JPS61166039A - Dielectric isolation substrate - Google Patents

Dielectric isolation substrate

Info

Publication number
JPS61166039A
JPS61166039A JP20652785A JP20652785A JPS61166039A JP S61166039 A JPS61166039 A JP S61166039A JP 20652785 A JP20652785 A JP 20652785A JP 20652785 A JP20652785 A JP 20652785A JP S61166039 A JPS61166039 A JP S61166039A
Authority
JP
Japan
Prior art keywords
silicon
silicon polycrystalline
oxide film
layers
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20652785A
Other languages
Japanese (ja)
Other versions
JPH0342698B2 (en
Inventor
Junichiro Horiuchi
堀内 潤一郎
Hideyuki Yagi
秀幸 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20652785A priority Critical patent/JPS61166039A/en
Publication of JPS61166039A publication Critical patent/JPS61166039A/en
Publication of JPH0342698B2 publication Critical patent/JPH0342698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a less curved substrate by reducing the alternate lamination pitch of a silicon polycrystalline layer and a silicon oxide film (one example) at near the last silicon polycrystalline layer than the pitch of the other part. CONSTITUTION:An isolation groove 2 is formed in a lattice state. Then, a silicon oxide film 3 is formed on an upper main surface. The silicon oxide film 3 is used as a dielectric film. The alternate lamination of a silicon polycrystalline layer and the silicon oxide film is formed as a support region on the silicon oxide film 3. In this case, the silicon polycrystalline layers 4a-4h counting from the silicon oxide film 3 to the eighty layer are made thicker than the other silicon polycrystalline layers 4i-4k. One example is that the silicon polycrystalline layers 4a-4h are each approx. 50mum and the silicon polycrystalline layers 4i-4k are each approx. 10mum. Each silicon oxide film 5 is made the same thickness.

Description

【発明の詳細な説明】 本発明は誘電体絶縁分離基板、特に当該基板を用いた半
導体集積回路の製造中に、基板自体に彎曲を生ずること
がない基板構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dielectric insulating isolation substrate, and particularly to a substrate structure that does not cause curvature in the substrate itself during the manufacture of semiconductor integrated circuits using the substrate.

誘電体絶縁分離基板は、支持領域に誘電体絶縁膜を介し
て複数個のシリコン単結晶島領域を支持した構造を有し
たもので、高耐圧を有していること、寄生容量が小さい
ことなどから、多く利用されている。
A dielectric insulating isolation substrate has a structure in which multiple silicon single crystal island regions are supported via a dielectric insulating film in a support region, and has high breakdown voltage and small parasitic capacitance. It has been widely used since.

支持領域とシリコン単結晶島領域の熱膨張係数の差のた
め、製造された基板は彎曲していることが多い。基板が
彎曲していると、半導体集積回路を製造するべくホトリ
ソグラフィ技術等を用いて、各シリコン単結晶島領域に
不純物を拡散し、回路素子を形成し、また、各回路素子
をアルミニウム配線で接続する時に、精度が低下し、集
積度が低下する。また、彎曲しているため、処理時に加
わる押圧力によって、基板が割れる等の問題もあった。
Due to the difference in thermal expansion coefficients between the support region and the silicon monocrystalline island region, the manufactured substrates are often curved. If the substrate is curved, in order to manufacture semiconductor integrated circuits, photolithography technology is used to diffuse impurities into each silicon single crystal island region to form circuit elements, and each circuit element is connected with aluminum wiring. When connecting, the accuracy will be reduced and the degree of integration will be reduced. Furthermore, since it is curved, there is a problem that the substrate may break due to the pressing force applied during processing.

支持領域は一般にシリコン多結晶が用いられることが多
い。そこで、支持領域中に1例えばシリコン酸化膜を介
在させて、熱膨張係数差を補償する製法を本件出願と同
一出願人の出願によって提案した(特願昭48−138
625号)。
Generally, polycrystalline silicon is often used for the support region. Therefore, a manufacturing method was proposed in which the same applicant as the present application filed an application in which a silicon oxide film, for example, was interposed in the support region to compensate for the difference in thermal expansion coefficients (Japanese Patent Application No.
No. 625).

