JPS61165712A - Plastic lens fixing structure - Google Patents

Plastic lens fixing structure

Info

Publication number
JPS61165712A
JPS61165712A JP654285A JP654285A JPS61165712A JP S61165712 A JPS61165712 A JP S61165712A JP 654285 A JP654285 A JP 654285A JP 654285 A JP654285 A JP 654285A JP S61165712 A JPS61165712 A JP S61165712A
Authority
JP
Japan
Prior art keywords
bosses
boss holes
plate piece
adhesive
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP654285A
Other languages
Japanese (ja)
Other versions
JPH07119865B2 (en
Inventor
Toshihiko Karasaki
唐▲崎▼ 敏彦
Hiroshi Ueda
浩 上田
Michihiro Shintani
新谷 道広
Katsuto Akagi
赤木 克人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP60006542A priority Critical patent/JPH07119865B2/en
Priority to US06/818,971 priority patent/US4662735A/en
Publication of JPS61165712A publication Critical patent/JPS61165712A/en
Publication of JPH07119865B2 publication Critical patent/JPH07119865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

PURPOSE:To eliminate the instability of positional precision due to the variance of temperature by providing boss holes in both side edges in the direction orthogonal to the lens arrangement direction of a transparent plastic plate and inserting bosses on a base body to boss holes loosely and joining front end parts of bosses and the surface of the plastic plate with an adhesive. CONSTITUTION:Plastic focusing lenses 10 and 12 are formed as one body with an acrylic resin, and boss holes (h) and (h) are provided in both end parts on a perpendicular bisector of the segment connecting centers of lenses 10 and 12 of a plate piece 9. Bosses B and B are formed on a base body 13 in accordance with these boss holes. In case of assembling, holes 14c and 14d in both ends of a stop plate 14 are pierced by bosses B and B, and next, boss holes (h) and (h) of the plate piece 9 are pierced by bosses B and B. Bosses B and boss holes (h) are fitted loosely, and tips of bosses B and B are at the same height as the surface of the plate piece 9 when the stop plate 14 and the plate piece 9 are put one over the other and are pierced by bosses B and B. In such a state, an adhesive is applied to tips of bosses B and B and the surface of the plate piece 9. After the adhesive is hardened, a rear cover 16 is attached to the boss body, thus terminating assembling.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はプラスチックレンズの固定構造に関し、特にカ
メラの焦点検出装置のようにコンパクトな構成と位置の
精度を要求される場合において、温度変化による劣化の
生じないプラスチックレンズの固定構造に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a fixing structure for plastic lenses, and is particularly useful in cases where a compact structure and positional accuracy are required, such as in a camera focus detection device. This invention relates to a fixing structure for plastic lenses that does not deteriorate.

口8発明の概要 焦点検出法には色々な原理のものが提案されているが、
二つのレンズを一定間隔で並べて、夫々のレンズで形成
される像を比較すると言う型の焦点検出装置で、二つの
レンズをプラスチックで一体形成したような場合、プラ
スチックは一般にガラスよりも3〜4桁も大きな線膨張
係数(例えばアクリル樹脂の場合、6X10  /℃’
)を有するので、熱膨張の影響を無視できない。この熱
膨張の影響は像についてデータ解析をする電気回路の方
で温度を検出し補償することが原理的には可能である。
Outline of the invention 8 Various principles have been proposed for focus detection methods, but
In a focus detection device that arranges two lenses at a constant interval and compares the images formed by each lens, when the two lenses are integrally made of plastic, plastic is generally 3 to 4 times smaller than glass. An order of magnitude larger linear expansion coefficient (for example, in the case of acrylic resin, 6X10/℃'
), the influence of thermal expansion cannot be ignored. In principle, it is possible to detect and compensate for the influence of this thermal expansion using an electric circuit that analyzes data on the image.

