JPS6116487A - Electric resistor - Google Patents

Electric resistor

Info

Publication number
JPS6116487A
JPS6116487A JP59137561A JP13756184A JPS6116487A JP S6116487 A JPS6116487 A JP S6116487A JP 59137561 A JP59137561 A JP 59137561A JP 13756184 A JP13756184 A JP 13756184A JP S6116487 A JPS6116487 A JP S6116487A
Authority
JP
Japan
Prior art keywords
gas
heat
resistor
electrical
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59137561A
Other languages
Japanese (ja)
Inventor
加茂 政行
弘文 小野
辻村 清晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S Tec Inc
Original Assignee
S Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S Tec Inc filed Critical S Tec Inc
Priority to JP59137561A priority Critical patent/JPS6116487A/en
Publication of JPS6116487A publication Critical patent/JPS6116487A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱式のガス流fA測定装置や熱交換器等に用
いられる電気抵ワj:体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electric resistor used in a thermal gas flow fA measurement device, a heat exchanger, or the like.

(従来技術) ガスの流れとこれに伴う熱の移動を基にしてガス流量を
測定する熱式のガス流量測定装置において、従来では、
X字形や■字形の電気抵抗体をガス流路内に挿入させて
いるが、ガス流が乱れたり流速が変化したりし、あるい
は、流路の中心側と壁側とではカス流速が相違すること
から、ガス温度の検出やガスに対する加熱を再現性よく
行なわせ難く、これらが測定精度の低下要因になってい
る。
(Prior Art) In a thermal gas flow rate measuring device that measures gas flow rate based on gas flow and accompanying heat transfer, conventionally,
An X-shaped or ■-shaped electrical resistor is inserted into the gas flow channel, but the gas flow is disturbed or the flow velocity changes, or the waste flow velocity differs between the center side and the wall side of the flow channel. Therefore, it is difficult to detect the gas temperature and to heat the gas with good reproducibility, which is a factor in reducing measurement accuracy.

一方、流路内のガスを加熱する熱交換器においても、既
述したように、流路内でのカスの流れが一様でないこと
から、再現よく熱交換をすることかできない欠点があっ
た。
On the other hand, as mentioned above, heat exchangers that heat gas in the flow path also have the disadvantage that heat exchange cannot be performed reproducibly because the flow of waste in the flow path is not uniform. .

(発明の目的) 本発明は、上記の欠点を極めて簡単に解消し得る電気抵
抗体の提供を目的としている。
(Objective of the Invention) The object of the present invention is to provide an electrical resistor that can eliminate the above-mentioned drawbacks very easily.

(発明の構成) 上記目的を構成するための本発明による電気抵抗体は、
カス流路を横断する状態で配置される基板に、カス導通
の多数の貫通孔を設りると共に、該基板の少なくとも一
側面に電気抵抗材料を細膜した点に特徴がある。
(Structure of the Invention) The electrical resistor according to the present invention for achieving the above object has the following features:
The present invention is characterized in that a large number of through-holes for dregs conduction are provided in a substrate placed across the dregs flow path, and a thin film of electrically resistive material is applied to at least one side of the substrate.

(作用) 而して、流路内のカスは多数の貫通孔によってこれを通
過する際にその流速分布が規制される。
(Function) Thus, the flow velocity distribution of the waste in the flow path is regulated by the large number of through holes when the waste passes through the through holes.

(発明の効果) 従って、ガス流値の測定にあっては、均一なるカス温度
の検出とソースに対する加熱を再現性よく行なえ、而し
て、精度の高い流量測定を行なうことができ、あるいは
、熱交換器にわいては、ガス流が一様になることから、
再現よく熱交換できる等の効果を期するに至ったのであ
る。
(Effects of the Invention) Therefore, when measuring gas flow values, it is possible to detect a uniform waste temperature and to heat the source with good reproducibility, and it is possible to perform highly accurate flow measurement, or For heat exchangers, since the gas flow is uniform,
We have come to expect effects such as reproducible heat exchange.

(実施例) 以下、本発明の実7+hi例を図面に基づいて説明する
と、第1図は本発明による電気抵抗体Aを示し、後述す
るガス流路Bを横断する状態で配置される基板1に、ガ
ス導通用の多数の貫通孔a・・を設けると共に、該基板
1の一側面に電気抵抗材料Cを付設して成る。
(Example) Hereinafter, a practical 7+hi example of the present invention will be explained based on the drawings. Fig. 1 shows an electric resistor A according to the present invention, and a substrate 1 disposed in a state crossing a gas flow path B to be described later. A large number of through holes a for gas conduction are provided in the substrate 1, and an electrically resistive material C is attached to one side of the substrate 1.