この場合、支持領域の最終層はシリコン多結晶層である
ことが望ましい。その理由は、このシリコン多結晶層の
表面には凹凸が多く出来るが、研磨すれば水平面が得ら
れ真空チャックを適用して、処理が容易に行なえるから
である。
In this case, the final layer of the support region is preferably a silicon polycrystalline layer. The reason for this is that although the surface of this silicon polycrystalline layer has many irregularities, a horizontal surface can be obtained by polishing and processing can be easily performed by applying a vacuum chuck.

この場合、この最終シリコン多結晶層の厚さをどれ位に
すれば誘電体絶縁分離基板の彎曲も少なく、かつ、処理
が容易に行なえるかという製法を提案したのが、同じく
同一出願人の出願に係る特願昭50−54585号であ
る。即ち、基板の全厚さをy、最終シリコン多結晶の尾
さを又とすれば、X≦y / 40の関係を満足させれ
ばよいというものである。このようにすれば、不純物拡
散中に最終シリコン多結晶層に酸素がドープされても、
それによる彎曲はほとんど生じないのである。
In this case, the same applicant proposed a manufacturing method for determining how thick the final polycrystalline silicon layer should be to minimize curvature of the dielectric isolation substrate and to facilitate processing. This is Japanese Patent Application No. 50-54585. That is, if the total thickness of the substrate is y and the length of the final silicon polycrystal is also the length, it is sufficient to satisfy the relationship X≦y/40. In this way, even if the final silicon polycrystalline layer is doped with oxygen during impurity diffusion,
This causes almost no curvature.

基板の全厚さyは一般に400〜500μ程度の場合が
多い。そこで−例として400μであったとする。
The total thickness y of the substrate is generally about 400 to 500 microns in many cases. As an example, assume that the thickness is 400μ.

シリコン多結晶層とシリコン酸化膜は、上記特願昭48
−138625号によれば、気相成長技術を用いて作ら
れるが、この気相成長技術は量産ベースで現段階では最
終レベルで±5%が厚さ精度の最高である。
The silicon polycrystalline layer and silicon oxide film are disclosed in the above-mentioned patent application filed in 1973.
According to No. 138625, it is manufactured using a vapor phase growth technique, which is based on mass production and currently has a maximum thickness accuracy of ±5% at the final level.

また、研磨する時の平坦度が±10μ10μ程する。Further, the flatness during polishing is approximately ±10μ10μ.

従って、研磨精度としては、±30μがばらつきの最高
精度である。(400μ×5%+10μ=30μ) 特願昭50−54585号に従って、最終シリコン多結
晶層の厚さXを求めると、又は15μ程度でなければな
らないが、上記したように、現段階では加工精度が±3
0μであるため、彎曲が少ない基板を得ることは不可能
である。
Therefore, as for the polishing accuracy, ±30μ is the maximum accuracy of variation. (400μ x 5% + 10μ = 30μ) According to Japanese Patent Application No. 50-54585, the thickness is ±3
Since it is 0μ, it is impossible to obtain a substrate with little curvature.

それゆえ1本発明の目的は、彎曲が少ない基板を提供す
ることにある6 上記目的を達成する本発明の特徴とするところは、最終
シリコン多結晶層近くにおいては、シリコン多結晶層と
シリコン酸化膜(−例)の交互積層ピッチを他の部分よ
り細かくすることにある。
Therefore, (1) an object of the present invention is to provide a substrate with less curvature (6) A feature of the present invention that achieves the above object is that near the final silicon polycrystalline layer, the silicon polycrystalline layer and the silicon oxide The purpose is to make the alternate lamination pitch of the film (example -) finer than other parts.

シリコン多結晶層自体は公知の気相成長技術によって、
一層について、約10μ程度の薄さで形成することがで
きる。
The silicon polycrystalline layer itself is grown using known vapor phase growth technology.
One layer can be formed with a thickness of about 10 μm.