しかし構造の小型化及び製産性向上の要求に応するため
プラスチックレンズを接着剤を用いて固定すると、温度
変化を繰返した場合、レンズ間隔の寸法の再現性が悪く
、データ処理回路における温度補償が有効に作用しない
。これはプラスチックレンズの形状が接着剤によって規
制され、接着剤が温度変化の繰返しにより複雑な経時変
化をするためと考えられる。本発明はこの問題を改善す
るもので、接着剤を用いて、しがもプラスチックレンズ
をフリーな状態で膨張収縮ができるように固定するよう
にした。
However, when plastic lenses are fixed using adhesive to meet the demands for smaller structures and improved productivity, the reproducibility of the lens spacing is poor due to repeated temperature changes, resulting in temperature compensation in data processing circuits. does not work effectively. This is thought to be because the shape of the plastic lens is regulated by the adhesive, and the adhesive undergoes complex changes over time due to repeated temperature changes. The present invention solves this problem by using an adhesive to fix the plastic lens so that it can expand and contract freely.

ハ、従来技術 第5図は特開昭58−150918号によって提案され
たカメラの焦点検出装置で、この図で結像レンズ10.
12をプラスチックで一体成形した場合が問題になるの
である。この図で2は撮影レンズであり、6は集光レン
ズであって、この集光レンズ6から右側の部分が第7図
に8で示すような−ユニットに構成されてカメラに装着
される。
C. Prior Art FIG. 5 shows a camera focus detection device proposed in Japanese Patent Application Laid-Open No. 58-150918. In this figure, the imaging lens 10.
A problem arises when 12 is integrally molded from plastic. In this figure, 2 is a photographing lens, and 6 is a condensing lens.The part on the right side of the condensing lens 6 is constructed into a unit as shown by 8 in FIG. 7, and is attached to the camera.

この第7図を見れば焦点検出装置の小型化の要求の厳し
さ、結像レンズ10.12をプラスチックで一体化する
ことの有利性が理解されよう。以下上記従来例について
説明する。
By looking at FIG. 7, it will be understood that there is a strong demand for miniaturization of the focus detection device and that it is advantageous to integrate the imaging lenses 10 and 12 with plastic. The above conventional example will be explained below.