詳しくにJ、シリコンインゴットを薄くスライスしたシ
リコン結晶ウェハを基&1として、この基板1に、エツ
チング等によって同寸円形の小なるガス導通用貫通孔a
・・を多数形成し、次に、この基板1の一側面に、酸化
法やプラズマCVI)(chemical Vapou
r Depositionの略)法による凹室化珪素等
の無機物質の絶縁膜すを形成する。
In detail, a silicon crystal wafer made by thinly slicing a silicon ingot is used as a base &1, and small circular gas conduction holes a of the same size are formed in this substrate 1 by etching etc.
. . are formed in large numbers, and then, on one side of this substrate 1, oxidation method or plasma CVI) (chemical vapor
An insulating film made of an inorganic material such as silicon or the like is formed into a recessed chamber by a method (abbreviation for Deposition).

この絶縁膜すの形成に先立って、前記基板1の絶縁膜形
成面に研磨処理を施すことが望ましい。
Prior to the formation of this insulating film, it is desirable to perform a polishing treatment on the surface of the substrate 1 on which the insulating film is to be formed.

即ち、シリコンインゴットをスライスして形成したシリ
コンウェハには、そのスライス面に30〜60μ深さに
達する加工変質層が形成されていて、スライス向が荒れ
ており、これでは、その表面に絶縁膜すを形成しでもこ
れが剥離する虞れがあり、而してその加工変質層に、ラ
ッピング更にはポリッシング等の機械的な、あるいは更
にアルカリなどの化学溶液を併用した化学的な研磨処理
を施すことにより、絶縁1ikbの形成を確実ならしめ
ることが望ましいのである。
In other words, in a silicon wafer formed by slicing a silicon ingot, a process-altered layer reaching a depth of 30 to 60 μm is formed on the sliced surface, and the slicing direction is rough. Even if a layer is formed, there is a risk that this layer will peel off, so the damaged layer should be subjected to mechanical polishing such as lapping or polishing, or chemical polishing using a chemical solution such as an alkali. Therefore, it is desirable to ensure the formation of the insulation 1ikb.

次に、前記絶縁膜すの所定箇所に、電気抵抗材料膜をス
パッタリング法などによって形成し、該股上に7オトレ
ジストを塗布する。そして、前記貫通孔a・・を縫うよ
うな形状の抵抗体パターンを治するマスクを前記フォト
レジストにかけて、露光並びに現像を行ない、該フォト
レジストにエツチングパターンを形成するのである。
Next, an electrically resistive material film is formed at a predetermined location on the insulating film by sputtering or the like, and a photoresist is applied to the crotch. Then, a mask for curing the resistor pattern in the shape of threading through the through holes a is applied to the photoresist, and exposure and development are performed to form an etching pattern on the photoresist.

そして次に、イオンビームミリング装置等によって抵抗
材料膜をエツチングし、所定形状の抵抗体ハターンを形
成する。次いでイオンビームエツチングや溶剤等によ゛
つて前記フォトレジストを除去することにより、所定パ
ターンの電気抵抗材料Cを形成する。
Then, the resistive material film is etched using an ion beam milling device or the like to form a resistor pattern having a predetermined shape. Next, the photoresist is removed by ion beam etching, a solvent, etc., thereby forming the electrically resistive material C in a predetermined pattern.

尚、図中のd、dは金などからなるポンディングパッド
で、リード線2,2の接続用である。
Note that d and d in the figure are bonding pads made of gold or the like, and are for connecting the lead wires 2, 2.

次いで、前記ポンディングパッドd、dを除い化珪素等
の無機物質の保護膜eを形成し、かつ、必要に応じて該
保護膜eの上面を前記絶縁膜すに対するものと同じ手法
で研磨して電気抵抗体Aを構成している。
Next, a protective film e made of an inorganic material such as silicon oxide is formed except for the bonding pads d and d, and if necessary, the upper surface of the protective film e is polished by the same method as for the insulating film. This constitutes an electric resistor A.

尚、前記基板1として、これをセラミックやカラス、そ
の他ステンレス等の金属に置き換えるも良い。
Note that the substrate 1 may be replaced with ceramic, glass, or other metals such as stainless steel.

上記構成の電気抵抗体Aの適用例を第2図乃至第4図に
示す。
Application examples of the electrical resistor A having the above structure are shown in FIGS. 2 to 4.

