膨張層内で加熱消失された後の効果として残された多孔質の空隙による熱伝導の低減効果が十分得られない。平均粒子径が50μmより大きくなると膨張度が大きくなり加熱消失後の多孔質の空隙が大きくなる利点はあるが、火炎との接触面で外殻樹脂が他の成分を巻き込んだ溶融ドロッピングが多くなる。また、最大膨張温度は190〜250℃のものが好ましい。配合量は20〜100重量部である。20重量部未満では、多孔質の空隙による熱伝導の低減効果が十分得られない。100重量部を超えると火炎との接触面で外殻樹脂が他の成分を巻き込んだ溶融ドロッピングが多くなる。好ましくは20〜80重量部である。The average particle size of the thermally expandable microsphere is preferably 10 to 50 μm, more preferably 20 to 30 μm. If the average particle size is small, the degree of expansion becomes small, and the effect of reducing heat conduction due to the porous voids remaining after the heat dissipation in the expanded layer cannot be obtained sufficiently. When the average particle size is larger than 50 μm, there is an advantage that the degree of expansion increases and the porous voids after heating disappears, but there is an increase in melt dropping in which the outer shell resin entrains other components at the contact surface with the flame. . The maximum expansion temperature is preferably 190 to 250 ° C. The amount is 20 to 100 parts by weight. If it is less than 20 parts by weight, the effect of reducing heat conduction due to the porous voids cannot be sufficiently obtained. When the amount exceeds 100 parts by weight, the molten dripping in which the outer shell resin entrains other components at the contact surface with the flame increases. Preferably it is 20-80 weight part.

本発明の熱膨張性耐火断熱塗料は熱膨張性亜リン酸アルミを含有することが好ましい。熱膨張性亜リン酸アルミは緻密で強固な多孔質膨張層を形成し、熱膨張層の形状を保持することが出来る。The heat-expandable fireproof and heat-insulating paint of the present invention preferably contains heat-expandable aluminum phosphite. The heat-expandable aluminum phosphite forms a dense and strong porous expansion layer, and can maintain the shape of the heat expansion layer.

熱膨張性亜リン酸アルミは、熱膨張性黒鉛や熱膨張性マイクロスフェアーが200℃前後の低温領域で膨張する高膨張体であるのに対し、熱膨張性亜リン酸アルミは350℃から480℃の高温領域で緻密で強固な多孔質膨張層を形成するものである。熱膨張性黒鉛や熱膨張性マイクロスフェアーと熱膨張性亜リン酸アルミを含有することで、低温領域から高温領域を補うことが出来また、粗になりがちな高膨張体と緻密で強固な多孔質膨張層を併せ持った形状保持性に優れた膨張層を形成することが出来る。Thermally expandable aluminum phosphite is a high expansion body in which thermally expandable graphite and thermally expandable microspheres expand in a low temperature region around 200 ° C., whereas thermally expandable aluminum phosphite starts from 350 ° C. A dense and strong porous expansion layer is formed in a high temperature region of 480 ° C. By containing thermally expandable graphite, thermally expandable microspheres, and thermally expandable aluminum phosphite, the high temperature region can be compensated from the low temperature region, and a high expansion body that tends to become coarse and a dense and strong material. An expanded layer having a porous expanded layer and excellent shape retention can be formed.

熱膨張性亜リン酸アルミの平均粒径は20μmから50μmが好ましく、それ以上のものでは樹脂と混錬する際の分散性が悪くなり塗膜の物性低下が避けられない。配合量は20重量部から300重量部である。20重量部未満では多孔質で緻密な膨張層を形成するには十分ではなく、熱膨張層の形状を保持することが出来ない。200重量部以上だと熱膨張黒鉛、熱膨張性マイクロスフェアーなどの高膨張体の膨張に制限を与え好ましくない。The average particle diameter of the heat-expandable aluminum phosphite is preferably 20 μm to 50 μm. If the average particle diameter is larger than that, the dispersibility at the time of kneading with the resin deteriorates and the physical properties of the coating film are inevitably lowered. The blending amount is 20 to 300 parts by weight. If it is less than 20 parts by weight, it is not sufficient to form a porous and dense expanded layer, and the shape of the thermally expanded layer cannot be maintained. If it is 200 parts by weight or more, it is not preferable because it restricts the expansion of a high expansion body such as thermal expansion graphite and thermal expansion microsphere.