そこで、ピッチを細かくするシリコン多結晶層を例えば
一層の厚さを10μとすると、このようなシリコン多結
晶層を3層設ける。そうすると、少なくとも、この3層
で30μ以上が得られることになる。前記したように、
研磨精度が30μとすると、研磨面は、このピッチを細
かくされた3層によって形成されることになる。一方、
各シリコン多結晶層についてみればその厚さは各々10
μであるから、前記特願昭50−54585号によって
得られる最外層が持つべき厚さX、即ち15μより小さ
くなっており、特願昭50−54585号に示された発
明を充分に満足することになり、以後1回路素子形成の
ために、不純物を拡散して、これらシリコン多結晶層に
酸素が侵入しても、基板には彎曲がほとんど起らないこ
とになる。
Therefore, if the thickness of each silicon polycrystalline layer for making the pitch finer is, for example, 10 μm, then three such silicon polycrystalline layers are provided. In this case, at least a thickness of 30μ or more can be obtained with these three layers. As mentioned above,
If the polishing accuracy is 30μ, the polished surface will be formed by three layers with finer pitches. on the other hand,
Looking at each silicon polycrystalline layer, its thickness is 10
μ, it is smaller than the thickness X that the outermost layer obtained in the above-mentioned Japanese Patent Application No. 54585-1985 should have, that is, 15μ, and fully satisfies the invention disclosed in the Japanese Patent Application No. 50-54585. Therefore, even if impurities are diffused and oxygen enters these silicon polycrystalline layers for the purpose of forming a single circuit element, almost no curvature will occur in the substrate.

以下、図面に基づいて、本発明を説明する。Hereinafter, the present invention will be explained based on the drawings.

図において、1はシリコン単結晶基板であり、先ず、分
離溝2が、格子状に形成される。次に、上側主表面上に
シリコン酸化膜3が形成される。
In the figure, 1 is a silicon single crystal substrate, and first, separation grooves 2 are formed in a lattice shape. Next, silicon oxide film 3 is formed on the upper main surface.

シリコン酸化膜3は誘電体膜として用いられるのである
。その上に、前記の特願昭48−138625号に示さ
れた技術に従って、シリコン多結晶層4とシリコン酸化
膜5の交互積層体を支持領域として形成する。交互積層
数は本出願と同一出願人の出願に係る特願昭49−14
1555号に示された技術に従って3〜12とすると良
いが、当実施例ではシリコン多結晶層を11層としてい
る。
The silicon oxide film 3 is used as a dielectric film. Thereon, an alternating stack of silicon polycrystalline layers 4 and silicon oxide films 5 is formed as a support region according to the technique disclosed in Japanese Patent Application No. 48-138625. The number of alternately laminated layers is in the patent application filed in 1972-14 by the same applicant as the present application.
According to the technique disclosed in No. 1555, the number of silicon polycrystal layers is preferably 3 to 12, but in this embodiment, the number of silicon polycrystal layers is 11.

シリコン酸化膜3の方から数えて8層までのシリコン多
結晶層4a〜4hは残りのシリコン多結晶層41〜4k
に較べて厚くなっている。−例としてシリコン多結晶層
4a〜4hは約50μであり、シリコン多結晶層41〜
4には10μである。
The eight silicon polycrystalline layers 4a to 4h counting from the silicon oxide film 3 are the remaining silicon polycrystalline layers 41 to 4k.
It is thicker than. - As an example, the silicon polycrystalline layers 4a to 4h have a thickness of about 50μ, and the silicon polycrystalline layers 41 to
4 is 10μ.

各シリコン酸化膜5は同一厚さとする。Each silicon oxide film 5 has the same thickness.

研磨精度を30μとする。真空チャック等による処理の
ため、最終シリコン多結晶層4kを研磨する場合、シリ
コン単結晶基板1の下面が研磨台に接着される。上記特
願昭49−141555号に従って得られたもので、図
示する複合体では、彎曲がほとんどない。
The polishing accuracy is set to 30μ. When polishing the final silicon polycrystalline layer 4k for processing using a vacuum chuck or the like, the lower surface of the silicon single crystal substrate 1 is bonded to a polishing table. The composite shown in the figure, which was obtained according to the above-mentioned Japanese Patent Application No. 141555/1980, has almost no curvature.