第2図に示すものは、所謂1己加熱方式のガス流量測定
装置3であって、このものは、電気抵抗材料Cをニクロ
ムとする2個の加熱用電気抵抗体Al 、 A2を、流
路方向に間隔をへたててガス流路B内に設けると共に、
当該両抵抗体A1. A2を発熱させる回路Cを接続し
たもので、前記カス流路Bにガスを流すと、該ガスは」
二流側電気抵抗体A1によって加熱され、その熱が下流
側の電気抵抗体A2に授与されて、該下流側電気抵抗体
Azの温度が変化し、この温度差に起因して両紙抗体A
I、A2の電気抵抗値に差が生じ、而して、両紙抗体A
1. A2に対するブリッジ回路が崩れて、ガスの質量
流量に応じた電圧が端子4,4に出力されるもので、こ
れを基にしてカス流量を測定するようにしである。
What is shown in FIG. 2 is a so-called self-heating type gas flow rate measuring device 3, in which two heating electrical resistors Al and A2, in which electrical resistance material C is nichrome, are connected to a flow path. are provided in the gas flow path B at intervals in the direction, and
Both resistors A1. A2 is connected to a circuit C that generates heat, and when gas flows through the waste flow path B, the gas becomes
It is heated by the second-stream electric resistor A1, and the heat is given to the downstream electric resistor A2, and the temperature of the downstream electric resistor Az changes, and due to this temperature difference, both paper antibodies A
There is a difference in the electrical resistance values of I and A2, and therefore both paper antibodies A
1. When the bridge circuit for A2 collapses, a voltage corresponding to the gas mass flow rate is output to the terminals 4, 4, and the gas flow rate is measured based on this.

上記の構成によれば、カスが多数の貫通孔a・・を分岐
流動することによってガス流速分布が規制され、精度の
高い力゛ス流量測定を行なえるのである。
According to the above configuration, the gas flow velocity distribution is regulated by branching flow of the waste through the many through holes a, and highly accurate force flow rate measurement can be performed.

尚、第2図において、図中の5・・は抵抗体At。In addition, in FIG. 2, 5 in the figure represents a resistor At.

Mを挾持する状態で連結するボディで、ステンレス等の
金属やセラミック等からなり、拡散接合や接着によって
連結され、あるいは、パッキンシ−ルを介在させた状態
でボルト等により機械的に連結される。
The bodies are connected while holding the M, and are made of metal such as stainless steel, ceramic, etc., and are connected by diffusion bonding or adhesion, or mechanically connected with bolts or the like with a packing seal interposed.

第3図に示すものは、加詣袖助加熱方式のカス流量測定
装置3であって、電気抵抗材料Cをニクロムとする1個
の加熱用電気抵抗体A3と、電気抵抗材料Cをニッケル
や白金等の温度係数の大きい金属とする2個の感熱用電
気抵抗体A4. Asとを、該感熱用電気抵抗体A4.
A5間に前記加熱用電気抵抗体へ3を位置させる状態で
、流路方向に間隔をへだててガス流路B内に設けると共
に、前記感熱用電気抵抗体A4.A5にはほとんど電流
を流さず且つ加熱用電気抵抗体A3に電流を流す電気回
路Cを、前記抵抗体A3 、 A4 、 Asに接続し
である。
The one shown in FIG. 3 is a sludge flow rate measuring device 3 of the supplementary sleeve heating method, which includes one heating electrical resistor A3 in which the electrical resistance material C is nichrome, and the electrical resistance material C is nickel or nickel. Two heat-sensitive electrical resistors A4 made of metal with a large temperature coefficient such as platinum. As and the heat-sensitive electric resistor A4.
A5 is provided in the gas flow path B with an interval between the heat-sensitive electric resistors A4 and A5, and the heat-sensitive electric resistors A4. An electric circuit C, which allows almost no current to flow through A5 and allows current to flow through the heating electric resistor A3, is connected to the resistors A3, A4, and As.

而して、前記ガス流路Bにカスを流すと、該ガスが加熱
用電気抵抗体A3によって加熱されて下流側の感熱用電
気抵抗体A5に熱が授与され、これによって両感熱用電
気抵抗体A4 、 Asの電気抵抗値に差が生じ、前記
自己加熱方式のものと同様に、ガスの質量流量に応じた
電圧が端子4.4に出力されるもので、これを基にして
精度良くガス流量を測定できるものである。
When the gas is passed through the gas flow path B, the gas is heated by the heating electric resistor A3, and heat is imparted to the downstream heat-sensitive electric resistor A5, thereby causing both the heat-sensitive electric resistors to A difference occurs in the electrical resistance values of the bodies A4 and As, and like the self-heating method described above, a voltage corresponding to the mass flow rate of gas is output to the terminal 4.4, and based on this, the It can measure gas flow rate.

