JPS6116479B2 - - Google Patents

Info

Publication number
JPS6116479B2
JPS6116479B2 JP58166396A JP16639683A JPS6116479B2 JP S6116479 B2 JPS6116479 B2 JP S6116479B2 JP 58166396 A JP58166396 A JP 58166396A JP 16639683 A JP16639683 A JP 16639683A JP S6116479 B2 JPS6116479 B2 JP S6116479B2
Authority
JP
Japan
Prior art keywords
gas
intake
hollow
rotating body
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58166396A
Other languages
Japanese (ja)
Other versions
JPS6058197A (en
Inventor
Nobuyoshi Kuboyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUDO KAZUKO
Original Assignee
KUDO KAZUKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUDO KAZUKO filed Critical KUDO KAZUKO
Priority to JP58166396A priority Critical patent/JPS6058197A/en
Publication of JPS6058197A publication Critical patent/JPS6058197A/en
Publication of JPS6116479B2 publication Critical patent/JPS6116479B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 この発明は、温風を連続して供給することで乾
燥するふとん乾燥器等の乾燥器等に使用可能な起
熱ユニツトに関する。 (ロ) 従来の技術 従来の起熱ユニツトを用いた乾燥器、例えばふ
とん乾燥器は、ニクロム線等からなる電気抵抗を
利用した加熱部とフアン等からなる送風部とから
なつていた。しかし、電気抵抗による加熱は効率
が悪く、また加熱と送風とを別個の機構とするた
め部品数が大きくなる欠点を有した。他方、本発
明者は特開昭57−19582号(特公昭60−222263
号)、特開昭57−19583号(特公昭60−222264
号)、特開昭57−55378号(特公昭59−52342号)
および特開昭57−55379号(特公昭59−52753号)
など一連のその後の発明において、減圧平衡加熱
方法および該方法を用いた乾燥方法または装置そ
の他を提案した。 そして、その基本的な技術内容は、密閉された
中空室内の空気を、回転体の回転作用により強制
吸引して室外に排気させ、室内を減圧して室内外
の圧力差をほぼ一定の平衡状態に保つと共にこの
平衡状態を維持しながら前記回転体の回転作用を
継続させて空気との摩擦作用を促進して摩擦熱を
発生させ、この摩擦熱により中空室内を加熱する
ようにした減圧平衡加熱方法であり、さらに、密
閉された中空室内の空気を、回転体の回転作用に
より強制吸引して室外に排気させ、室内を減圧し
て室内外の圧力差をほぼ一定の平衡状態に保つと
共にこの平衡状態を維持しながら前記回転体の回
転作用を継続させて空気との摩擦作用を促進して
摩擦熱を発生させ、こ摩擦熱により中空室内を加
熱し、さらに中空室内に手動または自動操作で外
気を送給するようにした減圧平衡加熱方法であ
る。 また本発者は特開昭57−127779号で加圧平衡加
熱方法も提案し排気において回転体の排気能力以
下の排出口を設けると、吸入気体は強制的に外部
に吐出することとなり、そのために一種の加圧作
用を呈し、したがつて圧縮熱の発生を伴い、より
有効に温度が上昇して温風が得られることも知見
した。 (ハ) 発明が解決しようとする問題点 他方、発明者は、特開昭60−20059号「温風方
法およびその装置」において、気体吸入口および
気体排出口を有し、気体吸入口の気体吸入量より
大きな気体吸入能力で回転する回転体を有する気
密構造の中空体を、各中空体の気体排出口と気体
吸入口を順次接続することで複数連続して温風を
作成する方法を提案した。また同出願で気体吸入
口および気体排出口を有する気密構造の中空体内
に気体吸入口の気体吸入能力/および気体排出口
の気体排出能力より大きな気体吸入排出能力で回
転する回転体を有する複数の中空体を、各中空体
の気体排出口と気体吸入口とを順次接続して連続
し、温風を作成する方法を提案した。同方法にお
いて発明者は最も吸気側の回転体の能力に比し他
の回転体の能力を低いものとしても装置全体とし
ての温風作成能力としては同一能力の回転体を用
いた場合に比し変わりがないことも知見した。ま
た、3個以上の該中空室を連続する場合、吸気側
から順次回転体の能力を低いものとしても装置全
体としての温風作成能力は、回転体の能力を全て
同一とした場合に比し変わりがないことも知見し
た。 (ニ) 問題点を解決するための手段 この発明はこれら知見にもとづき、より電力消
費等の少ない効率のよく部品数の少ない起熱ユニ
ツトを提供することを目的とする。 すなわちこの発明は吸気口および排気口を有す
る起熱ユニツトにおいて、気体吸入口および気体
排出口を有し気体吸入口の気体吸入能力より大き
な気体吸入能力で回転し、回転体の回転作用によ
り発熱する回転体を有する気密構造の中空体を、
各中空体の気体排出口と気体吸入口を順次接続す
ることで起熱ユニツトの吸気口および排気口間に
複数設置するとともに、複数設置する中空体の回
転体の気体吸入能力を最吸気側の回転体が最も大
とすることを特徴とする起熱ユニツト、および吸
気口および排気口を有する起熱ユニツトにおい
て、気体吸入口および気体排出口を有し、気体吸
入口の気体吸入能力および気体排出口の気体排出
能力より大きな気体吸入排出能力で回転し、回転
体の回転作用により発熱する回転体を有する気密
構造の中空体を、各中空体の気体排出口と気体吸
入口を順次接続することで起熱ユニツトの吸気口
および排気口間に複数設置するとともに、複数設
置する中空体の回転体の気体吸入排出能力は最吸
気側の回転体が最も大とすることを特徴とする起
熱ユニツトを提供する。 (ホ) 作 用 そこで回転体を回転すると、気体は吸気口か気
体吸入口を経て中空体内に流入する。このとき、
気体吸入口の開口面積は、該当する中空体内に設
置する回転体の気体吸引能力以下に制限している
ため、回転体が排出する気体に比し、吸入してく
る気体量は少なくなり、回転体の回転領域ではそ
れ以外の部分に比し減圧され、中空体全体として
も減圧される。回転領域とそれ以外の部分の圧力
差および中空体内と外気との圧力差は、次第に大
きくなるが、ある圧力差に達した時点で、回転領
域付近に流入する気体との関係でほぼ平衡状態に
達し、この恒圧状態を維持する。この平衡状態、
恒圧状態、恒圧状態における回転領域内外の圧力
差は、回転体の回転吸引排気力の大きさ、気体吸
入口の開口面積の大きさ、微少な隙間の大きさな
どによつて定まるが、この平衡、恒圧状態は、回
転体の回転作用が継続する限り維持される。この
