JPS61165563A - Solar-heat utilizing water heater - Google Patents

Solar-heat utilizing water heater

Info

Publication number
JPS61165563A
JPS61165563A JP61006701A JP670186A JPS61165563A JP S61165563 A JPS61165563 A JP S61165563A JP 61006701 A JP61006701 A JP 61006701A JP 670186 A JP670186 A JP 670186A JP S61165563 A JPS61165563 A JP S61165563A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat
expansion valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61006701A
Other languages
Japanese (ja)
Inventor
達規 桜武
田島 正久
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61006701A priority Critical patent/JPS61165563A/en
Publication of JPS61165563A publication Critical patent/JPS61165563A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽熱及び大気熱を集熱する冷媒循環密閉回路
と、集熱した熱により水を昇温させる給湯水加熱回路と
からなる太陽熱利用温水器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solar water heater comprising a refrigerant circulation closed circuit that collects solar heat and atmospheric heat, and a hot water supply water heating circuit that uses the collected heat to raise the temperature of water. It is related to.

従来例の構成とその問題点 一般にこの種の太陽熱利用温水器は、集熱器。Conventional configuration and its problems Generally, this type of solar water heater uses a heat collector.

アキュムレータ、圧縮機、凝縮器、減圧装置を連結した
冷媒循環密閉回路と、前記凝縮器と熱交換する熱交換器
、貯湯槽、ポンプを連結した給湯水加熱回路から構成さ
れている。上記構成を有する冷媒循環密閉回路の減圧装
置としては、キャピラリチューブが考えられるが、キャ
ピラリチューブだと年間を通して運転した場合、前記集
熱器での冷媒蒸発能力に適した冷媒量を前記集熱器へ供
給することが不可能である。すなわち、冷媒蒸発能力が
大きい夏季に適するように前記キャピラリチューブを選
定すると、冷媒蒸発能力の小さい冬季には、前記集熱器
への冷媒供給Iが多くなり、圧縮機への冷媒液戻りが生
じ前記圧縮機構成部品の破損等により機器の信頼性が低
下する問題点があった。逆に集熱器の冷媒蒸発能力が小
さい冬季に適するように前記キャピラリチューブを選定
すると、冷媒蒸発能力の大きい夏季には、圧縮機吸入側
の冷媒過熱度増加による圧縮機の吐出温度の上昇やシス
テムの運転効率低下等の問題点があった。
It consists of a refrigerant circulation closed circuit that connects an accumulator, a compressor, a condenser, and a pressure reducing device, and a hot water heating circuit that connects a heat exchanger that exchanges heat with the condenser, a hot water storage tank, and a pump. A capillary tube can be considered as a pressure reducing device for a refrigerant circulation closed circuit having the above configuration, but if the capillary tube is operated throughout the year, the amount of refrigerant suitable for the refrigerant evaporation capacity in the collector will be transferred to the collector. It is impossible to supply to That is, if the capillary tube is selected to be suitable for the summer season when the refrigerant evaporation capacity is high, in the winter season when the refrigerant evaporation capacity is low, the refrigerant supply I to the collector increases, and the refrigerant liquid returns to the compressor. There is a problem in that the reliability of the equipment is reduced due to damage to the compressor components. On the other hand, if the capillary tube is selected to be suitable for winter when the refrigerant evaporation capacity of the collector is small, in summer when the refrigerant evaporation capacity is large, the discharge temperature of the compressor will rise due to an increase in the degree of superheating of the refrigerant on the suction side of the compressor. There were problems such as a decrease in system operating efficiency.