第41に示すものは熱交換器6であって、このものは、
電気抵抗材料Cをニクロムとする1個の加熱用電気抵抗
体へ6をカス流路Bに役目たものであり、貫通孔a・・
を通過するカス流速が均一になることから、カスを再現
よく熱交換でき、かつ、加熱ガスを均等に分散して吐出
させることができるものである。
The 41st item is a heat exchanger 6, which is
6 serves as a waste flow path B to one heating electrical resistor whose electrical resistance material C is nichrome, and a through hole a...
Since the flow rate of the scum passing through the sludge becomes uniform, the scum can be heat exchanged with good reproducibility, and the heated gas can be evenly distributed and discharged.

尚、前記加熱用電気抵抗体A6の複数個を並製して熱交
換器6を構成するも良く、また抵抗体A6として、基板
1の両fiI!1面に加熱用電気抵抗材料C2Cを設け
る構造にし、これをガス流路Bに設けて熱交換器6を構
成するも良い。
Incidentally, the heat exchanger 6 may be constructed by manufacturing a plurality of the heating electric resistors A6 in parallel, and the resistors A6 may be used for both fiI of the substrate 1! The heat exchanger 6 may be constructed by providing a heating electrical resistance material C2C on one surface and providing this in the gas flow path B.

あるいは、第5図に概略図示するように、トーマス方式
の流量測定装置3を構成することもできる。
Alternatively, as schematically illustrated in FIG. 5, a Thomas type flow rate measuring device 3 may be configured.

即ち、加熱用と感熱用の電気抵抗材料c、cを、基板1
の一側面と他側面に夫々設けて加熱感熱用電気抵抗体A
7を構成し、この抵抗体A7と一側面に感熱用電気抵抗
材料Cを設けた感熱用電気抵抗材料8とを、該感熱用電
気抵抗体A8の下流側に前記加熱感熱用電気抵1>1.
 @、A7を位置させる状態で、流路方向に間隔をへた
ててカス流路B内に配置し、かつ、トーマス方式におけ
る既知の電気回路(図示せず。)を両紙抗体A7.A8
に接続するもので、この電気回路に電流を流し、かつ、
ガス流路Bにガスを流すと、削配加熱感熱用電気抵わ1
□体A7は熱エネルギーを放散することになり、而して
、ガスの熱吸収あるいは熱放散量はそのガスの重量に比
例することから、前記加熱感熱用電気抵抗体A7の放熱
徂をしてカス流h(を測定することかできるのである。
That is, the electric resistance materials c and c for heating and heat sensitivity are placed on the substrate 1.
Heat-sensitive electrical resistors A are provided on one side and the other side, respectively.
This resistor A7 and a heat-sensitive electrical resistance material 8 having a heat-sensitive electrical resistance material C provided on one side thereof are connected to the heating heat-sensitive electrical resistor 1> on the downstream side of the heat-sensitive electrical resistor A8. 1.
@, A7 are placed in the waste flow path B at a distance in the direction of the flow path, and a known electric circuit (not shown) in the Thomas method is connected to both paper antibodies A7. A8
A device that connects to an electrical circuit that allows current to flow through this electrical circuit, and
When the gas flows through the gas flow path B, the electric resistor 1 for heating and heating
□The body A7 dissipates thermal energy, and since the amount of heat absorption or heat dissipation of the gas is proportional to the weight of the gas, the heat dissipation area of the heating heat-sensitive electrical resistor A7 is It is possible to measure the waste flow h().

尚、前記電気抵抗体A1〜A8の任意のものを流路方向
において反転配置するも良く、つ丁り、例えば第2図に
示ず電気抵抗体A1においては、それの電気抵抗材料C
を基板1に対して流路の上流側に位征ンさせる配置形態
をとっているが、この電気抵抗材料Cを基板1に*jし
て流路下流側に位置させる配置形態をとるも良きもので
ある。
Note that any of the electrical resistors A1 to A8 may be arranged inverted in the direction of the flow path; for example, in the electrical resistor A1 not shown in FIG. 2, its electrical resistive material C
Although the electrical resistance material C is placed on the upstream side of the flow path with respect to the substrate 1, it is also possible to place the electrical resistance material C on the substrate 1 and positioned on the downstream side of the flow path. It is something.

また、前記ガス導通用貫通孔aを円杉としたが、第6図
((+、(ロ)に一部を示すように、°貫通孔aを三角
形や六角形にするも良く、あるいは、図示しないが、四
角形や五角形等に変更可能であり、そして、形状はとも
かくとして同寸に形成することが好ましく、血し゛てこ
の場合、各貫通孔aのガス通過量が一定になることから
、一部の貫通孔aiわりに電気抵抗イ2料Cをp 1−
)で、その一部の貫通孔aの力ゞス通過量を基にして全
体のガス通過量を推定的に測定することもMJ能である
In addition, although the gas-conducting through-hole a is made of circular cedar, the through-hole a may be made into a triangular or hexagonal shape, as partially shown in FIG. Although not shown, it can be changed to a rectangular or pentagonal shape, and regardless of the shape, it is preferable to form them with the same size.In this case, since the amount of gas passing through each through hole a becomes constant, Electrical resistance A2 material C for some through holes ai p1-
), it is also an MJ function to estimate the total amount of gas passing through based on the amount of force passing through some of the through holes a.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は電気抵抗体の破
断斜視し」、第2図乃至第5図は電気抵抗体の適用例を
示し、第2図と第3図と第5図は夫々ガス流量測定装置
の概略ル1面図、第4図は熱交換器の概略り曲図である
。第6図(イ)、(ロ)はカス導通用貫通孔の別実施例
を示す一部の説明図である01・−・基板、a・・・ガ
ス導通用貫通孔、C・・・電気抵抗材料、B・・・ガス
流路。 第1図 1−・一基板 a−−−がス4虐用貫追孔 C−−−’1.fされしイオ卑1 B−・がス充洛 第2図 第311 第4図       第5図 第6図 <o> 、に−一\
The drawings show an embodiment of the present invention, and FIG. 1 is a broken perspective view of an electrical resistor, and FIGS. 2 to 5 show examples of application of the electrical resistor, and FIGS. The figures are a schematic plan view of the gas flow rate measuring device, and FIG. 4 is a schematic diagram of the heat exchanger. FIGS. 6(a) and 6(b) are partial explanatory diagrams showing another embodiment of the through hole for gas conduction. 01: Board, a: Through hole for gas conduction, C: Electricity Resistance material, B... gas flow path. Figure 1 1--One board a--- is 4 abuse penetration hole C---'1. Io base 1 B-・Gasu Raku Fig. 2 Fig. 311 Fig. 4 Fig. 5 Fig. 6 <o> , ni-1\

Claims (1)

【特許請求の範囲】[Claims] ガス流路を横断する状態で配置される基板に、ガス導通
用の多数の貫通孔を設けると共に、該基板の少なくとも
一側面に電気抵抗材料を付設して成る電気抵抗体。
An electrical resistor comprising a substrate disposed across a gas flow path, provided with a large number of through holes for gas conduction, and an electrical resistance material attached to at least one side of the substrate.
JP59137561A 1984-06-30 1984-06-30 Electric resistor Pending JPS6116487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59137561A JPS6116487A (en) 1984-06-30 1984-06-30 Electric resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137561A JPS6116487A (en) 1984-06-30 1984-06-30 Electric resistor

Publications (1)

Publication Number Publication Date
JPS6116487A true JPS6116487A (en) 1986-01-24

Family

ID=15201596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137561A Pending JPS6116487A (en) 1984-06-30 1984-06-30 Electric resistor

Country Status (1)

Country Link
JP (1) JPS6116487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314120U (en) * 1986-07-11 1988-01-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314120U (en) * 1986-07-11 1988-01-29

Similar Documents

Publication Publication Date Title
US4129848A (en) Platinum film resistor device
KR960015067B1 (en) Silicon-based mass airflow sensor
JPS6013220A (en) Gas flow sensor and manufacture thereof
JPH0810231B2 (en) Flow sensor
CN109211342B (en) Airflow flowmeter, MEMS silicon-based temperature-sensitive chip and preparation method thereof
EP0888556B1 (en) Device for determining the direction and speed of an air flow
JP3353987B2 (en) Device fabrication method
US7185539B2 (en) Flow sensor
JPS6116487A (en) Electric resistor
JPS6117018A (en) Flow-rate measuring device for gas to be measured
JPH0428023Y2 (en)
JPH0422269Y2 (en)
JPS63172948A (en) Gas sensor
KR20010003884A (en) Micro Meat Flux Sensor and Method For Fabricating The Sensor
JP2516277Y2 (en) Sensor
JP2003106884A (en) Airflow sensor
JP4139149B2 (en) Gas sensor
JP2000030910A (en) Electric resistor having at least two connecting and contacting fields on ceramic substrate and its manufacture
JPH0428022Y2 (en)
JP3785052B2 (en) Flow sensor
JPH0584867B2 (en)
JPH0593732A (en) Flow sensor
JP3766290B2 (en) Flow sensor
JPS63265125A (en) Non-contact type semiconductor temperature sensor
JP2003106883A (en) Airflow sensor