次に、熱膨張性耐火断熱塗料を担持する基材シート2について説明する。基材シート2は片面または、両面に熱膨張性耐火断熱塗料を担持するシートで、例えばガラスクロス、不織布、織布、樹脂フィルム、セラミックペーパー等が挙げられる。厚みが0.02mm〜1mmの長尺シートで強度と柔軟性があれば特に限定されないが強度、柔軟性、耐熱性、絶縁性に優れるガラスクロスが好ましく、さらには塗料を塗布する場合脱泡しやすい平織りガラスクロスがより好ましい。Next, the base material sheet 2 carrying the heat-expandable fireproof heat insulating paint will be described. The base material sheet 2 is a sheet that carries a heat-expandable fireproof and heat-insulating paint on one side or both sides, and examples thereof include glass cloth, non-woven fabric, woven fabric, resin film, and ceramic paper. Although it is not particularly limited as long as it is a long sheet having a thickness of 0.02 mm to 1 mm and has strength and flexibility, a glass cloth excellent in strength, flexibility, heat resistance and insulation is preferable, and further, defoaming is performed when coating is applied A plain plain glass cloth is more preferable.

本発明における、熱膨張性耐火断熱塗料を用いたケーブル用耐火断熱シートは、特に溶剤系または水系の塗料として限定されないが、熱膨張性耐火断熱塗料としてB型粘度計粘度で2000mPa・s〜6000mPa・sに調整した熱膨張性耐火断熱塗料1をナイコーター、コンマコーター、ロールコーター、グラビアコーター、ディッピング等の公知の塗布手段により、基材シート2の片面または両面に塗布一体化させて製造する。さらに、塗布一体化したものを公知のスリット機械で所望の幅に長尺化スリットして製造する。The fire-resistant and heat-insulating sheet for cables using the heat-expandable fire-resistant and heat-insulating paint in the present invention is not particularly limited as a solvent-based or water-based paint, but as a heat-expandable fire-resistant and heat-insulating paint, a B-type viscometer viscosity is 2000 mPa · s to 6000 mPa. The heat-expandable fire-resistant and heat-insulating paint 1 adjusted to s is manufactured by applying and integrating on one or both sides of the base sheet 2 by a known application means such as a ni coater, comma coater, roll coater, gravure coater, dipping, etc. Further, the integrated product is manufactured by slitting it into a desired width with a known slitting machine.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は必ずしもこれらに限定されるものではない。Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not necessarily limited thereto.

(実施例1、実施例2、比較例1〜比較例4)
下記表1に示す熱膨張性耐火断熱塗料組成物をバーコーターにて厚み0.17mm、質量203g/mの平織りガラスクロスの片面に塗布固着させ塗工厚み0.5mm総厚み0.67mm横150mm縦150mmのシートを得た。
(Example 1, Example 2, Comparative Examples 1 to 4)
The heat-expandable fire-resistant and heat-insulating paint composition shown in Table 1 below was applied and fixed to one side of a plain weave glass cloth having a thickness of 0.17 mm and a mass of 203 g / m 2 using a bar coater. The coating thickness was 0.5 mm and the total thickness was 0.67 mm. A sheet 150 mm long and 150 mm long was obtained.

さらに、実施例1と同一の熱膨張性耐火断熱塗料組成物をバーコーターにて厚み0.17mm、質量203g/mの平織りガラスクロスの片面に塗布固着させ塗工厚み0.5mm総厚み0.67mm幅50mm長さ900mmのテープ状に作成し、これを現行ケーブル製品600V架橋ポリエチレン絶縁ビニルシース600V−CV22SQ3心の外層シースの下に使用されているポリエステル不織布の代わりに巻き回してケーブルを得た。Further, the same heat-expandable fire-resistant and heat-insulating coating composition as in Example 1 was applied and fixed to one side of a plain weave glass cloth having a thickness of 0.17 mm and a mass of 203 g / m 2 with a bar coater. .67 mm width 50 mm length 900 mm tape was formed, and this was wound instead of the polyester nonwoven fabric used under the outer sheath of the current cable product 600V cross-linked polyethylene insulated vinyl sheath 600V-CV22SQ3 core to obtain a cable .

(比較例5)
600V架橋ポリエチレン絶縁ビニルシース600V−CV22SQ3心の外層シースの下に使用されているポリエステル不織布の代わりに厚み0.17mm、質量203g/m幅50mm長さ900mmのテープ状の平織りガラスクロスを巻き回してケーブルを得た。
(Comparative Example 5)
600V XLPE insulated vinyl sheath 600V-CV22SQ3 heart thick instead of the polyester nonwoven fabric is used under the outer layer sheath 0.17 mm, by winding a tape-like plain weave glass cloth weight 203 g / m 2 width 50mm length 900mm Got the cable.

前記方法で得たシートを用いて加熱試験を実施し、最高温度、平均温度、厚み膨張倍率、平面膨張倍率、体積膨張倍率、耐火性、断熱性、熱膨張層の形状保持性を評価し、得られた評価結果を表1に示した。また、電気炉によるケーブル加熱試験を実施し、荷重負荷による絶縁層の変形、導体どうしの接触、クラフト紙介在の燃焼、導体の変色の状態を評価し得られた結果を評価結果の項目に示した。Conduct a heating test using the sheet obtained by the above method, and evaluate the maximum temperature, average temperature, thickness expansion ratio, plane expansion ratio, volume expansion ratio, fire resistance, heat insulation, thermal expansion layer shape retention, The obtained evaluation results are shown in Table 1. Also, a cable heating test using an electric furnace was performed, and the results obtained by evaluating the state of insulation layer deformation due to load loading, contact between conductors, craft paper-mediated combustion, and discoloration of the conductors are shown in the evaluation result items. It was.

(耐火断熱性評価方法)
実施例1、実施例2、比較例1〜比較例4の耐火断熱性評価方法。評価用シートを水平に固定する器具を作成し、UL94−5V平版試験片での試験方法に準じ、下方からバーナー20度傾斜125mm炎、バーナーの下部に脱脂綿を縦横50mmに配して、評価用シートの熱膨張性耐火断熱塗料面中央部に接炎した。バーナーの火炎温度をK型熱電対で測定し、接炎温度が1000℃〜1050℃の範囲に保てるようバーナーの空気孔と燃料の供給量を調節し30分間加熱した。評価用シートの裏面中央部にK型熱電対を2個設置し温度を測定した。加熱開始から5分までを1分間隔5分以降から加熱終了30分までを5分間隔で合計10回評価用シートの裏面中央部の温度を測定した。
(Fireproof insulation evaluation method)
The fire-resistant heat insulation evaluation method of Example 1, Example 2, and Comparative Examples 1 to 4. Create an instrument that horizontally holds the evaluation sheet, and according to the test method using a UL94-5V lithographic test piece, burner 20 degrees inclined 125mm flame from below, absorbent cotton 50mm vertically and horizontally at the bottom of the burner for evaluation The sheet was in contact with the center of the surface of the heat-expandable fire-resistant and heat-insulating paint. The flame temperature of the burner was measured with a K-type thermocouple, and the burner air hole and the fuel supply amount were adjusted so that the flame contact temperature was kept in the range of 1000 ° C. to 1050 ° C. and heated for 30 minutes. Two K-type thermocouples were installed in the center of the back surface of the evaluation sheet, and the temperature was measured. From the start of heating to 5 minutes, the temperature at the center of the back surface of the evaluation sheet was measured a total of 10 times at intervals of 5 minutes from 5 minutes after the 1 minute interval to 30 minutes after the end of heating.

実施例3比較例5のケーブル耐火断熱性評価方法。実施例3で得たケーブルと比較例5で得たケーブルを、平成9年消防庁告示第10号耐火電線の基準で規定された加熱曲線と荷重負荷に準じ電気炉内に設置した。Example 3 Cable fireproof and heat-insulating evaluation method of Comparative Example 5. The cable obtained in Example 3 and the cable obtained in Comparative Example 5 were installed in an electric furnace in accordance with the heating curve and load load specified by the Fire and Disaster Management Agency Notification No. 10 fireproof wire standards in 1997.

(耐火性評価基準)
実施例1、実施例2、比較例1〜比較例4でシートの燃焼と滴下物による脱脂綿の燃焼のないものを○、シートの燃焼はあるが滴下物による脱脂綿の燃焼のないものを△、シートの燃焼と滴下物による脱脂綿の燃焼があるものを×とした。
(Fire resistance evaluation criteria)
Example 1, Example 2, Comparative Example 1 to Comparative Example 4 in which there is no combustion of the sheet and the absorbent cotton due to the dropped product, △, which is the combustion of the sheet but there is no combustion of the absorbent cotton due to the dropped product, The case where there was burning of the sheet and burning of the absorbent cotton due to the dripped material was rated as x.

(断熱性評価基準)
実施例1、実施例2、比較例1〜比較例4のシートで加熱開始から加熱終了30分までの合計10回温度を測定、測定温度は設置したK型熱電対2個の測定温度の平均とした。ケーブルの短絡時の許容電流が日本電線工業会JCS0168−1より短絡時の導体許容温度が架橋ポリエチレンで230℃であることから、最高温度が200℃以下のものを○、200℃を超え230℃以下を△、230℃を超えるものを×とした。尚、平均温度は合計10回の温度測定の平均である。
(Insulation evaluation criteria)
A total of 10 temperatures from the start of heating to 30 minutes after the end of heating were measured on the sheets of Example 1, Example 2, and Comparative Examples 1 to 4, and the measured temperature was the average of the measured temperatures of two installed K-type thermocouples. It was. The allowable current when the cable is short-circuited is JC0168-1 from the Japan Electrical Wire Manufacturers Association, and the allowable temperature when short-circuited is 230 ° C for crosslinked polyethylene. The following were marked with Δ, and those exceeding 230 ° C. with x. The average temperature is an average of 10 temperature measurements in total.

(膨張層の形状保持評価基準)
実施例1、実施例2、比較例1〜比較例4のシートの目視確認により膨張層からの脱落飛散がほとんどなく指触で膨張層が崩れないものを○、脱落飛散は多少みられるが指触で膨張層が崩れないものを△、脱落飛散があり指触で膨張層が崩れるものを×とした。
(Expansion layer shape retention evaluation criteria)
According to the visual confirmation of the sheets of Example 1, Example 2 and Comparative Examples 1 to 4, there is almost no drop-off scattering from the expansion layer and the expansion layer does not collapse by finger touch. The case where the expansion layer did not collapse by touch was indicated by Δ, and the case where there was drop-off scattering and the expansion layer collapsed by touch was indicated by ×.

(ケーブル電気炉評価基準)
実施例3で得たケーブルと比較例5で得たケーブルを平成9年消防庁告示第10号耐火電線の基準で規定された加熱曲線と荷重負荷に準じた評価終了後に、電気炉内から取り出し目視確認により荷重負荷による絶縁層の変形、溶融及び3心どうしの溶融接着、導体の接触、クラフト紙介在の燃焼、導体の変色のほとんどないものを○、あるものを×とした。
(Cable electric furnace evaluation criteria)
The cable obtained in Example 3 and the cable obtained in Comparative Example 5 were taken out from the electric furnace after the evaluation according to the heating curve and load load defined by the Fire and Disaster Management Agency Notification No. 10 fireproof wire standards in 1997. As a result of visual confirmation, the insulating layer was deformed by a load, melted and melted and bonded between three cores, contacted with a conductor, burned with kraft paper, and with little discoloration of the conductor.