平衡状態では、回転体の回転領域で空気の滞留現
象を生じるものと推定され、回転体と滞留気体と
の間で摩擦作用が反覆継続するので摩擦熱が発生
して次第に温度が上昇する。この摩擦熱により加
熱した温風は微少な隙間を通り、気体排出口から
排気口へ排出される。気体排出口の開口面積を、
回転体の排気能力より小さな排気能力に設定した
場合は、中空体に吸入された気体が強制的に外部
に吐出されることとなるため、気体排出口で一種
の加圧作用を呈し、圧縮熱の発生い伴い、より排
気温を上昇させることが可能である。さらに、中
空体を複数連続させているので、段階的に温度を
高め、最終的な排気温を高温とすることが可能で
ある。この場合において各中空体の気体排出口の
開口面積を、中空体に設置する回転体の排気能力
より小さな排気能力となるように設定すると、気
体排出口付近の圧力が上昇しがちとなるが、連続
する排気側に隣接した中空体に設置する回転体に
より吸気されるため、終局的には最排気口側の中
空体の気体排出口付近が高圧となり、該部分で一
種の加圧作用を呈するものと推定され、圧縮熱の
発生を伴いより有効に温度が上昇する。 この発明では、中空体を複数連続し、各モータ
の出力比を吸気口側から排気口側にいくにしたが
い順次小としているが、各モータの出力を同一と
した場合に比し最終的にえられる温風の温度には
ほとんど変わりがない。 (ヘ) 実施例 以下この発明をふとん乾燥器に利用する実施例
の中央断面を表わす第1図、他の実施例の中央断
面を表わす第2図にしたがい説明する。 1はふとん乾燥器であり、ふとん乾燥器1は、
吸気口2、排気口3を有する。排気口3にはふと
ん(図示せず)に連続するホース4を嵌合可能で
ある。5は気密構造からなる中空体であり、気体
吸入口6および気体排出口7を有する。8は回転
体であり、プロペラフアン、シロツコフアン等の
回転羽根からなる。回転体8は中空体5に各々に
設置する電動モータ9で、気体吸入口6から気体
を吸入し、気体排出口7から気体を排出できる方
向に回転可能である。第1図のように中空体5を
1個設置するふとん乾燥器においては、中空体5
の気体吸入口をふとん乾燥器1の吸気口と連結
し、気体排出口7を排気口3に連結する。第2図
のように中空体を複数連結する場合は、各中空体
5の気体排出口7と気体吸入口6とを順次密閉状
態で接続して連結し、最排気側の中空体の気体排
出口7とふとん乾燥器の排気口3を連結し、最吸
気側の中空室の気体吸入口6とふとん乾燥器の吸
気口2とを連結する。gは、中空体5内壁と回転
体8とが形成する微少な隙間、Rは回転体8の回
転領域である。各中空体5に形成する気体吸入口
6の気体吸入能力より、該当する中空体内に設置
しする回転体8の常用回転時における気体吸引能
力の方が大であるように気体吸入口6の開口面積
を設定することが必要である。この実施例ではさ
らに各中空体に形成する気体排出口7の気体排出
能力より、該当する中空体内に設置する回転体8
の常用回転時における気体排気能力の方が大であ
るように気体排出口7の開口面積を設定する。 第2図に示す実施例においては、各回転体8の
能力は吸気口側から排気口側にいくにしたがい小
さくなり、回転体8を回転する各電動モータ9の
出力は吸気側に隣接する電動モータの約1/2であ
る。すなわち各電動モータの出力の比は、吸気口
側から排気口側にいくにしたがい約3〜4:2:
1である。 そこで回転体8を電動モータ9で回転すると、
気体は吸気口2から気体吸入口6を経て中空体5
内に流入する。このとき、気体吸入口8の開口面
積は、該当する中空体5内に設置する回転体8の
気体吸引能力以下に制限しているため、回転体8
が排出する気体に比し、吸入してくる気体の量は
少なくなり、回転体8の回転領域Rではそれ以外
の部分に比し減圧され、中空体全体としても減圧
される。回転領域Rとそれ以外の部分の圧力差お
よび中空体内と外気との圧力差は、次第に大きく
なるが、ある圧力差に達した時点で、回転領域R
付近に流入する気体との関係でほぼ平衡状態に達
し、この恒圧状態を維持する。この平衡状態、恒
圧状態における回転領域R内外の圧力差は、回転
体8の回転吸引排気力の大きさ、気体吸入口6の
開口面積の大きさ、微少な隙間gの大きさなどに
よつて定まるが、この平衡、恒圧状態は、回転体
8の回転作用が継続する限り維持される。この平
衡状態では、回転体8の回転領域Rで空気の滞留
現象を生じ回転体8と滞留気体との間で摩擦作用
が反覆継続するので摩擦熱が発生して次第に温度
が上昇する。この摩擦熱により加熱した温風は微
少な隙間gを通り、気体排出口7から排気口3へ
排出されホース4をへて布団に吹き付けられる。
気体排出口7の開口面積を、回転体8の排気能力
より小さな排気能力に設定した場合は、中空体5
に吸入された気体が強制的に外部に吐出されるこ
ととなるため、気体排出口7で一種の加圧作用を
呈し、圧縮熱の発生を伴い、より排気温を上昇さ
せることが可能である。第2図に示すように中空
体5を複数連続させた場合は、段階的に温度を高
め、最終的な排気温を高温とすることが可能であ
る。この場合において各中空体5の気体排出口の
開口面積を、中空体に設置する回転体8の排気能
力より小さな排気能力となるように設定すると、
気体排出口7付近の圧力が上昇しがちとなるが、
連続する排気側に隣接した中空体5に設置する回
転体8により吸気されるため、終局的には最排気
口側の中空体5の気体排出口付近が高圧となり、
該部分で一種の加圧作用を呈し、圧縮熱の発生を
伴いより有効に温度が上昇する。 中空体を3個連続する場合において、各中空体
に設置した回転体を駆動する電動モータ9の気体
吸入排出能力を同一とすると、各中空体5内の圧
力は吸気口側から排気口側にいくにしたがい1:
1/2:1/3と変化する。第2図に示すよう
に、各電動モータ9の出力比を吸気口側から排出
口側にいくにしたがい3〜4:2:1と順次小と
した場合、各電動モータ9の出力を同一とした場
合に比し最終的にえられる温風の温度にはほとん
ど変わりがない。その場合最吸気側の中空体5の
気体吸入口6の開口面積は、各回転体の回転領域
Rで減圧平衡状態を作り出せ得る寸法であること
が必要である。 実施例 1 第3図に示すように、気体吸入口および気体排
出口を有する気密構造の中空体5,5,5
に各々同一寸法のフアンを駆動するモータ
(750W)を設置する。各中空体の気体吸気口は
各々270mmφである。吸気側から中空体を,
,の順に連結し、各回転体を駆動すると各モ
ータの使用電流、吸気温、換気温の経時変化
は表の値を得る。 ついで、吸気側より中空体を,,の順に
連結すると、結果は表2の値を得る。ついで、吸
気側より中空体を,,の順に連結すると結
果は表3の値を得る。 いずれの場合も、電流量は吸気側が最も大とな
り、排気側にいくにしたがい順次小さくなる。
(a) Industrial Application Field The present invention relates to a heating unit that can be used in a dryer such as a futon dryer that dries by continuously supplying warm air. (b) Prior Art A conventional dryer using a heat-generating unit, such as a futon dryer, consists of a heating section that uses electrical resistance, such as a nichrome wire, and a blowing section, such as a fan. However, heating using electrical resistance is inefficient and requires separate mechanisms for heating and blowing air, which has the disadvantage of requiring a large number of parts. On the other hand, the present inventor has published Japanese Patent Application Laid-Open No. 57-19582
No.), Japanese Patent Publication No. 57-19583 (No. 60-222264)
No.), Japanese Patent Publication No. 57-55378 (Special Publication No. 59-52342)
and Japanese Patent Publication No. 57-55379 (Special Publication No. 59-52753)
In a series of subsequent inventions, such as a reduced pressure equilibrium heating method and a drying method or apparatus using the method, etc. were proposed. The basic technology is that the air inside a sealed hollow chamber is forcibly sucked in by the rotating action of a rotating body and exhausted to the outside, reducing the pressure inside the room and keeping the pressure difference between the inside and outside at an almost constant equilibrium. and maintaining this equilibrium state, the rotating action of the rotating body is continued to promote frictional action with the air to generate frictional heat, and this frictional heat heats the inside of the hollow chamber. This method also uses the rotating action of a rotating body to forcibly suck the air inside a sealed hollow chamber and exhaust it outside the room, reducing the pressure in the room and keeping the pressure difference between the inside and outside in a nearly constant equilibrium state. The rotary body continues to rotate while maintaining an equilibrium state to promote friction with the air to generate frictional heat, which heats the inside of the hollow chamber. This is a reduced pressure equilibrium heating method in which outside air is supplied. The inventor also proposed a pressurized equilibrium heating method in Japanese Patent Application Laid-open No. 57-127779, and found that if an exhaust port with a capacity lower than the exhaust capacity of the rotating body is provided for exhaust, the intake gas will be forced to be discharged to the outside. It was also discovered that the compressor exhibits a kind of pressurizing effect, and therefore generates heat of compression, increasing the temperature more effectively and producing warm air. (c) Problems to be solved by the invention On the other hand, the inventor has disclosed in Japanese Patent Application Laid-Open No. 60-20059 "Hot Air Method and Apparatus" that the invention has a gas inlet and a gas outlet, We proposed a method to create multiple hot air continuously by sequentially connecting the gas outlet and gas inlet of each hollow body with an airtight structure that has a rotating body that rotates with a gas suction capacity greater than the intake amount. did. Further, in the same application, a plurality of rotating bodies having a gas inlet and a gas exhausting capacity larger than the gas inlet and the gas exhausting capacity of the gas inlet and the gas exhausting capacity of the gas inlet and the gas outlet, respectively, are arranged in a hollow body of an airtight structure having a gas inlet and a gas outlet. We proposed a method of creating hot air by connecting hollow bodies in sequence by sequentially connecting the gas outlet and gas inlet of each hollow body. In the same method, even if the capacity of the other rotating bodies is lower than the capacity of the rotating body closest to the intake side, the hot air production capacity of the entire device is still higher than when rotating bodies of the same capacity are used. I also found that there was no difference. In addition, when three or more such hollow chambers are connected in succession, even if the capacity of the rotating bodies is lowered sequentially from the intake side, the hot air generation capacity of the entire device will be lower than when the capacities of all the rotating bodies are the same. I also found that there was no difference. (d) Means for Solving the Problems Based on these findings, it is an object of the present invention to provide an efficient heat generating unit that consumes less power, etc., and has a small number of parts. That is, the present invention provides a heating unit having an intake port and an exhaust port, which rotates with a gas suction capacity greater than the gas suction capacity of the gas intake port, and generates heat due to the rotational action of a rotating body. A hollow body with an airtight structure having a rotating body,
By sequentially connecting the gas outlet and gas inlet of each hollow body, multiple units can be installed between the intake and exhaust ports of the heating unit, and the gas suction capacity of the rotary body of the multiple hollow bodies can be adjusted to the most inlet side. In a heating unit characterized by a rotating body being the largest, and in a heating unit having an intake port and an exhaust port, the heating unit has a gas intake port and a gas exhaust port, and the gas suction capacity of the gas intake port and the gas exhaust A hollow body having an airtight structure and having a rotating body that rotates with a gas suction and discharge capacity greater than the gas discharge capacity of the outlet and generates heat due to the rotational action of the rotary body, and sequentially connects the gas outlet and gas inlet of each hollow body. A heat generating unit characterized in that a plurality of hollow rotary bodies are installed between the intake port and the exhaust port of the heat generating unit, and the gas suction and discharge capacity of the plurality of hollow rotary bodies is the largest in the rotary body on the intake side. I will provide a. (e) Effect When the rotating body is rotated, gas flows into the hollow body through the intake port or gas inlet. At this time,
The opening area of the gas inlet is limited to less than the gas suction capacity of the rotating body installed in the corresponding hollow body, so the amount of gas inhaled is smaller than the gas exhausted by the rotating body, and the rotation The pressure in the rotating region of the body is reduced compared to other parts, and the pressure in the hollow body as a whole is also reduced. The pressure difference between the rotating region and other parts, and the pressure difference between the hollow interior and the outside air will gradually increase, but once a certain pressure difference is reached, it will reach an almost equilibrium state in relation to the gas flowing into the vicinity of the rotating region. and maintain this constant pressure state. This equilibrium state,
The pressure difference between the inside and outside of the rotating region in a constant pressure state and constant pressure state is determined by the magnitude of the rotational suction and exhaust force of the rotating body, the size of the opening area of the gas inlet, the size of minute gaps, etc. This equilibrium, constant pressure state is maintained as long as the rotating action of the rotating body continues. In this equilibrium state, it is assumed that air stagnation occurs in the rotating region of the rotating body, and as frictional action continues and repeats between the rotating body and the stagnant gas, frictional heat is generated and the temperature gradually rises. The warm air heated by this frictional heat passes through a small gap and is discharged from the gas outlet to the exhaust port. The opening area of the gas outlet is
If the exhaust capacity is set to be smaller than the exhaust capacity of the rotating body, the gas sucked into the hollow body will be forcibly discharged to the outside, resulting in a type of pressurization effect at the gas exhaust port, and the heat of compression will increase. With the occurrence of , it is possible to further increase the exhaust temperature. Furthermore, since a plurality of hollow bodies are arranged in series, it is possible to increase the temperature in stages and make the final exhaust temperature high. In this case, if the opening area of the gas outlet of each hollow body is set so that the exhaust capacity is smaller than the exhaust capacity of the rotating body installed in the hollow body, the pressure near the gas outlet will tend to increase. Since air is taken in by a rotating body installed in a hollow body adjacent to the continuous exhaust side, the area near the gas discharge port of the hollow body on the most exhaust side eventually becomes high pressure, and a kind of pressurizing effect is created in that part. It is estimated that the temperature increases more effectively with the generation of compression heat. In this invention, a plurality of hollow bodies are connected in series, and the output ratio of each motor is made smaller sequentially from the intake port side to the exhaust port side, but the final output ratio is smaller than when the output of each motor is the same. There is almost no change in the temperature of the heated air. (f) Embodiment The present invention will be explained below with reference to FIG. 1, which shows a central cross section of an embodiment in which the present invention is applied to a futon dryer, and FIG. 2, which shows a central cross section of another embodiment. 1 is a futon dryer; the futon dryer 1 is
It has an intake port 2 and an exhaust port 3. A hose 4 connected to a futon (not shown) can be fitted into the exhaust port 3. 5 is a hollow body having an airtight structure, and has a gas inlet 6 and a gas outlet 7. 8 is a rotating body, which is composed of rotating blades such as a propeller fan or a Shirotsuko fan. The rotating bodies 8 are rotatable by electric motors 9 installed in each of the hollow bodies 5 in a direction in which gas can be sucked in from the gas inlet 6 and gas can be discharged from the gas outlet 7. In a futon dryer in which one hollow body 5 is installed as shown in FIG.
The gas inlet is connected to the inlet of the futon dryer 1, and the gas outlet 7 is connected to the exhaust port 3. When connecting a plurality of hollow bodies as shown in Fig. 2, the gas outlet 7 and gas inlet 6 of each hollow body 5 are successively connected in a sealed state, and the gas exhaust of the hollow body on the most exhaust side is connected. The outlet 7 is connected to the exhaust port 3 of the futon dryer, and the gas inlet 6 of the hollow chamber on the most intake side is connected to the inlet port 2 of the futon dryer. g is a minute gap formed between the inner wall of the hollow body 5 and the rotating body 8, and R is the rotation area of the rotating body 8. The gas suction ports 6 are opened so that the gas suction capacity during normal rotation of the rotating body 8 installed in the corresponding hollow body is greater than the gas suction capacity of the gas suction ports 6 formed in each hollow body 5. It is necessary to set the area. In this embodiment, the rotating body 8 installed in the corresponding hollow body is
The opening area of the gas exhaust port 7 is set so that the gas exhaust capacity during normal rotation is greater. In the embodiment shown in FIG. 2, the capacity of each rotating body 8 decreases from the intake port side to the exhaust port side, and the output of each electric motor 9 that rotates the rotating body 8 is It is about 1/2 that of a motor. In other words, the ratio of the output of each electric motor is approximately 3 to 4:2 from the intake port side to the exhaust port side.
It is 1. Therefore, when the rotating body 8 is rotated by the electric motor 9,
The gas flows from the intake port 2 to the hollow body 5 via the gas intake port 6.
flow inside. At this time, since the opening area of the gas inlet 8 is limited to the gas suction capacity of the rotating body 8 installed in the corresponding hollow body 5, the rotating body 8
The amount of gas sucked in is smaller than the gas discharged by the rotating body 8, and the pressure in the rotation region R of the rotating body 8 is reduced compared to other parts, and the pressure in the hollow body as a whole is also reduced. The pressure difference between the rotation region R and other parts and the pressure difference between the hollow interior and the outside air gradually increase, but when a certain pressure difference is reached, the rotation region R
It reaches an almost equilibrium state in relation to the gas flowing into the vicinity, and maintains this constant pressure state. The pressure difference between the inside and outside of the rotating region R in this equilibrium state and constant pressure state depends on the magnitude of the rotational suction and exhaust force of the rotating body 8, the size of the opening area of the gas inlet 6, the size of the minute gap g, etc. However, this equilibrium and constant pressure state is maintained as long as the rotating action of the rotating body 8 continues. In this equilibrium state, a phenomenon of air stagnation occurs in the rotation region R of the rotor 8, and the frictional action continues repeatedly between the rotor 8 and the stagnant gas, so that frictional heat is generated and the temperature gradually rises. The warm air heated by this frictional heat passes through a small gap g, is discharged from the gas discharge port 7 to the exhaust port 3, passes through the hose 4, and is blown onto the futon.
When the opening area of the gas exhaust port 7 is set to a smaller exhaust capacity than the exhaust capacity of the rotating body 8, the hollow body 5
Since the gas sucked into the exhaust gas is forcibly discharged to the outside, a kind of pressurizing effect occurs at the gas outlet 7, which generates compression heat, making it possible to further increase the exhaust temperature. . When a plurality of hollow bodies 5 are arranged in succession as shown in FIG. 2, the temperature can be increased stepwise to make the final exhaust temperature high. In this case, if the opening area of the gas outlet of each hollow body 5 is set to have an exhaust capacity smaller than the exhaust capacity of the rotating body 8 installed in the hollow body,
Although the pressure near the gas outlet 7 tends to increase,
Since the air is taken in by the rotating body 8 installed in the hollow body 5 adjacent to the continuous exhaust side, the pressure near the gas discharge port of the hollow body 5 on the most exhaust port side eventually becomes high.
This part exhibits a kind of pressurizing effect, and the temperature increases more effectively with the generation of compression heat. In the case of three consecutive hollow bodies, if the gas intake and discharge capacity of the electric motor 9 that drives the rotating body installed in each hollow body is the same, the pressure inside each hollow body 5 will change from the intake port side to the exhaust port side. According to the story 1:
It changes from 1/2 to 1/3. As shown in Fig. 2, if the output ratio of each electric motor 9 is gradually decreased from 3 to 4:2:1 from the inlet side to the outlet side, the output of each electric motor 9 will be the same. There is almost no difference in the temperature of the warm air that is finally obtained. In this case, the opening area of the gas inlet 6 of the hollow body 5 on the most intake side needs to be of a size that can create a reduced pressure equilibrium state in the rotation region R of each rotating body. Embodiment 1 As shown in FIG. 3, a hollow body 5, 5, 5 with an airtight structure having a gas inlet and a gas outlet
A motor (750W) driving a fan of the same size is installed in each. The gas inlets of each hollow body each have a diameter of 270 mm. Hollow body from the intake side,
, and drive each rotating body, the changes in current used by each motor, intake temperature, and ventilation temperature over time will obtain the values shown in the table. Next, when the hollow bodies are connected in this order from the intake side, the values shown in Table 2 are obtained. Next, when the hollow bodies are connected in this order from the intake side, the values shown in Table 3 are obtained. In either case, the amount of current is greatest on the intake side and gradually decreases toward the exhaust side.

【表】【table】

【表】【table】

【表】 (ト) 発明の効果 したがつてこの発明では恒圧平衝状態で効率よ
く温風を作成し効率が良く部品数の少ない乾燥器
に利用可能な起熱ユニツトを提供する。
[Table] (G) Effects of the Invention Therefore, the present invention provides a heat generation unit that can efficiently generate hot air in a constant pressure equilibrium state and that can be used in a dryer that is efficient and has a small number of parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の中央断面図、第2
図は他の実施例の中央断面図、第3図はこの実施
例の実験図である。 1……ふとん乾燥器、2……吸気口、3……排
気口、4……ホース、5……中空体、6……気体
吸入口、7……気体排出口、8……回転体、9…
…電動モータ、g……微少な隙間、R……回転領
域。
FIG. 1 is a central sectional view of an embodiment of the invention, and FIG.
The figure is a central sectional view of another embodiment, and FIG. 3 is an experimental diagram of this embodiment. 1... Futon dryer, 2... Intake port, 3... Exhaust port, 4... Hose, 5... Hollow body, 6... Gas inlet, 7... Gas outlet, 8... Rotating body, 9...
...Electric motor, g...minor gap, R...rotation area.

Claims (1)

【特許請求の範囲】 1 吸気口および排気口を有する起熱ユニツトに
おいて、気体吸入口および気体排出口を有し気体
吸入口の気体吸入能力より大きな気体吸入能力で
回転し、回転体の回転作用により発熱する回転体
を有する気密構造の中空体を、各中空体の気体排
出口と気体吸入口を順次接続することで起熱ユニ
ツトの吸気口および排気口間に複数設置するとと
もに、複数設置する中空体の回転体の気体吸入能
力を最吸気側の回転体が最も大とすることを特徴
とする起熱ユニツト。 2 複数設置する中空体の回転体の気体吸入能力
は、最吸気側から最排気側にいくにしたがい順次
小さくなる特許請求の範囲第2項記載の起熱ユニ
ツト。 3 吸気口および排気口を有する起熱ユニツトに
おいて、気体吸入口および気体排出口を有し、気
体吸入口の気体吸入能力および気体排出口の気体
排出能力より大きな気体吸入排出能力で回転し、
回転体の回転作用により発熱する回転体を有する
気密構造の中空体を、各中空体の気体排出口と気
体吸入口を順次接続することで起熱ユニツトの吸
気口および排気口間に複数設置するとともに、複
数設置する中空体の回転体の気体吸入排出能力は
最吸気側の回転体が最も大とすることを特徴とす
る起熱ユニツト。 4 複数設置する中空体の回転体の気体吸入排出
能力は、最吸気側から最排気側にいくにしたがい
順次小さくなる特許請求の範囲第3項記載の起熱
ユニツト。
[Scope of Claims] 1. A heating unit having an intake port and an exhaust port, which has a gas intake port and a gas discharge port, rotates with a gas suction capacity greater than the gas suction capacity of the gas intake port, and has a rotational action of a rotating body. A plurality of airtight hollow bodies having a rotating body that generates heat are installed between the intake and exhaust ports of the heating unit by sequentially connecting the gas outlet and gas intake of each hollow body. A heating unit characterized in that the hollow rotating body has the greatest gas suction capacity with the rotating body closest to the intake side. 2. The heating unit according to claim 2, wherein the gas suction capacity of the plurality of hollow rotary bodies decreases sequentially from the most inlet side to the most exhaust side. 3. A heat-generating unit having an intake port and an exhaust port, which has a gas intake port and a gas discharge port, and rotates with a gas suction and discharge capacity greater than the gas intake capacity of the gas intake port and the gas discharge capacity of the gas discharge port,
A plurality of airtight hollow bodies each having a rotating body that generates heat due to the rotating action of the rotating body are installed between the intake and exhaust ports of the heat generating unit by sequentially connecting the gas outlet and gas intake of each hollow body. In addition, the heating unit is characterized in that the gas suction and discharge capacity of the plurality of hollow rotary bodies installed is the highest in the rotary body on the intake side. 4. The heating unit according to claim 3, wherein the gas suction and discharge capacity of the plurality of hollow rotary bodies decreases from the most inlet side to the most exhaust side.
JP58166396A 1983-09-09 1983-09-09 Futon dryer Granted JPS6058197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166396A JPS6058197A (en) 1983-09-09 1983-09-09 Futon dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166396A JPS6058197A (en) 1983-09-09 1983-09-09 Futon dryer

Publications (2)

Publication Number Publication Date
JPS6058197A JPS6058197A (en) 1985-04-04
JPS6116479B2 true JPS6116479B2 (en) 1986-04-30

Family

ID=15830637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166396A Granted JPS6058197A (en) 1983-09-09 1983-09-09 Futon dryer

Country Status (1)

Country Link
JP (1) JPS6058197A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099248A (en) * 1983-11-01 1985-06-03 工藤 和子 Dry heat treating device
JPS625080A (en) * 1985-06-26 1987-01-12 久保山 信義 Drier

Also Published As

Publication number Publication date
JPS6058197A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
JPH0135259B2 (en)
JPS6116479B2 (en)
JPS6324379B2 (en)
JPH0139774B2 (en)
JPH0222868B2 (en)
JPS6058144A (en) Dermatophytosis treating device
JPS639444B2 (en)
JPS6187502A (en) Dryer
JPH0222866B2 (en)
JPS6241735B2 (en)
JPS6057158A (en) Air heater device
JPS6057161A (en) Ceiling heater
JPS61107054A (en) Pressure reduction heater
JPS6057159A (en) Mobile fan forced heater
JPS6030957A (en) Rotary heat generating device
JPS6020061A (en) Hot air generation mechanism in hot air device
JPS625080A (en) Drier
JPS6186535A (en) Decompression heating heat-generating method
JPS6144227B2 (en)
JPH0121427B2 (en)
JPS6186533A (en) Decompression heating heat generator
JPS6123461B2 (en)
JPH0128865B2 (en)
JPS61107052A (en) Pressure reduction heater
JPS5847621B2 (en) Decompression equilibrium forced swirl convection heating method and its device