特開昭58−150918号の装置は、第5図に原理的
に示すように、撮影レンズ2によって結像される被写体
の一次像28を、集光レンズ6に関して撮影レンズ2の
射出瞳と仇役な位置に配設された一対の結像レンズ10
.12によって、撮影レンズ2の異なる部分を通った光
による2つの像30.32 (又は34.36又は38
.40)に再結像するようになっており1、−次像が予
定焦点面22の前に結像されているか(前ピン)、予定
焦点面22上に結像されているか(合焦)或は予定焦点
面22の後に結像されているか(後ビン)の合焦状態に
応じて変化する再結像30,32等の間の像間隔を検出
し、この検出値と、合焦時の再結像の間隔である基準像
間隔との差、即ち像間隔ずれ量を算出し、この算出値に
基いて、撮影レンズ2による被写体−次像28の結像位
置の、予定焦点位置に対するずれ量即ちピントずれ量を
求めている。尚、再結像は、合焦時は図30,32の位
置関係になり、前ピンの時は34,36、後ビンのとき
は38.40の位置関係になる。以下、便宜上、このよ
うな焦点検出方式を位相差方式と呼ぶ。このような位相
差検出のための集光レンズ6、一対の結像レンズ10.
12およびフォトセンサアレイ42からなる光学的検出
部8を、第6図のように一眼レフレックスカメラのカメ
ラ本体(例えばミラーボックス下部)に組込もうとした
場合、上記一対の結像レンズをプラスチックで一体成形
すれば、上記光学的検出部をコンパクトなモジュールに
構成でき有利である。しかし、プラスチックは一般的に
ガラスよりも3〜4桁大きな線膨張係数(例えばアクリ
ル樹脂の場合その値は6 x 10−’/’C)を有す
るので、カメラの光学的部分にプラスチックを用いた場
合、プラスチックの温度変化が上記焦点検出結果に与え
る影響は無視できな(なる。換言すれば、上記一対の結
像レンズをプラスチックで一体成型した場合、カメラの
環境温度が変化すると一対の結像レンズのレンズ間隔が
変化(例えば、第7図に示すような寸法形状の装置では
、温度が30℃上昇するとレンズ間隔が2μm増加)す
る。この変化量を撮影レンズ2による結像位置の予定焦
点位置22に対するピントずれ量として見ると例えば6
8μmもの大きなピントずれ量となる。ここで、カメラ
は通常−20℃〜+40℃の温度範囲またはそれを越え
る温度範囲で使用される。また、−眼レフレックスカメ
ラでは、一般的に±50μm程度の高いピント検出精度
が求められている。このため、本出順人は特願昭59−
91670号において、温度センサによって気温を検知
し、結像レンズ間隔の基準値からのずれを算定してデー
タ処理回路において補正演算を行ってレンズ間隔の熱膨
張による変化の影響を補正するようにした発明を提案し
た。
As shown in principle in FIG. 5, the device disclosed in Japanese Patent Application Laid-open No. 58-150918 separates the primary image 28 of the object formed by the photographic lens 2 from the exit pupil of the photographic lens 2 with respect to the condenser lens 6. A pair of imaging lenses 10 arranged at convenient positions
.. 12, two images 30.32 (or 34.36 or 38
.. 40), and whether the 1st and -th images are formed in front of the intended focal plane 22 (front focus) or on the intended focal plane 22 (in focus). Alternatively, the image interval between the re-imaging 30, 32, etc. that changes depending on the focusing state of the image formed after the predetermined focal plane 22 (rear bin) is detected, and this detected value and the time of focusing are calculated. The difference from the reference image interval, which is the re-imaging interval of The amount of shift, that is, the amount of focus shift is calculated. In addition, when re-imaging, the positional relationships are as shown in FIGS. 30 and 32 when in focus, the positional relationships are 34 and 36 when the front focus is on, and 38 and 40 when the rear focus is on. Hereinafter, for convenience, such a focus detection method will be referred to as a phase difference method. A condensing lens 6 and a pair of imaging lenses 10 for such phase difference detection.
12 and a photosensor array 42 is to be incorporated into the camera body of a single-lens reflex camera (for example, at the bottom of a mirror box) as shown in FIG. It is advantageous that the optical detection section can be formed into a compact module by integrally molding the optical detection section. However, plastic generally has a coefficient of linear expansion that is 3 to 4 orders of magnitude larger than that of glass (for example, in the case of acrylic resin, the value is 6 x 10-'/'C), so plastics are used in the optical parts of cameras. In this case, the influence of the temperature change of the plastic on the above focus detection results cannot be ignored. In other words, if the above pair of imaging lenses are integrally molded from plastic, the pair of imaging lenses will change as the environmental temperature of the camera changes. The distance between the lenses changes (for example, in a device with the dimensions and shape shown in FIG. 7, when the temperature rises by 30°C, the distance between the lenses increases by 2 μm). This amount of change is calculated as the expected focal point of the image forming position by the photographing lens 2. For example, when looking at the amount of defocus for position 22, it is 6.
This results in a large out-of-focus amount of 8 μm. Here, the camera is normally used in a temperature range of -20°C to +40°C or a temperature range exceeding that. Furthermore, a negative-eye reflex camera is generally required to have a high focus detection accuracy of about ±50 μm. For this reason, Junto Honde applied for a patent application in 1983-
No. 91670 detects the air temperature with a temperature sensor, calculates the deviation of the distance between the imaging lenses from a reference value, and performs a correction calculation in the data processing circuit to correct the influence of changes in the distance between the lenses due to thermal expansion. proposed an invention.

所この提案では結像レンズ10.12間の間隔と温度と
は一定不変の関係があることを前提としているのに対し
て、結像レンズ10.12のプラスチック一体成形物を
接着剤で基体に固定した場合のレンズ間隔と温度との関
係は複雑不安定なものであることが明らかになって来た
。第8図は横軸に温度変化のスケジュールを示し、縦軸
に焦点検出装置の検出焦点位置の予定焦点位置からのず
れ量(電気回路による補正なし)を示したもので、点線
は結像レンズ10.12がフリーに支持されているとし
たときのずれ量をシミュレーションしたものであり、実
線が実測値である。この実測例は第9図に示したように
結像レンズ10,12の一体成形品9を両端で接着剤A
により基体に固定した場合で、30℃から50℃まで温
度を一往復変化させると検出焦点位置のずれとして24
μmの変化が残留し、全体的にシミュレーションの結果
からずれている。電気回路による補正は点線で示される
焦点位置のずれに対してなされるので、点線と実線との
差が焦点検出の誤差となる。
However, this proposal assumes that there is a constant relationship between the distance between the imaging lenses 10.12 and the temperature, whereas the plastic integral molding of the imaging lenses 10.12 is attached to the base with adhesive. It has become clear that the relationship between lens spacing and temperature when fixed is complex and unstable. In Figure 8, the horizontal axis shows the temperature change schedule, the vertical axis shows the amount of deviation of the detected focal position of the focus detection device from the expected focal position (without correction by the electric circuit), and the dotted line is the imaging lens. 10.12 is a simulation of the amount of deviation when it is freely supported, and the solid line is the actual measured value. In this actual measurement example, as shown in FIG.
If the temperature is changed back and forth from 30°C to 50°C, the detected focus position will shift by 24
A micrometer change remains, and the overall result deviates from the simulation result. Since the electric circuit corrects the shift in focus position shown by the dotted line, the difference between the dotted line and the solid line becomes an error in focus detection.

二1発明が解決しようとする問題点 本発明はプラスチックレンズを接着剤で固定する場合に
おける上述したような温度変化による位置精度の不安定
を解消しようとするものである。
21 Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned instability of position accuracy due to temperature changes when plastic lenses are fixed with adhesive.

ホ1問題点解決のための手段 第1図に示すように二個のレンズを一体的に形成した透
明プラスチック板9のレンズの並び方向と直交する方向
の両側縁にボス孔りを設け、基体13に突設したボスB
を上記ボス孔りにゆる(貫通させ、ボスBの先端部とプ
ラスチック板9の表°  面とを接着剤で結合するよう
にした。
E1 Means for solving the problem As shown in Fig. 1, boss holes are provided on both sides of the transparent plastic plate 9 in which two lenses are integrally formed in a direction perpendicular to the direction in which the lenses are arranged, and Boss B protruding from 13
was loosely inserted into the boss hole, and the tip of the boss B and the surface of the plastic plate 9 were bonded with adhesive.

へ0作用 二個のレンズを一体形成した透明プラスチック板で問題
になるのは二個のレンズ間の距離の安定性である。本発
明ではレンズを形成したプラスチック板をレンズの並び
方向と直交する方向の両側で接着剤を介してボスに固定
するので、レンズの並び方向の伸縮に対しては拘束が殆
んどな(、プラスチック板9は事実上自由に保持された
のと略々等価であり、検出焦点位置のずれは第4図に示
すようにシミュレーションの結果にきわめて近くなり、
電気回路による温度補正の精度が向上する。
A problem with a transparent plastic plate in which two lenses are integrally formed is the stability of the distance between the two lenses. In the present invention, since the plastic plate on which the lenses are formed is fixed to the boss via adhesive on both sides in the direction perpendicular to the direction in which the lenses are arranged, there is almost no restriction on expansion and contraction in the direction in which the lenses are arranged ( The plastic plate 9 is virtually equivalent to being held freely, and the deviation of the detection focus position is very close to the simulation result as shown in FIG.
The accuracy of temperature correction by the electric circuit is improved.

ト、効果 本発明によればプラスチックレンズははゾ自由な状態で
保持され、熱膨張による伸縮に対して無理な力が作用せ
ず、応力が残留するような部分がないから、湿度変化の
影響は再現性よく計算通りに現れるので、電気回路によ
る補正手段を併用することで精度良(焦点検出できるこ
とになり、しかもレンズ固定にねじ等の機構的手段を用
いてないので組立の作業性が良(部品数も少なくてすみ
、製造面でも有利である。
Effects According to the present invention, the plastic lens is held in a free state, no excessive force is applied to it due to thermal expansion, and there is no part where stress remains, so it is less affected by changes in humidity. appears as calculated with good reproducibility, so by using a correction method using an electric circuit, it is possible to achieve high accuracy (focus detection), and since no mechanical means such as screws are used to fix the lens, assembly work efficiency is improved. (The number of parts is also small, which is advantageous in terms of manufacturing.

第4図は次に述べる実施例の効果を示し、図の意味は第
9図と同じであり、本発明によればプラスチックレンズ
を自由としたときのシミュレーションの結果と実測とが
良(あっていることが分かる。
FIG. 4 shows the effect of the embodiment described below, and the meaning of the figure is the same as that of FIG. 9. According to the present invention, the simulation results and actual measurements when the plastic lens is free I know that there is.

チ、実施例 第2図、第3図は本発明を第6図における焦点検出ユニ
ット8に適用した実施例を示す。第2図で13は基体で
、内部に集光レンズ6及び光軸を直角に折曲するミラー
が組込まれている。14は絞り板でプラスチックレンズ
10.12と対応した縦長の二つの開口14a、14b
を有する。プラスチックの結像レンズ10.12はアク
リル樹脂によって一体成形され、部品としては一枚の板
片9となっている。板片9のレンズ10.12の中心を
結ぶ線分の垂直二等分線の両端部にボス孔り、hが透設
されている。このボス孔に対応して基体13側にはボス
B、Bが形成しである。組立てはまず絞板14の両端の
孔14c、14dをボスB。
H. Embodiment FIGS. 2 and 3 show an embodiment in which the present invention is applied to the focus detection unit 8 in FIG. 6. In FIG. 2, reference numeral 13 denotes a base body, in which a condensing lens 6 and a mirror for bending the optical axis at right angles are incorporated. 14 is a diaphragm plate with two vertically long apertures 14a and 14b corresponding to the plastic lens 10.12.
has. The plastic imaging lens 10.12 is integrally molded from acrylic resin, and is a single plate piece 9 as a component. Boss holes h are transparently provided at both ends of the perpendicular bisector of the line segment connecting the centers of the lenses 10 and 12 of the plate piece 9. Bosses B, B are formed on the base body 13 side corresponding to the boss holes. To assemble, first insert the holes 14c and 14d at both ends of the aperture plate 14 into bosses B.

Bに通し、次に板片9のボス孔り、hをボスB。B, then insert the boss hole h of plate piece 9 into the boss B.

Bに通す。ボスBとボス孔りとの嵌合は遊嵌状態であり
、絞板14と板片9とを重ねてボスB、Bを貫通させた
とき、ボスB、Bの先端が板片9の表面(図で見えてい
る債の面)と同じ高さになるようにしである。この状態
でボスB、Bの先端と板片9の表面との間に接着剤を付
ける。接着剤は紫外線照射により硬化するタイプのもの
を使用している。これは硬化に加熱を要せず作業性が良
好である。接着剤としては一般にレンズ素材のプラスチ
ックと同程度の線膨張係数を有するものが望ましい。ア
クリル樹脂、ポリカーボネート樹脂等のレンズ材料に対
して例えば変性アクリル系接着剤が適している。接着剤
が硬化した後、裏蓋16を基体13に取付けて組立てを
終わる。裏蓋16にはフォトセンサアレイ42及びその
前面の透明カバー15等が取付けられている。
Pass through B. The fitting between the boss B and the boss hole is a loose fit, and when the aperture plate 14 and the plate piece 9 are stacked and the bosses B and B are penetrated, the tips of the bosses B and B touch the surface of the plate piece 9. It should be at the same height as (the side of the bond visible in the diagram). In this state, adhesive is applied between the tips of the bosses B and B and the surface of the plate piece 9. The adhesive used is a type that hardens when exposed to ultraviolet rays. This does not require heating for curing and has good workability. Generally, it is desirable that the adhesive has a coefficient of linear expansion comparable to that of the plastic lens material. For example, a modified acrylic adhesive is suitable for lens materials such as acrylic resin and polycarbonate resin. After the adhesive has hardened, the back cover 16 is attached to the base 13 to complete the assembly. A photosensor array 42 and a transparent cover 15 on the front thereof are attached to the back cover 16.

第3図は組立てられた状態の断面を示し、ボスB、Bと
プラスチックレンズの板片9とはポス先端と板片9の表
面との間でのみ接着剤Aで接続されており、作用の項で
説明したように板片9のしンズ1.0.12の並び方向
の伸縮の自由を保証している。第4図はこの実施例の効
果を示したもので、シミュレーションの結果と実測とは
良く一致しており、両端縁を接着剤で直接基体に接着し
た場合の第8図の結果に比し、検出焦点位置のずれは1
/3以下になっている。またこの構造では接着剤が板片
9と基体13との間に回り込み接着剤層を形成してレン
ズ1.0.12の光軸方向の位置をこの接着剤層の厚さ
だけ設計値よりずらせると言った問題も起こらない。
Figure 3 shows a cross section of the assembled state, and the bosses B and B and the plastic lens plate 9 are connected with adhesive A only between the tip of the post and the surface of the plate 9. As explained in section 1, the freedom of expansion and contraction of the plate piece 9 in the direction in which the lines 1, 0, and 12 are arranged is guaranteed. Fig. 4 shows the effect of this example. The simulation results and actual measurements are in good agreement, and compared to the results shown in Fig. 8 when both edges were bonded directly to the substrate with adhesive. The deviation of the detection focus position is 1
/3 or less. In addition, in this structure, the adhesive wraps around between the plate piece 9 and the base 13, forming an adhesive layer, and the position of the lens 1.0.12 in the optical axis direction is shifted from the designed value by the thickness of this adhesive layer. The problem mentioned above does not occur.

第8図は上記実施例におけるピントのずれ量を示す信号
を得るための回路のブロック図である。
FIG. 8 is a block diagram of a circuit for obtaining a signal indicating the amount of defocus in the above embodiment.

44はフォトセンサーアレイ42から出力される信号に
もとづいて第5図における2つの像の間隔を検出する像
間隔検出回路、46は周囲温度を検出する温度センサー
、48は温度センサー46により検出された温度に応じ
た像間隔補正量信号を出力する像間隔補正量出力回路、
50は像間隔検出回路44からの像間隔信号を回路48
からの補正量信号で補正し、補正された像間隔信号を出
力する演算回路、52はその補正された像間隔信号にも
とづいてピントのずれ量を算出するずれ量演算回路であ
る。なお、温度変化によるピントのずれ量補正のために
は、上記特願昭59−91670号で開示した回路構成
(第9図)を採用することもできる。
44 is an image distance detection circuit that detects the distance between the two images in FIG. 5 based on the signal output from the photosensor array 42, 46 is a temperature sensor that detects the ambient temperature, and 48 is the temperature detected by the temperature sensor 46. an image distance correction amount output circuit that outputs an image distance correction amount signal according to temperature;
50 is a circuit 48 for transmitting the image interval signal from the image interval detection circuit 44;
52 is a calculation circuit that calculates the amount of focus deviation based on the corrected image spacing signal. Incidentally, in order to correct the amount of focus deviation due to temperature changes, it is also possible to employ the circuit configuration (FIG. 9) disclosed in the above-mentioned Japanese Patent Application No. 59-91670.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する一部切欠斜視図、第2
図は本発明の一実施例の分解斜視図、第3図は同実施例
の要部垂直断面図、第4図は同実施例の効果を説明する
グラフ第5図は従来例の光学構成説明図、第6図は同じ
(縦断側面図、第7図は同じく光学系の斜視図、第8図
は実施例における回路のブロック図、第9図は問題点を
説明するグラフ、第10図は従来のプラスチックレンズ
接着構造の正面図である。 代理人  弁理士 縣  浩 介 第3図 第4図 PC 第5図 第6図 糸10図
Fig. 1 is a partially cutaway perspective view explaining the present invention in detail;
Figure 3 is an exploded perspective view of an embodiment of the present invention, Figure 3 is a vertical sectional view of the main part of the same embodiment, Figure 4 is a graph explaining the effects of the embodiment, Figure 5 is an explanation of the optical configuration of a conventional example. Figures 6 and 6 are the same (longitudinal side view, Figure 7 is a perspective view of the optical system, Figure 8 is a block diagram of the circuit in the embodiment, Figure 9 is a graph explaining the problem, Figure 10 is the same). It is a front view of a conventional plastic lens adhesive structure. Agent: Hiroshi Agata, Patent Attorney Figure 3 Figure 4 PC Figure 5 Figure 6 Thread Figure 10

Claims (1)