図示の複合体の研磨を上側より行なうと、研磨精度の都
合から、一点鎖線で示す研磨面の差が複合材の両側で計
測して30μ出たとする。
When the illustrated composite is polished from the upper side, for reasons of polishing accuracy, the difference in the polished surfaces shown by the dashed-dotted line is 30 μm when measured on both sides of the composite.

研磨面の差が30μ出たとしても、シリコン多結晶層4
1〜4kが研磨によって露出する全厚さは10μである
。これは、各々の厚さに相当する。
Even if the difference in the polished surface is 30μ, the silicon polycrystalline layer 4
The total thickness of 1-4k exposed by polishing is 10μ. This corresponds to the thickness of each.

つまり、露出する各シリコン多結晶層41〜4には最大
10μの厚さであるので、前記の特願昭50−5458
5号に示された技術に従って、露出する最外層シリコン
多結晶層の厚さはX≦y / 40の関係を満足させる
ことが可能になる。
In other words, since each of the exposed silicon polycrystalline layers 41 to 4 has a maximum thickness of 10 μm, the above-mentioned Japanese Patent Application No. 50-5458
According to the technique shown in No. 5, the thickness of the exposed outermost silicon polycrystalline layer can satisfy the relationship X≦y/40.

支持領域が研磨されたら、それによって出来た研磨面を
研磨台に接着して、今度はシリコン単結晶基板1を二点
鎖線で示す位置まで研磨する。この研磨によって、シリ
コン単結晶島1a〜1cが得られる。また、この研−磨
によって得られた複合材、即ち誘電体分離絶縁基板10
が上記のX≦y/40を満足すれば良いのである。
After the support region is polished, the resulting polished surface is adhered to a polishing table, and the silicon single crystal substrate 1 is polished to the position shown by the two-dot chain line. By this polishing, silicon single crystal islands 1a to 1c are obtained. In addition, the composite material obtained by this polishing, that is, the dielectric isolation insulating substrate 10
It is sufficient if it satisfies the above-mentioned condition X≦y/40.

各シリコン単結晶島領域1a〜ICに酸素を含む雰囲気
中で不純物を拡散して回路素子が形成されるが、この時
、シリコン多結晶層41〜4kに酸素が侵入する。この
侵入に基づく楔作用により。
Circuit elements are formed by diffusing impurities into each silicon single crystal island region 1a-IC in an atmosphere containing oxygen, but at this time, oxygen invades silicon polycrystalline layers 41-4k. Due to the wedge action based on this intrusion.

誘電体分離基板10は彎曲させられるような力を受ける
が、各シリコン多結晶層41〜4にの厚さは10μであ
るので、彎曲させる力は微々たるものであり、誘電体分
離基板10には彎曲がほとんど生じない。
The dielectric isolation substrate 10 is subjected to a force that causes it to bend, but since the thickness of each silicon polycrystalline layer 41 to 4 is 10μ, the force that causes the dielectric isolation substrate 10 to bend is negligible. almost no curvature occurs.

各種の熱処理工程において、誘電体分離基板1oは彎曲
が生ぜず、従って、マスク等、加工用治具を誘電体分離
基板10に全面的に隙間なく密着させることが可能であ
るので、加工精度は大幅に向上する。
In various heat treatment processes, the dielectric isolation substrate 1o does not curve, and therefore, it is possible to bring the processing jig such as a mask into close contact with the dielectric isolation substrate 10 over the entire surface without any gaps, so the processing accuracy is high. Significantly improved.

上記実施例で用いた数値は、−例である。即ち、製作し
ようとする誘電体分離基板の厚さ、径によって変更する
ことは自由である。
The numerical values used in the above examples are - examples. That is, it can be freely changed depending on the thickness and diameter of the dielectric isolation substrate to be manufactured.

Claims (1)

【特許請求の範囲】 1、複数個のシリコン単結晶島領域を誘電体絶縁膜を介
して支持領域で支持しており、上記支持領域がシリコン
単結晶とシリコン多結晶の熱膨張係数の差を補償する膜
とシリコン多結晶を交互に積層したものでシリコン単結
晶島領域と反対側の最終層がシリコン多結晶層である誘
電体絶縁分離基板において、上記最終シリコン多結晶層
側の複数層のシリコン多結晶層は他のシリコン多結晶層
より薄いことを特徴とする誘電体絶縁分離基板。 2、上記特許請求の範囲第1項において、誘電体絶縁分
離基板の全厚さをyとするとき、薄い厚さの上記複数層
のシリコン多結晶層の各々はx≦y/40を満す厚さx
を有しており、このxの厚さの和が、最終シリコン多結
晶層側に対する研磨の精度を長さで示した時の数値より
大きいことを特徴とする誘電体絶縁分離基板。
[Claims] 1. A plurality of silicon single crystal island regions are supported by a support region via a dielectric insulating film, and the support region compensates for the difference in coefficient of thermal expansion between the silicon single crystal and the silicon polycrystal. In a dielectric insulation isolation substrate in which a compensating film and silicon polycrystalline are alternately laminated, and the final layer on the side opposite to the silicon single crystal island region is a silicon polycrystalline layer, the plurality of layers on the final silicon polycrystalline layer side are A dielectric insulation isolation substrate characterized in that a silicon polycrystalline layer is thinner than other silicon polycrystalline layers. 2. In claim 1 above, each of the plurality of thin silicon polycrystalline layers satisfies x≦y/40, where the total thickness of the dielectric insulating isolation substrate is y. Thickness x
1. A dielectric insulating isolated substrate, characterized in that the sum of the thicknesses of x is larger than the numerical value when polishing accuracy on the final silicon polycrystalline layer side is expressed in terms of length.
JP20652785A 1985-09-20 1985-09-20 Dielectric isolation substrate Granted JPS61166039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20652785A JPS61166039A (en) 1985-09-20 1985-09-20 Dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20652785A JPS61166039A (en) 1985-09-20 1985-09-20 Dielectric isolation substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4436579A Division JPS55138229A (en) 1979-04-13 1979-04-13 Manufacture of dielectric material for insulation- separation substrate

Publications (2)

Publication Number Publication Date
JPS61166039A true JPS61166039A (en) 1986-07-26
JPH0342698B2 JPH0342698B2 (en) 1991-06-28

Family

ID=16524837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20652785A Granted JPS61166039A (en) 1985-09-20 1985-09-20 Dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPS61166039A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131280A (en) * 1975-05-12 1976-11-15 Hitachi Ltd Dielectric insulation separation base manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131280A (en) * 1975-05-12 1976-11-15 Hitachi Ltd Dielectric insulation separation base manufacturing process

Also Published As

Publication number Publication date
JPH0342698B2 (en) 1991-06-28

Similar Documents

Publication Publication Date Title
JP3395661B2 (en) Method for manufacturing SOI wafer
EP0207216B1 (en) Semiconductor device of the soi-type
US3922705A (en) Dielectrically isolated integral silicon diaphram or other semiconductor product
JP2856030B2 (en) Method for manufacturing bonded wafer
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
EP0638934A1 (en) Semiconductor device and manufacturing method
JPS6152572B2 (en)
JP3048754B2 (en) Semiconductor substrate
JPH09246506A (en) Manufacture of soi substrate
KR970012965A (en) SOI wafer and manufacturing method thereof
JPS61166039A (en) Dielectric isolation substrate
US4411060A (en) Method of manufacturing dielectrically-isolated single-crystal semiconductor substrates
EP0464837A2 (en) Method of manufacturing semiconductor substrate using semiconductor integrated circuit having dielectric separation structure
CA1059647A (en) Method of preparing dielectric insulator separated substrate for semiconductor integrated circuits
JPS5918654A (en) Manufacture of dielectric isolation substrate
JP2796767B2 (en) Dielectric separation substrate
JPS62124754A (en) Manufacture of dielectric isolation substrate
JPS60182737A (en) Manufacture of semiconductor device
JPS63197365A (en) Manufacture of semiconductor device
JPS6153857B2 (en)
JPS6455853A (en) Semiconductor device and manufacture thereof
JPS6056291B2 (en) Manufacturing method of dielectric insulation isolation substrate
JPS5918657A (en) Manufacture of substrate for integrated circuit
JPS5951543A (en) Manufacture of substrate for integrated circuit
JPH0137851B2 (en)