以下は、評価に使用した熱膨張性耐火断熱塗料組成物と機器についてのものである。
オレスターQ203:ポリウレタン樹脂(三井化学社製)
EXP50SL:熱膨張性黒鉛(富士黒鉛工業社製)
タイエンE:ポリリン酸アンモニウムとペンタエリスリトールとメラミンの混合物(太平化学産業社製)
APA−100:熱膨張性亜リン酸アルミ(太平化学産業社製)
CuO:酸化第二銅(日興リカ社製)
FN−180D:熱膨張性マイクロスフェアー(松本油脂製薬社製)
精製グリセリン:(新日本理化社製)
BF200:炭酸カルシウム(備北粉化工業社製)
平織りガラスクロス:H201F107(ユニチカ社製)
K型熱電対:TM−902C(Lutron社製)
K型熱電対:TM−902C(Aideaz社製)
バーナー:パワートーチRZ−832 16mm火口炎(新富士バーナー社製)
バーナー燃料:RZ860液化プロパン、液化ブタン(新富士バーナー社製)
シックネスゲージ:ZLSY(Enhong社製)
The following is for the thermally expandable fire-resistant and heat-insulating coating composition and equipment used in the evaluation.
Olester Q203: Polyurethane resin (Mitsui Chemicals)
EXP50SL: Thermally expandable graphite (Fuji Graphite Industry Co., Ltd.)
Thaien E: A mixture of ammonium polyphosphate, pentaerythritol and melamine (manufactured by Taihei Chemical Industrial Co., Ltd.)
APA-100: Thermally expandable aluminum phosphite (manufactured by Taihei Chemical Industrial Co., Ltd.)
CuO: Cupric oxide (manufactured by Nikko Rica)
FN-180D: Thermally expandable microsphere (Matsumoto Yushi Seiyaku Co., Ltd.)
Purified glycerin: (manufactured by Shin Nippon Rika Co., Ltd.)
BF200: Calcium carbonate (manufactured by Bihoku Powder Chemical Co., Ltd.)
Plain weave glass cloth: H201F107 (Made by Unitika)
Type K thermocouple: TM-902C (manufactured by Lutron)
K-type thermocouple: TM-902C (manufactured by Aideaz)
Burner: Power torch RZ-832 16mm crater flame (manufactured by Shin-Fuji burner)
Burner fuel: RZ860 liquefied propane, liquefied butane (manufactured by Shin-Fuji Burner)
Thickness gauge: ZLSY (manufactured by Enhong)

(評価結果)
実施例1は耐火性、断熱性、熱膨張層の形状保持のいずれにおいても良好であった。最高温度167℃、平均温度160℃、各膨張倍率も良好であった。特に断熱性に優れた効果が確認された。
(Evaluation results)
Example 1 was good in any of fire resistance, heat insulation, and shape retention of the thermal expansion layer. The maximum temperature was 167 ° C., the average temperature was 160 ° C., and each expansion ratio was also good. In particular, an effect excellent in heat insulation was confirmed.

実施例2は耐火性、断熱性は良好であるが、熱膨張層の形状保持において熱膨張性亜リン酸アルミの未配合による影響で多少膨張層からの飛散がみられたが、指触で膨張層は崩れることはなく良好であることが確認された。Although Example 2 has good fire resistance and heat insulation properties, in the shape retention of the thermal expansion layer, there was some scattering from the expansion layer due to the effect of non-combination of thermally expandable aluminum phosphite. It was confirmed that the expanded layer was good without being broken.

比較例1は、耐火性は良好であるが、最高温度が200℃をわずかに超え平均温度も高めであった。また、膨張層からの飛散と膨張層の形状保持力が不足しており不合格である。In Comparative Example 1, the fire resistance was good, but the maximum temperature slightly exceeded 200 ° C. and the average temperature was also high. Moreover, the scattering from an expansion layer and the shape retention force of an expansion layer are insufficient, and it is disqualified.

比較例2は、耐火性と各膨張倍率は良好であるが膨張倍率が高すぎることで膨張層内の空隙が粗になり最高温度が200℃を超えた。また、飛散があり膨張層の形状保持も不足しており不合格である。In Comparative Example 2, the fire resistance and each expansion ratio were good, but the expansion ratio was too high, so that the voids in the expansion layer became rough and the maximum temperature exceeded 200 ° C. Moreover, there is scattering and the shape retention of the expansion layer is insufficient, which is unacceptable.

比較例3は、耐火性は良好であるが、精製グリセリンが配合されておらず最高温度が200℃を超え平均温度も高めで若干飛散もみられたが、合格のレベルには達していた。In Comparative Example 3, fire resistance was good, but refined glycerin was not blended and the maximum temperature exceeded 200 ° C., and the average temperature was also high and some scattering was observed, but the level reached a pass.

比較例4は、耐火性は良好であるが、熱膨張性マイクロスフェアーが配合されていないため、膨張層内で多孔質の空隙が形成されず、断熱性の評価基準を満たすことが出来ず、平均温度も高温であった。また、各膨張倍率も低く不合格である。Comparative Example 4 has good fire resistance, but since no thermally expandable microspheres are blended, porous voids are not formed in the expanded layer, and the thermal insulation evaluation criteria cannot be satisfied. The average temperature was also high. Moreover, each expansion magnification is also low and is unacceptable.

実施例3のケーブル電気炉評価結果は、架橋ポリエチレン絶縁の3心ともに、絶縁層の変形、溶融及び3心どうしの溶融接着、導体の接触もなかった。また、内部のクラフト紙介在の燃焼についても、表面部分に若干薄い焦げ目が見られたが、裏面部分には焦げ目はまったく見られなかった。3心の導体部分の変色は見られず、荷重負荷による影響もなく効果が良好であることが確認され、評価は○である。As a result of evaluating the cable electric furnace of Example 3, there was no deformation of the insulating layer, melting, fusion bonding of the three cores, and contact of the conductors in the three cores of the crosslinked polyethylene insulation. In addition, as for the internal kraft paper-mediated combustion, a slightly thin burn was observed on the front surface portion, but no burn was observed on the back surface portion. No discoloration of the conductor part of the three cores was observed, and it was confirmed that the effect was good without being affected by the load, and the evaluation was good.

比較例5のケーブル電気炉評価結果は、架橋ポリエチレン絶縁の3心ともに、大きくはないものの絶縁層の変形が見られ溶融による3心どうしの溶融接着が見られた。導体の接触はなかったが、内部のクラフト紙介在は炭化しており形状をとどめなかった。また、3心の導体部分の変色が見られ、1心は銀色残りの2心は桃色に変色しており良好な結果は得られず、評価は×である。The cable electric furnace evaluation results of Comparative Example 5 showed that although the three cores of the crosslinked polyethylene insulation were not large, the insulation layer was deformed and the melt adhesion of the three cores due to melting was observed. There was no contact with the conductor, but the inside of the kraft paper was carbonized and did not stay in shape. Moreover, discoloration of the conductor part of 3 cores is seen, 1 core is silver-colored and 2 remaining cores are discolored pink, and a favorable result is not obtained, and evaluation is x.

実施例1の熱膨張性耐火断熱塗料組成物を用いた耐火断熱シートは、耐火性、断熱性、膨張層の形状保持性に優れており、特に断熱性に優れた性能を発揮するものである。また実施例1と同じ熱膨張性耐火断熱塗料組成物を用いた耐火断熱シートを使用した実施例3のケーブルにおいても、優れた性能を発揮するものであることが確認できた。The fire-resistant and heat-insulating sheet using the heat-expandable fire-resistant and heat-insulating coating composition of Example 1 is excellent in fire resistance, heat insulation, and shape retention of the expanded layer, and exhibits particularly excellent performance in heat insulation. . In addition, it was confirmed that the cable of Example 3 using the fire-resistant and heat-insulating sheet using the same thermally expandable fire-resistant and heat-insulating paint composition as in Example 1 exhibited excellent performance.

尚、本発明の熱膨張性耐火断熱塗料は、優れた耐火断熱性能があるので、ケーブル用途以外にも防火扉への使用や建築物、建材関連等への使用の可能性がある。In addition, since the heat-expandable fire-resistant and heat-insulating paint of the present invention has excellent fire-resistant and heat-insulating performance, it can be used for fire doors and for buildings and building materials in addition to cable applications.

Figure 0006467692
Figure 0006467692

本発明の熱膨張性耐火断熱塗料は、優れた耐火断熱性能があるのでケーブル用途以外にも建築関連等への幅広い用途に提供出来るものである。Since the heat-expandable fire-resistant and heat-insulating paint of the present invention has excellent fire-resistant and heat-insulating performance, it can be provided for a wide range of applications related to construction other than cables.

1 熱膨張性耐火断熱塗料
2 基材シート
1 Thermal expansion fireproof heat insulation paint 2 Base material sheet

Claims (4)

樹脂バインダー、無機充填材、熱膨張性黒鉛、リン系化合物と多価アルコールとメラミンの混合物、樹脂バインダーの固形分100重量部に対して配合量が20〜100重量部の銅酸化物、グリセリン、熱膨張性マイクロスフェアーを含有することを特徴とする熱膨張性耐火断熱塗料。Resin binder, inorganic filler, thermally expandable graphite, mixture of phosphorus compound, polyhydric alcohol and melamine , copper oxide having a blending amount of 20 to 100 parts by weight with respect to 100 parts by weight of solid content of resin binder , glycerin , A heat-expandable fireproof and heat-insulating paint characterized by containing heat-expandable microspheres. 前記熱膨張性マイクロスフェアーは、平均粒子径が10〜50μm、最大膨張温度が190〜250℃、配合量が20〜100重量部である請求項1記載の熱膨張性耐火断熱塗料。The thermally expandable fire-resistant heat-insulating paint according to claim 1, wherein the thermally expandable microsphere has an average particle size of 10 to 50 µm, a maximum expansion temperature of 190 to 250 ° C, and a blending amount of 20 to 100 parts by weight. さらに、熱膨張性亜リン酸アルミを含有する請求項1または請求項2記載の熱膨張性耐火断熱塗料。The heat-expandable fireproof heat-insulating paint according to claim 1 or 2 , further comprising heat-expandable aluminum phosphite. 請求項1から請求項3のいずれか一項に記載の熱膨張性耐火断熱塗料を基材シートの片面または両面に備えるケーブル用耐火断熱シート。A fire-resistant and heat-insulating sheet for cables comprising the thermally expandable fire-resistant and heat-insulating paint according to any one of claims 1 to 3 on one side or both sides of a base sheet.
JP2017255444A 2017-12-26 2017-12-26 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same Active JP6467692B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017255444A JP6467692B1 (en) 2017-12-26 2017-12-26 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017255444A JP6467692B1 (en) 2017-12-26 2017-12-26 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same

Publications (2)

Publication Number Publication Date
JP6467692B1 true JP6467692B1 (en) 2019-02-13
JP2019116606A JP2019116606A (en) 2019-07-18

Family

ID=65356055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017255444A Active JP6467692B1 (en) 2017-12-26 2017-12-26 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same

Country Status (1)

Country Link
JP (1) JP6467692B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531506A (en) * 2020-10-21 2021-03-19 邹平市供电有限公司 Color-changing box type transformer substation
CN116023830A (en) * 2022-12-27 2023-04-28 上海中南建筑材料有限公司 Energy-saving environment-friendly aerogel coating with fireproof heat preservation function and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127170B1 (en) * 2021-03-02 2022-08-29 積水化学工業株式会社 Inflatable refractory material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396038A (en) * 1977-02-03 1978-08-22 Dainippon Toryo Co Ltd Intumescent coating for electric wire
JPS6014710A (en) * 1983-07-07 1985-01-25 日立電線株式会社 Flame extension preventive cable
JPH0917244A (en) * 1995-06-28 1997-01-17 Hitachi Cable Ltd Flame resistant cable
JP2000351906A (en) * 1999-06-10 2000-12-19 Ajinomoto Co Inc Composite flame retardant for non-halogen-based resin
JP2001106982A (en) * 1999-08-04 2001-04-17 Kikusui Chemical Industries Co Ltd Formable type fireproof coating
JP2006143875A (en) * 2004-11-19 2006-06-08 Kikusui Chemical Industries Co Ltd Fire-resistant covering material
JP2007254563A (en) * 2006-03-22 2007-10-04 Denki Kagaku Kogyo Kk Thermally expandable putty composition
JP2008115359A (en) * 2006-10-12 2008-05-22 Denki Kagaku Kogyo Kk Fireproof rubber composition, fireproof covering material comprising the same, and fireproof covering method using the covering material
JP2008214463A (en) * 2007-03-02 2008-09-18 Fujikura Kasei Co Ltd Low-temperature foaming fireproof coating material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396038A (en) * 1977-02-03 1978-08-22 Dainippon Toryo Co Ltd Intumescent coating for electric wire
JPS6014710A (en) * 1983-07-07 1985-01-25 日立電線株式会社 Flame extension preventive cable
JPH0917244A (en) * 1995-06-28 1997-01-17 Hitachi Cable Ltd Flame resistant cable
JP2000351906A (en) * 1999-06-10 2000-12-19 Ajinomoto Co Inc Composite flame retardant for non-halogen-based resin
JP2001106982A (en) * 1999-08-04 2001-04-17 Kikusui Chemical Industries Co Ltd Formable type fireproof coating
JP2006143875A (en) * 2004-11-19 2006-06-08 Kikusui Chemical Industries Co Ltd Fire-resistant covering material
JP2007254563A (en) * 2006-03-22 2007-10-04 Denki Kagaku Kogyo Kk Thermally expandable putty composition
JP2008115359A (en) * 2006-10-12 2008-05-22 Denki Kagaku Kogyo Kk Fireproof rubber composition, fireproof covering material comprising the same, and fireproof covering method using the covering material
JP2008214463A (en) * 2007-03-02 2008-09-18 Fujikura Kasei Co Ltd Low-temperature foaming fireproof coating material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531506A (en) * 2020-10-21 2021-03-19 邹平市供电有限公司 Color-changing box type transformer substation
CN112531506B (en) * 2020-10-21 2023-01-20 邹平市供电有限公司 Color-changing box type transformer substation
CN116023830A (en) * 2022-12-27 2023-04-28 上海中南建筑材料有限公司 Energy-saving environment-friendly aerogel coating with fireproof heat preservation function and preparation method and application thereof

Also Published As

Publication number Publication date
JP2019116606A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6467692B1 (en) Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same
JP4953049B2 (en) Fireproof resin composition, fireproof resin strip, fireproof tape
JP2007530745A (en) Self-ceramic composition for fireproof protection
Chen et al. Synergistic effects between iron–graphene and melamine salt of pentaerythritol phosphate on flame retardant thermoplastic polyurethane
JP6782067B2 (en) Organic materials as fireproof and flame retardant synergists
JP2021024903A (en) Fire-resistant resin molded article
KR20190069924A (en) Composition for forming a flame-retardant film for prevention of foaming-type anti-scattering weld
CN210865705U (en) High-performance fireproof cable
JPH0244612A (en) Flame retardant tape for cable
JP2021121493A (en) Fire-resistant heat insulating sheet
CN205028703U (en) Flexible fireproof cable
JP3287868B2 (en) Fireproof cable
KR101792765B1 (en) Forming type-flame retandant cloth for preventing spark-scattering and product using the same
Han et al. Control of ZM5 alloy ignition via PEO/aluminum phosphate composite coating
CN106833194A (en) A kind of flame-retardant coating material of cable and preparation method thereof
CN203567538U (en) Box structure for vehicle and vehicle
CN205451889U (en) Pottery insulated cable
CN106147412A (en) A kind of preparation method of expanding fire-proof paint
CN214099213U (en) Irradiation crosslinking type low-smoke halogen-free flame-retardant fire-resistant wire
CN210865658U (en) Fireproof cable
CN117275821B (en) Fireproof low-voltage cable and preparation method thereof
CN211730485U (en) Winding type engineering cable fireproof belt
JP2892340B1 (en) Fire protection sheet
KR100895673B1 (en) A incombustible glass tape for a covered wire and the making method thereof
CN215118414U (en) Halogen-free low-smoke high-flame-retardant cable

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181225

R150 Certificate of patent or registration of utility model

Ref document number: 6467692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250