又本システムでは、日射や外気風速の瞬時変動によって
も集熱器の冷媒蒸発能力に変動が生じるため、減圧装置
をキャピラリチューブにすると、圧縮機吸入側の冷媒過
熱度を瞬時冷媒蒸発能力変化に対して適切な値とするこ
とは不可能で、冷媒の圧縮機への液戻り、あるいは冷媒
過熱度の過大が生じ、構成機器の信頼性低下あるいはシ
ステム運転効率の低下等の問題があった。又、前記減圧
装置として温度式膨張弁が考えられ、一般に冷媒を蒸発
させる集熱器の有効的な使用を考えて外部均圧式温度膨
張弁を使用するが、前記集熱器で冷媒が通過する際の圧
損が、0.4に:q/crA 以上になると、外部均圧
式温度膨張弁の外均管漏れによってサイクルの低圧側に
0.2〜0.3 Kid/(−のハンチングが生じ、そ
の結果圧縮機モータへの負荷変動により圧縮機の信頼性
及び耐久性が低下する問題があった。又、外部均圧式温
度膨張弁の外均管漏れにより生じるハンチングにより温
度式膨張弁の構成部品であるダイアフラムの耐久性にも
問題かあった。
In addition, in this system, the refrigerant evaporation capacity of the collector changes due to instantaneous fluctuations in solar radiation and outside wind speed, so if the pressure reducing device is a capillary tube, the degree of refrigerant superheating on the suction side of the compressor can be changed to an instantaneous refrigerant evaporation capacity change. However, it is impossible to set an appropriate value for the refrigerant, resulting in the refrigerant returning to the compressor or excessive superheating of the refrigerant, resulting in problems such as a decrease in the reliability of component equipment and a decrease in system operating efficiency. Further, a temperature-type expansion valve can be considered as the pressure reducing device, and an external pressure-equalizing temperature-type expansion valve is generally used in consideration of the effective use of a heat collector that evaporates the refrigerant. When the pressure drop exceeds 0.4:q/crA, hunting of 0.2 to 0.3 Kid/(- will occur on the low pressure side of the cycle due to leakage of the external pressure equalization type temperature expansion valve. As a result, there was a problem in that the reliability and durability of the compressor decreased due to load fluctuations on the compressor motor.In addition, hunting caused by leakage of the external equalization tube of the external pressure equalization type temperature expansion valve caused components of the temperature type expansion valve to deteriorate. There was also a problem with the durability of the diaphragm.

ここで第1図aに前述の集熱器の圧力損失が大きい場合
外部均圧式温度膨張弁の外均管漏れによって生じる低圧
PLのハンチング状態を高圧PHと共に示すが、それと
あわせて第1図すに集熱器の圧力損失を小さくした場合
の低圧PLと高圧PHの状態を示す。これによると外部
均圧式温度膨張弁の外均管漏れを小さくするべく集熱器
の管径を大きくし集熱器を冷媒が通過する際の圧力損失
を低減させると低圧のハンチングを防止できるが、本シ
ステムのごとく一般に集熱器を屋根の上に設置する場合
を考えると集熱器と圧縮機を接続するのに長い接続配管
を必要とし、前記集熱器の管径を大きくすると圧縮機の
許容冷媒充填量よりシステムに必要な冷媒充填量が多く
なりシステムの信頼性が低下する問題があった。
Here, Fig. 1a shows the hunting state of the low pressure PL caused by the leakage of the external equalizing pipe of the external pressure equalizing temperature expansion valve when the pressure loss of the heat collector is large, as well as the high pressure PH. Figure 2 shows the state of low pressure PL and high pressure PH when the pressure loss of the heat collector is reduced. According to this, low-pressure hunting can be prevented by increasing the pipe diameter of the heat collector and reducing the pressure loss when the refrigerant passes through the heat collector in order to reduce the leakage of the external pipe of the external pressure equalization type temperature expansion valve. Generally, when a heat collector is installed on the roof like in this system, a long connection pipe is required to connect the heat collector and the compressor, and if the pipe diameter of the heat collector is increased, the compressor There was a problem in that the amount of refrigerant required for the system was greater than the allowable amount of refrigerant, reducing the reliability of the system.

発明の目的 本発明はかかる従来の問題点を解消するものであり、外
気温度、日射量、外気風速変化により生じる冷媒が蒸発
する集熱器の冷媒蒸発能力変化に適する冷媒量を前記集
熱器に供給すると共に、前記集熱器を冷媒が通過する際
の圧力損失が大きいときに外部均圧式温度膨張弁の外均
管漏れによって生じる冷媒循環密閉回路の低圧のハンチ
ングを防止し、圧縮機及び減圧装置の信頼性、耐久性の
沖上を目的とする。
OBJECTS OF THE INVENTION The present invention solves such conventional problems, and the amount of refrigerant that is suitable for the change in refrigerant evaporation capacity of the collector, in which the refrigerant evaporates due to changes in outside air temperature, solar radiation, and outside air wind speed, is adjusted to the amount of refrigerant in the collector. It also prevents low-pressure hunting in the refrigerant circulation closed circuit caused by leakage of the external equalization tube of the external pressure equalization type temperature expansion valve when the pressure loss when the refrigerant passes through the heat collector is large. The aim is to improve the reliability and durability of decompression equipment.

発明の構成 この目的を達成するために本発明は、集熱器。Composition of the invention To achieve this objective, the present invention provides a heat collector.

アキュムレータ、圧縮機、凝縮器、減圧装置を連結した
冷媒循環密閉回路において、前記減圧装置を内部均圧式
温度膨張弁としたものである。この構成により、前記集
熱器の圧損が大きいときに生。
In a refrigerant circulation closed circuit in which an accumulator, a compressor, a condenser, and a pressure reducing device are connected, the pressure reducing device is an internal pressure equalization type temperature expansion valve. With this configuration, when the pressure drop of the heat collector is large,

じる外均管漏れによる冷媒循環密閉回路の低圧に生じる
ハンチングは防止でき、圧縮機、温度式膨張弁の耐久性
、信頼性が向上し、安定した集熱運転が可能となる。
Hunting that occurs at low pressure in the refrigerant circulation closed circuit due to leakage of the external tube can be prevented, the durability and reliability of the compressor and thermostatic expansion valve are improved, and stable heat collection operation is possible.

実施例の説明 以下本発明の一実施例を第2図にもとづき説明する。Description of examples An embodiment of the present invention will be described below based on FIG.

図において1は太陽熱及び大気熱を集熱し冷媒を蒸発さ
せる集熱器、2はアキュムレータ、3は圧縮機、4は冷
媒を凝縮させる凝縮器、6は内部均圧式温度膨張弁であ
り、前記集熱器1.アキュムレータ2.圧縮機3.凝縮
器4および内部均圧式温度膨張弁6で冷媒循環密閉回路
を構成している06は前記内部均圧式温度膨張弁6の吸
着封入タイプの感温筒で、前記集熱器1の出口に配設し
である。又7は前記凝縮器4からの放熱を吸熱する熱交
換器、8は貯湯槽、9はポンプであり前記熱交換器7.
貯湯槽8およびポンプ9とで給湯水加熱回路を構成して
おり、前記冷媒循環密閉回路と合わせて太陽熱利用温水
器を構成している。
In the figure, 1 is a heat collector that collects solar heat and atmospheric heat and evaporates the refrigerant, 2 is an accumulator, 3 is a compressor, 4 is a condenser that condenses the refrigerant, and 6 is an internal pressure equalization temperature expansion valve. Heater 1. Accumulator 2. Compressor 3. The condenser 4 and the internal pressure equalization type temperature expansion valve 6 constitute a refrigerant circulation closed circuit. 06 is an adsorption-filled type temperature sensitive cylinder of the internal pressure equalization type temperature expansion valve 6, and is arranged at the outlet of the heat collector 1. It is set up. Further, 7 is a heat exchanger that absorbs heat released from the condenser 4, 8 is a hot water storage tank, and 9 is a pump.
The hot water storage tank 8 and the pump 9 constitute a hot water heating circuit, which together with the refrigerant circulation sealed circuit constitutes a solar water heater.

10.11は接続配管である。10.11 is a connecting pipe.

次に上記構成の太陽熱利用温水器の作用を説明する。圧
縮機3で圧縮された高温高圧の冷媒ガスは凝縮器4に流
入し、凝縮熱によって給湯水加熱回路のポンプ9で送ら
れてきた低温水を加熱し昇温させて貯湯槽8に蓄える。
Next, the operation of the solar water heater having the above configuration will be explained. The high-temperature, high-pressure refrigerant gas compressed by the compressor 3 flows into the condenser 4, and uses the heat of condensation to heat and raise the temperature of the low-temperature water sent by the pump 9 of the hot water heating circuit, and stores it in the hot water storage tank 8.

一方凝縮熱を奪われて液化した冷媒は、内部均圧式温度
膨張弁6に流入し減圧されて集熱器1へ流入し、太陽熱
および大気熱を奪って蒸発ガス化しアキュムレータ2を
通って圧縮機3へもどる。本システムの前記集熱器1の
圧損は年間を通して運転した場合0.4〜0−7 Kq
/cnlである。本実施例のごとく減圧装置に内部均圧
式温度膨張弁6を用いたものは低圧にハンチングは生じ
ず日射、外気風速変化等による前記集熱器での冷媒蒸発
能力変化に対応して低圧が変化している。このことは、
外部均圧式温度膨張弁6では集熱器1の圧損が大きくな
ることによって生じる外均管漏れが、内部均圧式温度膨
張弁5に変えることによりなくなったためである。
On the other hand, the refrigerant that has been liquefied by being deprived of condensation heat flows into the internal pressure-equalizing temperature expansion valve 6, is depressurized, flows into the collector 1, absorbs solar heat and atmospheric heat, becomes evaporated, and passes through the accumulator 2 to the compressor. Return to 3. The pressure drop in the heat collector 1 of this system is 0.4 to 0-7 Kq when operated throughout the year.
/cnl. In the case of using the internal pressure equalizing temperature expansion valve 6 in the pressure reducing device as in this embodiment, hunting does not occur in the low pressure, and the low pressure changes in response to changes in the refrigerant evaporation capacity in the heat collector due to changes in solar radiation, outside air wind speed, etc. are doing. This means that
This is because the external pressure equalization type temperature expansion valve 6 eliminates the leakage of the external equalization pipe caused by the increased pressure loss of the heat collector 1 by changing to the internal pressure equalization type temperature expansion valve 5.

又本実施例の内部均圧式温度膨張弁6のセット値は感温
筒0”Cの条件で1.85に97− であり、過負荷、
低負荷を通して2〜3 degの静止過熱度がとれてい
るため、システム運転上側等問題はないといえる。
In addition, the set values of the internal pressure equalization type temperature expansion valve 6 of this embodiment are 1.85 to 97- under the condition of temperature sensing cylinder 0''C, and overload,
Since the static superheat level of 2 to 3 degrees was achieved through low load, it can be said that there are no problems with system operation.

発明の効果 本発明は、集熱器、アキュムレータ、圧縮機。Effect of the invention The present invention relates to a heat collector, an accumulator, and a compressor.

凝縮器、減圧装置を連結した冷媒循環密閉回路において
、前記減圧装置を内部均圧式温度膨張弁にすることによ
り、外部均圧式温度膨張弁で集熱器の圧損の増加によっ
て生じる外均管漏れによる低圧ハンチングを防止するこ
とができ、低圧ノ・ンチングにより生じる圧縮機モータ
への周期的な負荷変動を防止すると共に、外気温変化1
日射あるいは外気風速変化により変動する集熱器での冷
媒蒸発能力に適応する冷媒流量制御を可能とし、システ
ムの信頼性、耐久性の向上を図る効果がある。
In a refrigerant circulation closed circuit that connects a condenser and a pressure reducing device, by using an internal pressure equalizing temperature expansion valve as the pressure reducing device, the external pressure equalizing temperature expansion valve can prevent leakage from the external equalizing pipe caused by increased pressure drop in the collector. It can prevent low pressure hunting, prevent periodic load fluctuations to the compressor motor caused by low pressure hunting, and prevent changes in outside temperature.
This makes it possible to control the refrigerant flow rate to adapt to the refrigerant evaporation capacity in the heat collector, which changes due to changes in solar radiation or outside wind speed, and has the effect of improving system reliability and durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の集熱器において圧力損失が大きい場合、
外部均圧式温度膨張弁の外均漏れによって生じる低圧の
ハンチングを説明するための冷媒循環密閉回路の時間−
圧力線図、第2図は本発明の一実施例による太陽熱利用
温水器の構成図である0 1・・・・・・集熱器、2・・・・・・アキュムレータ
、3・・・・・・圧縮機、4・・・ 凝縮器、6・・・
・・・内部均圧式温度膨張弁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名区 
−雪巧        −會だ ”      d              −1b
Figure 1 shows that when the pressure loss is large in a conventional heat collector,
Time of refrigerant circulation closed circuit to explain low pressure hunting caused by external pressure equalization leakage of external pressure equalization type temperature expansion valve -
Pressure diagram, FIG. 2 is a configuration diagram of a solar water heater according to an embodiment of the present invention.0 1... Heat collector, 2... Accumulator, 3... ... Compressor, 4... Condenser, 6...
...Internal pressure equalization type temperature expansion valve. Name of agent: Patent attorney Toshio Nakao and 1 other person
- Yuki Takumi - It's a meeting” d -1b
taste

Claims (1)

【特許請求の範囲】[Claims] 集熱器、アキュムレータ、圧縮機、凝縮器、減圧装置を
連結した冷媒循環密閉回路と、前記凝縮器と熱交換する
熱交換器、貯湯槽、ポンプを連結した給湯水加熱回路と
からなり、前記減圧装置を内部均圧式温度膨張弁とした
太陽熱利用温水器。
It consists of a refrigerant circulation closed circuit that connects a heat collector, an accumulator, a compressor, a condenser, and a pressure reducing device, and a hot water heating circuit that connects a heat exchanger that exchanges heat with the condenser, a hot water storage tank, and a pump; A solar water heater that uses an internal pressure-equalizing temperature expansion valve as a pressure reducing device.
JP61006701A 1986-01-16 1986-01-16 Solar-heat utilizing water heater Pending JPS61165563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006701A JPS61165563A (en) 1986-01-16 1986-01-16 Solar-heat utilizing water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006701A JPS61165563A (en) 1986-01-16 1986-01-16 Solar-heat utilizing water heater

Publications (1)

Publication Number Publication Date
JPS61165563A true JPS61165563A (en) 1986-07-26

Family

ID=11645624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006701A Pending JPS61165563A (en) 1986-01-16 1986-01-16 Solar-heat utilizing water heater

Country Status (1)

Country Link
JP (1) JPS61165563A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113870A (en) * 1980-02-13 1981-09-08 Saginomiya Seisakusho Inc Uniform-internal-pressure-type temperature expansion valve
JPS5835361A (en) * 1981-08-24 1983-03-02 松下電器産業株式会社 Hot-water supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113870A (en) * 1980-02-13 1981-09-08 Saginomiya Seisakusho Inc Uniform-internal-pressure-type temperature expansion valve
JPS5835361A (en) * 1981-08-24 1983-03-02 松下電器産業株式会社 Hot-water supply device

Similar Documents

Publication Publication Date Title
EP0134015A2 (en) Space cooling and heating and hot water supplying apparatus
JPS6249160A (en) Heat-pump hot-water supply device
JPS61165563A (en) Solar-heat utilizing water heater
JPH0112132Y2 (en)
JPS6252376A (en) Heat-pump hot-water supply device
JPH0138226B2 (en)
JPH0419408Y2 (en)
JPS58160774A (en) Hot-water supply device
JPS6337636Y2 (en)
JPS60155860A (en) Water heater utilizing solar heat
JPS6337637Y2 (en)
JPS61153444A (en) Heat collecting device utilizing solar heat
JPS5921949A (en) Heat collector
JPS6129644A (en) Water heater utilizing solar heat
JPH0412377B2 (en)
JPS62218768A (en) Direct expansion type heat-collecting system
JPS58213163A (en) Solar heat-heat pump system
JPS5835971Y2 (en) Refrigeration equipment
JPS60165472A (en) Solar-heat utilizing water heater
JPS61153445A (en) Heat collecting device utilizing solar heat
JPS6146848A (en) Hot-water supplier utilizing solar heat
JPH03211360A (en) Het-pump hot water supplier
JPS59215550A (en) Water heater utilizing solar heat
JPS63233275A (en) Heat accumulator using heat pump
JPS5986845A (en) Hot water supply device of heat pump type