【特許請求の範囲】[Claims] (1)焦点検出器等に用いられる一対のレンズで、透明
プラスチックで二個のレンズを一体的に形成した板片の
上記二個のレンズの中心を結ぶ線分の垂直二等分線上で
上記板片の両側縁に近接させてボス孔を設け、上記板片
が取付けられる基体に上記ボス孔に対応するボスを突設
し、上記板片のボス孔を上記ボス孔に挿通し、上記ボス
孔の先端と上記板片の表面との間を接着したことを特徴
とするプラスチックレンズ固定構造。
(1) A pair of lenses used in focus detectors, etc., where the two lenses are integrally formed from transparent plastic. Boss holes are provided close to both side edges of the plate piece, bosses corresponding to the boss holes are provided protruding from the base to which the plate piece is attached, the boss holes of the plate piece are inserted into the boss holes, and the boss holes are inserted into the boss holes. A plastic lens fixing structure characterized in that the tip of the hole and the surface of the plate piece are bonded.
JP60006542A 1985-01-16 1985-01-16 Plastic lens mounting structure Expired - Fee Related JPH07119865B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60006542A JPH07119865B2 (en) 1985-01-16 1985-01-16 Plastic lens mounting structure
US06/818,971 US4662735A (en) 1985-01-16 1986-01-15 Plastic lens elements supporting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60006542A JPH07119865B2 (en) 1985-01-16 1985-01-16 Plastic lens mounting structure

Publications (2)

Publication Number Publication Date
JPS61165712A true JPS61165712A (en) 1986-07-26
JPH07119865B2 JPH07119865B2 (en) 1995-12-20

Family

ID=11641226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60006542A Expired - Fee Related JPH07119865B2 (en) 1985-01-16 1985-01-16 Plastic lens mounting structure

Country Status (1)

Country Link
JP (1) JPH07119865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576896A (en) * 1993-12-29 1996-11-19 Nikon Corporation Structure for attaching a lens to prevent distortion from changes in the ambient conditions
JP2013257186A (en) * 2012-06-11 2013-12-26 Mitsutoyo Corp Optical encoder and lens fixing mechanism thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105707A (en) * 1980-12-24 1982-07-01 Ricoh Co Ltd Mounting structure of plastic lens
JPS57184933U (en) * 1981-05-19 1982-11-24
JPS58128449U (en) * 1982-02-25 1983-08-31 富士ゼロックス株式会社 Copy machine optical system
JPS58150918A (en) * 1982-03-03 1983-09-07 Canon Inc Focus detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105707A (en) * 1980-12-24 1982-07-01 Ricoh Co Ltd Mounting structure of plastic lens
JPS57184933U (en) * 1981-05-19 1982-11-24
JPS58128449U (en) * 1982-02-25 1983-08-31 富士ゼロックス株式会社 Copy machine optical system
JPS58150918A (en) * 1982-03-03 1983-09-07 Canon Inc Focus detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576896A (en) * 1993-12-29 1996-11-19 Nikon Corporation Structure for attaching a lens to prevent distortion from changes in the ambient conditions
JP2013257186A (en) * 2012-06-11 2013-12-26 Mitsutoyo Corp Optical encoder and lens fixing mechanism thereof

Also Published As

Publication number Publication date
JPH07119865B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
US5233382A (en) Range finding device unaffected by environmental conditions
JP4378434B2 (en) Compound eye camera module
US4662735A (en) Plastic lens elements supporting structure
JPS60235110A (en) Temperature compensating device of focus detecting device
JPH067219B2 (en) Camera focus detector
JPS62111223A (en) Range finding optical system with mechanism for correcting out-of-focus due to temperature of photographic lens
JP3958055B2 (en) Ranging and photometry equipment
US4529287A (en) Focus condition detection device for cameras
JPS61165711A (en) Plastic lens fixing structure
JPS61165712A (en) Plastic lens fixing structure
JP2880821B2 (en) Optical module for distance measurement
JPS60178415A (en) Focus correcting device of camera
JPH09318867A (en) Range finder for camera
JPS5842004A (en) Positioning method for optical element
JPH07199024A (en) Lens fixation structure
JP3203727B2 (en) Automatic ranging optical system
JPH04306607A (en) Positioning of distance measuring lens
JPH1068863A (en) Focus detection device
JPS5863279A (en) Color image pickup device
JP2013127416A (en) Range finder, range finding system, range finding program and parallax correction method
JPH10239050A (en) Range finder
JP3240584B2 (en) Camera ranging lens
JPH04190210A (en) Focal point detector
JP3911715B2 (en) Camera focus detection device
JPH0516569Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees