JP3911715B2 - Camera focus detection device - Google Patents

Camera focus detection device Download PDF

Info

Publication number
JP3911715B2
JP3911715B2 JP3472196A JP3472196A JP3911715B2 JP 3911715 B2 JP3911715 B2 JP 3911715B2 JP 3472196 A JP3472196 A JP 3472196A JP 3472196 A JP3472196 A JP 3472196A JP 3911715 B2 JP3911715 B2 JP 3911715B2
Authority
JP
Japan
Prior art keywords
lens
focus detection
camera
holder
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3472196A
Other languages
Japanese (ja)
Other versions
JPH09230231A (en
Inventor
圭司 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3472196A priority Critical patent/JP3911715B2/en
Publication of JPH09230231A publication Critical patent/JPH09230231A/en
Application granted granted Critical
Publication of JP3911715B2 publication Critical patent/JP3911715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般のカメラや電子スチルカメラに組み込まれる焦点検出装置に関し、特に二次結像レンズやラインセンサを保持するホルダの構造に関する。
【0002】
【従来の技術】
従来、この種の焦点検出装置としては、例えば実開平5−16568号公報(以下、先行発明という)に開示されているように、撮影レンズの焦点位置の後方で、二つの再結像光学系により再結像した像の相対位置をCCDなどのラインセンサで検出して撮影レンズの焦点状態を検出する、二次像位相差方式の焦点検出装置が提案されている。
【0003】
この焦点検出装置は、撮影レンズの焦点面の近傍に配置した視野マスクとフィールドレンズ、それらの後方に配置した一対の開口部をもつマスク板と一対の再結像レンズ、それらの各々の略結像面に配置された一対の受光部をもつラインセンサとからなる。さらに、フィールドレンズとマスク板との間には、装置の小型化のために光路を折り曲げるミラー等が配置されることが多い。二次像位相差方式の焦点検出では、これら各要素の相対間隔が焦点検出精度に大きく影響するので、これらをプラスチック等の成形によって作られる1つの支持体、すなわちホルダで保持するように構成することが通例である。
【0004】
図7は上記した先行技術に示された焦点検出装置の分解斜視図、図8は同じく装置を示す断面図である。これらの図において、10はカメラのミラーボックス底部側に配設されたホルダで、このホルダ10は合成樹脂等によって一体に形成され、上面開口部に視野マスク11が設けられ、内部にフィールドレンズ12、二次結像レンズ14、ラインセンサ15およびミラー16が組み込まれている。
【0005】
ラインセンサ15は、セラミック等からなる基板15a上に受光部15bが形成され、この受光部15bをスペーサ15cを介して基板15aに取り付けられる透明な保護ガラス15dによって密封した構造となっている。このラインセンサ15は、受光部15bが正確に再結像された像面の位置と一致するようにホルダ10に取り付けられる必要がある。そこで、基板15aの平面部15eをホルダ10の前面に押し付け、その平面内でラインセンサ15を動かしてラインセンサ15の出力等を見ながら位置合わせを行なった後、ラインセンサ15をホルダ10に接着剤等によって固着する方法を採っている。
【0006】
その場合、ラインセンサ15の光軸18に対する直交度を出すために、ホルダ10の上壁10aおよび下壁10bの前端縁中央部に切欠き部17a,17bをそれぞれ形成し、互いに対向する左右一対の側壁10c,10dの前端面19a,19b、上壁10aおよび下壁10bの両端部前端面19c,19dのみに基板15aの両端部15e1 ,15e2 を密接している。これにより、ラインセンサ15の位置は、ホルダ15の前記前端面19a,19b,19c,19dのみによって決まる。なお、ラインセンサ15をホルダ10に接着した後、前記切欠部17a,17bは、光の侵入を防止するためにテープ等の遮光部材20によって塞がれる。
【0007】
前述したようにホルダ10内に配設される各構成要素間の相対間隔、特にラインセンサ15の前方の再結像レンズ14とラインセンサ15の受光部15bとの間隔の精度は、焦点検出の精度に大きく影響するので、ラインセンサ15と再結像レンズ14が取り付けられる前半部の肉厚および再結像レンズ14の取付部を形成する仕切り壁21の肉厚を厚くし、ラインセンサ15の調整、取付時に加わる力に対する変形を抑えたり、カメラに焦点検出装置を取り付ける際の変形を抑えるようにする。そのため、前記前半部および仕切壁21の板厚としては、ホルダ10をガラス入りのポリカーボネートなどのプラスチック材料で製作する場合、2mm程度の肉厚とし、十分な強度を得るようにしている。
【0008】
一方、このようなカメラの焦点検出装置は、ミラーボックスの底部側に配設され、図示しない半透過の可動ミラーを透過した光をサブミラー22(図10参照)で反射させてミラーボックス底部へ向かうようにしてフィールドレンズ12に入射させることにより、焦点検出用の光束として用いている。しかし、最近のカメラでは、この場所にストロボのTTL(レンズ透過光測光)調光用のセンサと測光レンズが配設されていることが多い。TTL調光用のセンサはフィルム面からの反射光を受光するために、測光レンズの光軸を画面中央に向けて配設される。その例を、図9および図10に示す。24は測光レンズ、25は測光センサ、26はミラーボックスである。測光レンズ21は、フィルム面Xからの反射光を測光センサ25に結像させ、これを測光レンズ25によって検出することにより測光する。
【0009】
従来のごく簡単な、画面中央部およびその周辺部からの反射光のみを受光するTTL調光の場合、レンズなしでシリコンフォトダイオード(SPD)のみを用いるだけでも可能であったが、近年、通常の測光と同じくTTL調光においても分割測光が行われるようになってきた。この場合、フィルムからの反射光を結像させる、ひとみあるいは複数の測光用レンズが不可欠となる。また、測光センサも単に明るさに対応した光電流を出力するSPDから、信号ノイズ防止等のために、アンプ等のインターフェース回路を内蔵したタイプが多く用いられるようになった。このことは、分割測光化で受光部面積が大きくなったことと共に、センサパッケージの大きさを増大させる。
【0010】
【発明が解決しようとする課題】
このような測光センサを含めたTTL調光光学系の大型化は、焦点検出装置の配置に対して大きな制限となる。すなわち、TTL調光センサ25の下方に焦点検出装置を配置すると、調光センサ25と焦点検出装置は図10に示すような位置関係となる。調光センサ25は、フィルム面Xとの共役関係や、ミラーボックス26の床の高さに制限があることから上にはあまり上げられないので、調光センサ25の下端部25aとホルダ10の上壁10aが干渉しない位置であることはもちろん、焦点検出装置の組込み後の光軸の傾き調整(いわゆるYaw Pitch 調整)による動きに対する余裕のある位置まで焦点検出装置を下げなければならない。近年のTTL調光センサの大型化は、その下げ量を増大させる。しかしこのことは、焦点検出装置を収納するためにカメラの底面が下がって、カメラ本体が大型化するのみならず、本来撮影レンズの焦点面付近に配置されなければならない視野マスク11とフィールドレンズ12を焦点面T(図10参照)からますます遠ざけることになり、焦点検出光学系の設計の自由度を減らしたり、焦点検出に有害な迷光が増えるなど焦点検出精度そのものにも影響を及ぼすという問題もでてくる。
【0011】
本発明は、上記した従来の問題点を解決するためになされたもので、その目的とするところは、焦点検出装置の下降量を少なくし、カメラを小型化することができるようにしたカメラの焦点検出装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明は、撮影レンズによる物体像をさらに二次結像レンズにより一対のラインセンサ上に再結像させ、この二次物体像の相対的ずれから前記撮影レンズの焦点状態を検出する二次像位相差方式のカメラの焦点検出装置において、前記ラインセンサと前記二次結像レンズを一体的に保持するホルダの壁部に貫通穴を形成し、該貫通穴に前記撮影レンズを透過した光を測定するセンサを有する光学系の一部を、前記ホルダとは独立した状態で進入可能としたことを特徴とする。
また、本発明は、撮影レンズによる物体像をさらに二次結像レンズにより一対のラインセンサ上に再結像させ、この二次物体像の相対的ずれから前記撮影レンズの焦点状態を検出する二次像位相差方式のカメラの焦点検出装置において、前記ラインセンサと前記二次結像レンズを一体的に保持するホルダの壁部に凹陥部を形成し、該凹陥部に前記カメラの三脚座の一部を進入可能にしたことを特徴とする。
【0013】
また、本発明は、貫通穴が、この貫通穴を遮光するシート状部材を有し、かつこのシート部材をホルダとラインセンサとの隙間を遮光する遮光部材と同一材料で形成したことを特徴とする。
さらに、本発明は、二次結像レンズに設けられる複数組のレンズ体のうち貫通穴に近いレンズ体と、前記二次結像レンズの側縁のうち前記貫通穴と対向する側縁との間隔を、他の部分におけるレンズ体と側縁との間隔より小さく設定したことを特徴とする。
【0014】
本発明において、ホルダに設けた貫通穴と凹陥部はTTL調光光学系三脚座の一部がそれぞれ入り込むことにより、TTL調光光学系、三脚座とホルダとの間隔をそれぞれ狭める。
【0015】
【発明の実施の形態】
以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1は本発明に係る焦点検出装置の一実施の形態を示す断面図、図2はホルダの斜視図である。なお、従来技術の欄で示した構成部材等と同一のものについては同一符号をもって示し、その説明を適宜省略する。これらの図において、ホルダ10は合成樹脂によって一体に形成され、上面後端部に設けられた開口部に視野マスク11が配設され、内部にフィールドレンズ12、二次結像レンズ14、ラインセンサ15およびミラー16が組み込まれている。ホルダ10の前端部上方には、TTL調光光学系30を構成する測光レンズ24と測光センサ25がホルダ10の上壁10aに近接して配設されている。また、この上壁10aの上面前端部寄りで前記TTL調光光学系30の下端部と対向する部位には凹陥部31が形成されている。この凹陥部31は、上壁10aに形成した断面形状が逆台形の貫通穴32と、この貫通穴32を遮光する薄いシート状部材33とで形成され、前記TTL調光光学系30の下端部が上方から入り込んでいる。このように、凹陥部31にTTL調光光学系30の下端部を入り込ませると、それだけホルダ10の下降量を小さくすることができる。言い換えれば、カメラ全体の高さを低くすることができる。
【0016】
前記シート状部材33は、ホルダ10の上壁10aの前端縁に形成された切欠部17aを遮光する遮光部材20と同一材料によって形成されている。そのため、本実施の形態においては、遮光部材20を延長してその延長部をシート状部材33とし、上壁10aの上面、基板15aの上面および凹陥部31の穴壁に貼着し、切欠き17aおよび貫通32を遮光している。凹陥部31を上記したように逆台形状に形成しておくと、貫通穴32の下端側開口部の幅が最小で、その穴壁が下方に向かって傾斜しているので、シート状部材33を容易に貼着することができる。また、前記切欠き17aおよび凹陥部31は、最小限の大きさに形成されているので、ホルダ10の強度に影響を及ぼさず、ラインセンサ15の接着時にホルダ10のラインセンサ取付面19a〜19dが受ける力F1 ,F2 に対して十分に耐え得る。
【0017】
図3は画面内の複数の点で焦点検出を行うマルチエリアの焦点検出装置に本発明を適用した実施の形態を示す断面図、図4は画面の焦点検出エリアを示す図である。
この実施の形態においては、図4に示すように画面Lの中央のみならず上下にも焦点検出エリアV1 ,V2 を設けている。このようなマルチエリア方式においては、焦点検出装置内でも上下に光路のための空間を大きく確保する必要があるので、ラインセンサ15の前方においてもホルダ10の上下寸法を大きくとる必要がある。このような場合も、上記した通りホルダ10の上壁の一部を切り欠き、その中にTTL調光光学系の一部を入り込ませることにより、焦点検出装置全体をあまり下げる必要がない。
【0018】
また、マルチエリアの焦点検出装置の場合、二次結像レンズ14に設けられているレンズ体14aの数も各エリア毎に一対からなるレンズ体を設ける必要があるので、図5に示すように複数対のレンズ体14aを1つのレンズ基板14bに一体に形成した二次結像レンズ14全体の大きさも必然的に大きくなる。通常、このような二次結像レンズ14は、光学材料用のプラスチック等を成形して作られるが、レンズ体14aの形状を精度よく作るために周囲にある程度の縁を付けるのが通例である。しかし、上下対称に形成して上下エリア用のレンズ体14aと、レンズ基板14bの上下縁との間隔を十分にとると、TTL調光光学系30の下部を収納する凹陥部31に近くなるので、レンズ基板14bの上部がホルダ10の凹陥部31を設けた部分より高くなってしまうことがある。
【0019】
そこで、本実施の形態においては、二次結像レンズ14に設けられる複数組のレンズ体14aのうち凹陥部31に近い上方側のレンズ体14aと、レンズ基板14bの上縁との間隔mを、図5に示すように下方側のレンズ体14aとレンズ基板14bの下縁との間隔m1 より小さく設定している。このような二次結像レンズ14にあっては、二次結像レンズ14を凹陥部31に近づけることができるので、ホルダ10の高さを低くすることができる。
【0020】
図6は本発明のさらに他の実施の形態を示す断面図である。
この実施の形態においては、ホルダ10の上下壁10a,10bの前端部寄りに凹陥部31,45をそれぞれ設け、これらの凹陥部31,45にTTL調光光学系30の下端部と三脚座46の上部をそれぞれ入り込ませている。上方側の凹陥部31は図1に示した凹陥部と同一で、貫通孔32とシート部材33によって形成され、下方側の凹陥部45は、下壁10bの下面側に形成された逆台形状の凹部とされる。三脚座46は、三脚の三脚ねじがねじ込まれるねじ穴46aを備えている。
【0021】
このような構造においては、凹陥部31,45によってTTL調光光学系30と三脚座46をホルダ10に近接させることができるので、より一層カメラ全体の高さを低くすることができる。
【0022】
【発明の効果】
以上説明したように本発明に係るカメラの焦点検出装置は、撮影レンズによる物体像をさらに二次結像レンズにより一対のラインセンサ上に再結像させ、この二次物体像の相対的ずれから前記撮影レンズの焦点状態を検出する二次像位相差方式のカメラの焦点検出装置において、前記ラインセンサと前記二次結像レンズを一体的に保持するホルダの壁部に貫通穴を形成し、該貫通穴に前記撮影レンズを透過した光を測定するセンサを有する光学系の一部を、前記ホルダとは独立した状態で進入可能としたので、カメラの小型化および焦点検出光学系の精度と設計の自由度を確保することができる。また、ホルダに貫通穴を形成するだけでよいので、構造が簡単で、容易に製作することができる。
【0023】
また、本発明は、撮影レンズによる物体像をさらに二次結像レンズにより一対のラインセンサ上に再結像させ、この二次物体像の相対的ずれから前記撮影レンズの焦点状態を検出する二次像位相差方式のカメラの焦点検出装置において、前記ラインセンサと前記二次結像レンズを一体的に保持するホルダの壁部に凹陥部を形成し、該凹陥部に前記カメラの三脚座の一部を進入可能にしたので、カメラの高さ方向の小型化を図ることができる。
【0024】
また本発明は、貫通穴が、この貫通穴を遮光するシート状部材を有し、かつこのシート部材をホルダとラインセンサとの隙間を遮光する遮光部材と同一材料で形成したので、新たな部品を増やす必要がない。
【0025】
さらに、本発明は、二次結像レンズに設けられる複数組のレンズ体のうち貫通穴に近いレンズ体と、前記二次結像レンズの側縁のうち前記貫通穴と対向する側縁との間隔を、他の部分におけるレンズ体と側縁との間隔より小さく設定したので、ホルダの高さを低くすることができる。
【図面の簡単な説明】
【図1】 本発明に係る焦点検出装置の一実施の形態を示す断面図である。
【図2】 ホルダの斜視図である。
【図3】 本発明の他の実施の形態を示す断面図である。
【図4】 画面の焦点検出エリアを示す図である。
【図5】 二次結像レンズの正面図である。
【図6】 本発明のさらに他の実施の形態を示す断面図である。
【図7】 従来の焦点検出装置の分解斜視図である。
【図8】 同検出装置の断面図である。
【図9】 TTL調光光学系の構成を示す斜視図である。
【図10】 従来の焦点検出装置とTTL調光光学系の配置関係を示す断面図である。
【符号の説明】
10…ホルダ、11…視野マスク、12…フィールドレンズ、13…マスク板、14…二次結像レンズ、15…ラインセンサ、24…測光レンズ、25…測光センサ、30…TTL調光光学系、31…凹陥部、32…貫通孔、33…シート部材、45…凹陥部、46…三脚座、46a…三脚座用のねじ穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a focus detection device incorporated in a general camera or an electronic still camera, and more particularly to a structure of a holder that holds a secondary imaging lens and a line sensor.
[0002]
[Prior art]
Conventionally, as this type of focus detection device, as disclosed in, for example, Japanese Utility Model Laid-Open No. 5-16568 (hereinafter referred to as the prior invention), two re-imaging optical systems are provided behind the focus position of the photographing lens. There has been proposed a secondary image phase difference type focus detection device for detecting the relative position of an image re-imaged by a line sensor such as a CCD to detect the focus state of the taking lens.
[0003]
This focus detection apparatus includes a field mask and a field lens arranged in the vicinity of a focal plane of a photographic lens, a mask plate having a pair of openings arranged behind them and a pair of re-imaging lenses, and a general connection of each of them. And a line sensor having a pair of light receiving portions arranged on the image plane. Furthermore, a mirror or the like that bends the optical path is often disposed between the field lens and the mask plate in order to reduce the size of the apparatus. In the focus detection of the secondary image phase difference method, the relative distance between these elements greatly affects the focus detection accuracy. Therefore, they are configured to be held by one support made by molding of plastic or the like, that is, a holder. It is customary.
[0004]
FIG. 7 is an exploded perspective view of the focus detection apparatus shown in the prior art, and FIG. 8 is a cross-sectional view showing the apparatus. In these drawings, reference numeral 10 denotes a holder disposed on the bottom side of the mirror box of the camera. This holder 10 is integrally formed of synthetic resin or the like, and a field mask 11 is provided in the upper surface opening, and a field lens 12 is provided inside. The secondary imaging lens 14, the line sensor 15 and the mirror 16 are incorporated.
[0005]
The line sensor 15 has a light receiving portion 15b formed on a substrate 15a made of ceramic or the like, and the light receiving portion 15b is sealed by a transparent protective glass 15d attached to the substrate 15a via a spacer 15c. The line sensor 15 needs to be attached to the holder 10 so that the light receiving portion 15b coincides with the position of the image plane accurately re-imaged. Therefore, the flat portion 15e of the substrate 15a is pressed against the front surface of the holder 10, the line sensor 15 is moved within the plane, and alignment is performed while viewing the output of the line sensor 15 and the like, and then the line sensor 15 is bonded to the holder 10. A method of fixing with an agent or the like is employed.
[0006]
In that case, in order to obtain the orthogonality with respect to the optical axis 18 of the line sensor 15, the notch portions 17a and 17b are formed in the center portions of the front end edges of the upper wall 10a and the lower wall 10b of the holder 10, respectively. Both end portions 15e1 and 15e2 of the substrate 15a are in intimate contact only with the front end surfaces 19a and 19b of the side walls 10c and 10d, and the front end surfaces 19c and 19d at both ends of the upper wall 10a and the lower wall 10b. Thereby, the position of the line sensor 15 is determined only by the front end surfaces 19a, 19b, 19c, and 19d of the holder 15. Note that after the line sensor 15 is bonded to the holder 10, the cutout portions 17a and 17b are closed by a light shielding member 20 such as a tape in order to prevent light from entering.
[0007]
As described above, the relative distance between the components disposed in the holder 10, particularly the accuracy of the distance between the re-imaging lens 14 in front of the line sensor 15 and the light receiving portion 15 b of the line sensor 15 is determined by the focus detection. Since this greatly affects the accuracy, the thickness of the front half where the line sensor 15 and the re-imaging lens 14 are attached and the thickness of the partition wall 21 forming the attachment portion of the re-imaging lens 14 are increased. The deformation to the force applied at the time of adjustment and attachment is suppressed, and the deformation at the time of attaching the focus detection device to the camera is suppressed. For this reason, when the holder 10 is made of a plastic material such as polycarbonate containing glass, the thickness of the front half and the partition wall 21 is set to about 2 mm so as to obtain sufficient strength.
[0008]
On the other hand, such a focus detection device for a camera is disposed on the bottom side of the mirror box, and reflects light transmitted through a semi-transmissive movable mirror (not shown) by the sub mirror 22 (see FIG. 10) and travels toward the bottom of the mirror box. By making the light incident on the field lens 12 in this manner, it is used as a light beam for focus detection. However, in recent cameras, a TTL (lens transmitted light metering) light adjustment sensor and a photometric lens are often disposed at this location. The TTL light control sensor is disposed with the optical axis of the photometric lens facing the center of the screen in order to receive the reflected light from the film surface. Examples thereof are shown in FIG. 9 and FIG. 24 is a photometric lens, 25 is a photometric sensor, and 26 is a mirror box. The photometric lens 21 forms an image of the reflected light from the film surface X on the photometric sensor 25, and measures the light by detecting it with the photometric lens 25.
[0009]
In the conventional case of TTL dimming that receives only reflected light from the central portion of the screen and its peripheral portion, it was possible to use only a silicon photodiode (SPD) without a lens. As in the case of the above-mentioned photometry, divided photometry has been performed in TTL dimming. In this case, a pupil or a plurality of photometric lenses for forming an image of the reflected light from the film is indispensable. In addition, from the SPD that simply outputs a photocurrent corresponding to the brightness, a type in which an interface circuit such as an amplifier is incorporated is often used for the photometric sensor in order to prevent signal noise. This increases the size of the sensor package along with the increase in the area of the light receiving portion due to the split photometry.
[0010]
[Problems to be solved by the invention]
Increasing the size of the TTL light control optical system including such a photometric sensor is a significant limitation on the arrangement of the focus detection device. That is, when the focus detection device is arranged below the TTL light control sensor 25, the light control sensor 25 and the focus detection device have a positional relationship as shown in FIG. Since the light control sensor 25 is not raised so much because there is a limitation on the conjugate relationship with the film surface X and the height of the floor of the mirror box 26, the lower end portion 25a of the light control sensor 25 and the holder 10 Needless to say, the position of the upper wall 10a does not interfere, and the focus detection device has to be lowered to a position where there is room for movement by adjusting the tilt of the optical axis (so-called Yaw Pitch adjustment) after the focus detection device is incorporated. The recent increase in size of the TTL light control sensor increases the amount of reduction. However, this is not only because the bottom surface of the camera is lowered to accommodate the focus detection device, but the camera body is not only enlarged, but also the field mask 11 and the field lens 12 that must originally be disposed near the focal plane of the photographing lens. Is further away from the focal plane T (see FIG. 10), and the focus detection accuracy itself is affected, for example, by reducing the degree of freedom in designing the focus detection optical system and increasing the stray light harmful to focus detection. Come out.
[0011]
The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to reduce the amount of descent of the focus detection device and reduce the size of the camera. To provide a focus detection device.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, an object image formed by a photographic lens is further re-imaged on a pair of line sensors by a secondary imaging lens, and the focal point of the photographic lens is determined from the relative deviation of the secondary object image. In a focus detection device for a secondary image phase difference camera that detects a state, a through hole is formed in a wall portion of a holder that integrally holds the line sensor and the secondary imaging lens, and the through hole has the A part of the optical system having a sensor for measuring light transmitted through the photographing lens can be entered in a state independent of the holder.
Further, according to the present invention, an object image formed by the photographic lens is further re-imaged on the pair of line sensors by the secondary imaging lens, and the focus state of the photographic lens is detected from the relative deviation of the secondary object image. In a focus detection device for a secondary image phase difference camera, a concave portion is formed in a wall portion of a holder that integrally holds the line sensor and the secondary imaging lens, and a tripod seat of the camera is formed in the concave portion. It is characterized in that a part can be entered.
[0013]
Further, the present invention is characterized in that the through hole has a sheet-like member that shields the through hole , and the sheet member is formed of the same material as the light shielding member that shields the gap between the holder and the line sensor. To do.
Furthermore, the present invention provides a lens body close to a through hole among a plurality of sets of lens bodies provided in the secondary imaging lens, and a side edge facing the through hole among the side edges of the secondary imaging lens. The interval is set to be smaller than the interval between the lens body and the side edge in the other part.
[0014]
In the present invention, the through-hole and recess provided in the holder by a part of the TTL flash optics and tripod enters each narrowing TTL light optical system, the distance between the tripod and the holder, respectively.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a sectional view showing an embodiment of a focus detection apparatus according to the present invention, and FIG. 2 is a perspective view of a holder. Note that the same components as those shown in the prior art column are denoted by the same reference numerals, and description thereof will be omitted as appropriate. In these drawings, the holder 10 is integrally formed of a synthetic resin, and a field mask 11 is disposed in an opening provided at the rear end portion of the upper surface, and a field lens 12, a secondary imaging lens 14, a line sensor are provided therein. 15 and mirror 16 are incorporated. Above the front end of the holder 10, a photometric lens 24 and a photometric sensor 25 constituting the TTL light control optical system 30 are disposed in the vicinity of the upper wall 10 a of the holder 10. Further, a recessed portion 31 is formed in a portion facing the lower end portion of the TTL light control optical system 30 near the upper surface front end portion of the upper wall 10a. The recessed portion 31 is formed by a through hole 32 having an inverted trapezoidal cross section formed in the upper wall 10a and a thin sheet-like member 33 that shields the through hole 32. The lower end portion of the TTL light control optical system 30 Has entered from above. As described above, when the lower end portion of the TTL light control optical system 30 is inserted into the recessed portion 31, the lowering amount of the holder 10 can be reduced accordingly. In other words, the height of the entire camera can be reduced.
[0016]
The sheet- like member 33 is made of the same material as the light-shielding member 20 that shields light from the notch 17a formed at the front edge of the upper wall 10a of the holder 10. For this reason, in the present embodiment, the light shielding member 20 is extended to form a sheet- like member 33, and the extension is attached to the upper surface of the upper wall 10a, the upper surface of the substrate 15a, and the hole wall of the recessed portion 31, and is cut out. 17a and the through hole 32 are shielded from light. If the recessed part 31 is formed in an inverted trapezoidal shape as described above, the width of the lower end side opening of the through hole 32 is the smallest and the hole wall is inclined downward, so that the sheet- like member 33 is formed. Can be easily attached. Further, since the notch 17a and the recessed portion 31 are formed to a minimum size, the strength of the holder 10 is not affected, and the line sensor mounting surfaces 19a to 19d of the holder 10 are adhered when the line sensor 15 is bonded. Can sufficiently withstand the forces F1 and F2 received by.
[0017]
FIG. 3 is a cross-sectional view showing an embodiment in which the present invention is applied to a multi-area focus detection apparatus that performs focus detection at a plurality of points in the screen, and FIG. 4 is a diagram showing a focus detection area on the screen.
In this embodiment, focus detection areas V1 and V2 are provided not only at the center of the screen L but also at the top and bottom as shown in FIG. In such a multi-area method, since it is necessary to ensure a large space for the optical path in the vertical direction even in the focus detection device, it is necessary to increase the vertical dimension of the holder 10 even in front of the line sensor 15. Even in such a case, as described above, a part of the upper wall of the holder 10 is notched, and a part of the TTL light control optical system is inserted therein, so that it is not necessary to lower the entire focus detection device.
[0018]
Further, in the case of a multi-area focus detection device, since it is necessary to provide a pair of lens bodies for each area, the number of lens bodies 14a provided in the secondary imaging lens 14 is as shown in FIG. The size of the entire secondary imaging lens 14 in which a plurality of pairs of lens bodies 14a are integrally formed on one lens substrate 14b is inevitably increased. Normally, such a secondary imaging lens 14 is made by molding plastic or the like for an optical material, but in order to make the shape of the lens body 14a with high accuracy, it is usual to attach a certain amount of edges to the periphery. . However, if the lens body 14a for the upper and lower areas and the upper and lower edges of the lens substrate 14b are formed sufficiently symmetrically to be close to the concave portion 31 that houses the lower part of the TTL light control optical system 30, the lens body 14a is close to the concave portion 31. The upper portion of the lens substrate 14b may be higher than the portion where the recessed portion 31 of the holder 10 is provided.
[0019]
Therefore, in the present embodiment, the interval m between the upper lens body 14a close to the recessed portion 31 and the upper edge of the lens substrate 14b among the plurality of sets of lens bodies 14a provided in the secondary imaging lens 14 is set as follows. As shown in FIG. 5, the distance m1 is set smaller than the distance m1 between the lower lens body 14a and the lower edge of the lens substrate 14b. In such a secondary imaging lens 14, the secondary imaging lens 14 can be brought close to the recessed portion 31, so that the height of the holder 10 can be reduced.
[0020]
FIG. 6 is a cross-sectional view showing still another embodiment of the present invention.
In this embodiment, concave portions 31, 45 are provided near the front end portions of the upper and lower walls 10a, 10b of the holder 10, and the lower end portion of the TTL light control optical system 30 and the tripod seat 46 are provided in these concave portions 31, 45, respectively. The top of each is inserted. The upper concave portion 31 is the same as the concave portion shown in FIG. 1 and is formed by the through hole 32 and the sheet member 33, and the lower concave portion 45 is an inverted trapezoidal shape formed on the lower surface side of the lower wall 10b. It is made into the recessed part. The tripod seat 46 is provided with a screw hole 46a into which a tripod screw of a tripod is screwed.
[0021]
In such a structure, since the TTL light control optical system 30 and the tripod mount 46 can be brought close to the holder 10 by the recessed portions 31 and 45, the height of the entire camera can be further reduced.
[0022]
【The invention's effect】
As described above, the focus detection apparatus for a camera according to the present invention re-images an object image by a photographing lens onto a pair of line sensors by a secondary imaging lens, and detects the relative displacement of the secondary object image. In the focus detection device of the secondary image phase difference type camera that detects the focus state of the photographing lens, a through hole is formed in a wall portion of a holder that integrally holds the line sensor and the secondary imaging lens, a part of the optical system including a sensor for measuring the light transmitted through the photographing lens to the through hole, since said holder has can enter a separate state, and accuracy of size of the camera and the focus detecting optical system A degree of freedom in design can be secured. Moreover, since it is only necessary to form a through hole in the holder, the structure is simple and the holder can be easily manufactured.
[0023]
Further, according to the present invention, an object image formed by the photographic lens is further re-imaged on the pair of line sensors by the secondary imaging lens, and the focus state of the photographic lens is detected from the relative deviation of the secondary object image. In a focus detection device for a secondary image phase difference camera , a concave portion is formed in a wall portion of a holder that integrally holds the line sensor and the secondary imaging lens, and a tripod seat of the camera is formed in the concave portion. Since part of the camera can enter , the camera can be downsized in the height direction.
[0024]
The present invention, through-holes, has a sheet-like member to shield the through hole, and since the formation of the sheet member of the same material as the light blocking member for blocking the gap between the holder and the line sensor, new component There is no need to increase
[0025]
Furthermore, the present invention provides a lens body close to a through hole among a plurality of sets of lens bodies provided in the secondary imaging lens, and a side edge facing the through hole among the side edges of the secondary imaging lens. Since the interval is set to be smaller than the interval between the lens body and the side edge in the other part, the height of the holder can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a focus detection apparatus according to the present invention.
FIG. 2 is a perspective view of a holder.
FIG. 3 is a cross-sectional view showing another embodiment of the present invention.
FIG. 4 is a diagram illustrating a focus detection area on a screen.
FIG. 5 is a front view of a secondary imaging lens.
FIG. 6 is a cross-sectional view showing still another embodiment of the present invention.
FIG. 7 is an exploded perspective view of a conventional focus detection device.
FIG. 8 is a sectional view of the detection device.
FIG. 9 is a perspective view showing a configuration of a TTL light control optical system.
FIG. 10 is a cross-sectional view showing a positional relationship between a conventional focus detection device and a TTL light control optical system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Holder, 11 ... Field mask, 12 ... Field lens, 13 ... Mask plate, 14 ... Secondary imaging lens, 15 ... Line sensor, 24 ... Photometric lens, 25 ... Photometric sensor, 30 ... TTL light control optical system, 31 ... Recessed part, 32 ... Through hole, 33 ... Sheet member, 45 ... Recessed part, 46 ... Tripod seat, 46a ... Screw hole for tripod seat.

Claims (4)

撮影レンズによる物体像をさらに二次結像レンズにより一対のラインセンサ上に再結像させ、この二次物体像の相対的ずれから前記撮影レンズの焦点状態を検出する二次像位相差方式のカメラの焦点検出装置において、
前記ラインセンサと前記二次結像レンズを一体的に保持するホルダの壁部に貫通穴を形成し、該貫通穴に前記撮影レンズを透過した光を測定するセンサを有する光学系の一部を、前記ホルダとは独立した状態で進入可能としたことを特徴とするカメラの焦点検出装置。
A secondary image phase difference method that re-images an object image by a photographic lens onto a pair of line sensors by a secondary imaging lens and detects the focus state of the photographic lens from the relative deviation of the secondary object image. In the camera focus detection device,
A part of the optical system including a sensor for measuring the line sensor and the secondary imaging lens to form a through hole in the wall portion of the holder for holding integrally, light transmitted through the photographing lens to the through hole A focus detection device for a camera, wherein the camera can be entered independently of the holder.
撮影レンズによる物体像をさらに二次結像レンズにより一対のラインセンサ上に再結像させ、この二次物体像の相対的ずれから前記撮影レンズの焦点状態を検出する二次像位相差方式のカメラの焦点検出装置において、
前記ラインセンサと前記二次結像レンズを一体的に保持するホルダの壁部に凹陥部を形成し、該凹陥部に前記カメラの三脚座の一部を進入可能にしたことを特徴とするカメラの焦点検出装置。
A secondary image phase difference method that re-images an object image by a photographic lens onto a pair of line sensors by a secondary imaging lens and detects the focus state of the photographic lens from the relative deviation of the secondary object image. In the camera focus detection device,
A camera is characterized in that a concave portion is formed in a wall portion of a holder that integrally holds the line sensor and the secondary imaging lens, and a part of a tripod seat of the camera can enter the concave portion. Focus detection device.
請求項1記載のカメラの焦点検出装置において、
前記貫通穴は、この貫通穴を遮光するシート状部材を有し、かつこのシート部材をホルダとラインセンサとの隙間を遮光する遮光部材と同一材料で形成したことを特徴とするカメラの焦点検出装置。
The camera focus detection apparatus according to claim 1,
The through hole has a sheet-like member to shield the through hole, and the focus detection of the camera, characterized in that the formation of the sheet member of the same material as the light blocking member for blocking the gap between the holder and the line sensor apparatus.
請求項1または3に記載のカメラの焦点検出装置において、
二次結像レンズに設けられる複数組のレンズ体のうち貫通穴に近いレンズ体と、前記二次結像レンズの側縁のうち前記貫通穴と対向する側縁との間隔を、他の部分におけるレンズ体と側縁との間隔より小さく設定したことを特徴とするカメラの焦点検出装置。
The focus detection apparatus for a camera according to claim 1 or 3 ,
The distance between the lens body close to the through-hole among the plurality of sets of lens bodies provided in the secondary imaging lens and the side edge facing the through-hole among the side edges of the secondary imaging lens is changed to another portion. A focus detection device for a camera, characterized in that it is set to be smaller than the distance between the lens body and the side edge.
JP3472196A 1996-02-22 1996-02-22 Camera focus detection device Expired - Fee Related JP3911715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3472196A JP3911715B2 (en) 1996-02-22 1996-02-22 Camera focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3472196A JP3911715B2 (en) 1996-02-22 1996-02-22 Camera focus detection device

Publications (2)

Publication Number Publication Date
JPH09230231A JPH09230231A (en) 1997-09-05
JP3911715B2 true JP3911715B2 (en) 2007-05-09

Family

ID=12422201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3472196A Expired - Fee Related JP3911715B2 (en) 1996-02-22 1996-02-22 Camera focus detection device

Country Status (1)

Country Link
JP (1) JP3911715B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253840B2 (en) 2001-06-11 2007-08-07 Fujifilm Corporation Cradle for digital camera

Also Published As

Publication number Publication date
JPH09230231A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
US5017005A (en) Focal point detecting optical apparatus
US4555169A (en) Focus detecting device for a camera
US4857720A (en) Focus detecting system using multiple portions of the image to be focussed
US4526458A (en) Focus condition detecting device for cameras
US4636627A (en) Focus detecting apparatus
US4529287A (en) Focus condition detection device for cameras
US4777506A (en) Camera having an assembling adjusting device
JP3911715B2 (en) Camera focus detection device
JPS6311906A (en) Focus detecting device
US7616884B2 (en) Viewfinder for single lens reflex camera
US4490031A (en) Device for adjusting movement of photographic lens and field of viewfinder
US6229602B1 (en) Photometering apparatus
US6128444A (en) Multipoint focus detecting apparatus
JP2661037B2 (en) Optical device for focus detection
US20010040637A1 (en) Detecting device reducing detection errors caused by signals generated other than by direct light
US4428653A (en) Mirror reflex camera with an electronic range finder
JP2628941B2 (en) Photometric device for photo projection printing equipment
JPH0522883B2 (en)
JPS63139310A (en) Pattern projecting device for detecting focus
JPH0862491A (en) Light shielding structure for focal point detecting device
JPS6210734Y2 (en)
JPH1138312A (en) Focus detector and camera
JPH0516569Y2 (en)
JP3215725B2 (en) Focus detection device
JP3063240B2 (en) Converter device and camera system using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees