JPS6057158A - Air heater device - Google Patents

Air heater device

Info

Publication number
JPS6057158A
JPS6057158A JP58164359A JP16435983A JPS6057158A JP S6057158 A JPS6057158 A JP S6057158A JP 58164359 A JP58164359 A JP 58164359A JP 16435983 A JP16435983 A JP 16435983A JP S6057158 A JPS6057158 A JP S6057158A
Authority
JP
Japan
Prior art keywords
gas
capacity
hot air
rotating body
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58164359A
Other languages
Japanese (ja)
Other versions
JPH0135260B2 (en
Inventor
Nobuyoshi Kuboyama
久保山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58164359A priority Critical patent/JPS6057158A/en
Publication of JPS6057158A publication Critical patent/JPS6057158A/en
Publication of JPH0135260B2 publication Critical patent/JPH0135260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide an air heater device that is efficient and consumes less electricity by an arrangement in which the hot air is made through a series of chambers with the capacity of rotating bodies sequentially becoming smaller from the air intake side. CONSTITUTION:The area of gas inlets 3, 4 of an air heater is formed in such a manner than the rate of the gas induction and delivery may be limited to be less than the capacity of the gas induction and delivery of a rotating body 7. Because of this, a desirably balanced decompression state is formed in a gas induction section 12, and so, the stagnation effect of gas develops in the rotational range R of the rotating body 7 to enhance the friction action by a rotary vane 11. As the air is gradually heated, it is delivered from outlets 5, 6. Among electric motors 7a, 7b, 7c, the motor 7a closest to the air induction side has the largest capacity and the motors 7b, 7c have the increasingly smaller capacity, while the gas induction capacity of the rotating body 7 becomes sequentially smaller. By this constitution, the hot air producing capacity of the overall device is not different from that which employs rotating bodies of the same capacity.

Description

【発明の詳細な説明】 この発明は、室内暖房は勿論のこと、ハウス栽培用暖房
などの農業用から、恒温写囲気を得る各種用途に至るま
で巾広い産業分野に亘って利用できる新規な温風装置に
関する。
[Detailed Description of the Invention] This invention is a novel heating system that can be used in a wide range of industrial fields, from indoor heating, agricultural applications such as heating for greenhouse cultivation, to various applications for obtaining constant-temperature surrounding air. Concerning wind equipment.

本発明者は特開昭57−19!’582号、特開昭57
−19583号、特開昭57−55378号および特開
昭57−55379号など一連のその後の発明において
、減圧平衡加熱方法および該方法を用いた乾燥方法また
は装置その他を提案した。
The inventor of this invention is Japanese Patent Publication No. 57-19! '582, JP-A-57
In a series of subsequent inventions such as No. 19583, JP-A-57-55378 and JP-A-57-55379, a reduced pressure equilibrium heating method and a drying method or apparatus using the method were proposed.

そして、その基本的な技術内容は、密閉された中空室内
の空気を1回転体の回転作用により強制吸引して室外に
排気させ、室内を減圧して室内外の圧力差を喜々一定の
平衡状態に保つと共にこの平衡状態を維持しながら前記
回転体の回転作用を継続させて空気との摩擦作用を促進
[7て摩擦熱を発生させ、この摩擦熱により中空室内を
加熱するようにした減圧平衡加熱方法であり、さらに、
密閉された中空室内の空気を。
The basic technology is that the air inside a sealed hollow chamber is forcibly sucked in by the rotation of a single rotating body and exhausted to the outside, reducing the pressure inside the room and bringing the pressure difference between the inside and outside into a constant state of equilibrium. While maintaining this equilibrium state, the rotating action of the rotating body is continued to promote the frictional action with the air. A heating method, and further,
Air inside a sealed hollow chamber.

回転体の回転作用により強制吸引して室外に排気させ、
室内を減圧して室内外の圧力差を異り一定の平衡状態に
保つと共にこの平衡状態を維持し2ながら前記回転体の
回転作用を継続させて空気との摩擦作用を促進して摩擦
熱を発生させ。
The rotating action of the rotating body forcefully suctions the air and exhausts it outside.
The pressure inside the room is reduced to keep the pressure difference between the inside and outside in a constant equilibrium state, and while this equilibrium state is maintained, the rotating action of the rotating body is continued to promote frictional action with the air and generate frictional heat. Let it happen.

この摩擦熱により中空室内を加熱し、さらに中空室内に
手動または自動操作で外気を送給するようにした減圧平
衡加熱方法である。
This is a reduced pressure equilibrium heating method in which the inside of the hollow chamber is heated by this frictional heat, and outside air is fed into the hollow chamber manually or automatically.

また、上述の減圧平衡加熱方法および装置に対して特開
昭57−127779号において加圧平衡加熱方法を開
発提案した。
Furthermore, in contrast to the above-mentioned reduced pressure equilibrium heating method and apparatus, a pressurized equilibrium heating method was developed and proposed in Japanese Patent Application Laid-open No. 127779/1983.

さらに、昭和58年7月13日付特許出願[温風方法お
よびその装置」において、[回転体の回転作用により気
体を吸入して排出する温風方法〒あって、前記回転体の
気体吸入排出能力に比し気体吸入口の気体吸入量または
/および気体排出口の気体排出量をそれ以下に制限して
吸入気体を所望の恒圧平衡状態の下に保持しながら回転
体の回転領域内〒の回転作用により発熱させて、これを
温風として得るようにした温風方法。」および、[気体
吸入口および気体排出口を有する気密構造の中空体内に
前記気体吸入口の気体吸入量またば/および前記気体排
出口の気体排出部・より大きな気体吸入排出能力で回転
する回転体を配設し、かつこの回転体に発熱機能と恒圧
平衡機能とを与えて成る温風装置。」および「気体吸入
口および気体排出口を有する気密構造の中空体内に前記
気体吸入口の気体吸入量または/および前記気体排出口
の気体排出量より大きな気体吸入排出能力で回転する回
転体を複数個連続して配設し、各回転体に発熱機能と恒
圧平衡機能とを与えて成る温風装置。」を提案した。
Furthermore, in the patent application dated July 13, 1982 entitled "Hot Air Method and Apparatus", there is a "hot air method in which gas is sucked in and discharged by the rotational action of a rotating body", and the gas suction and discharge capacity of the rotary body is The amount of gas sucked into the gas intake port and/or the amount of gas discharged from the gas outlet port is limited to less than that, and the intake gas is kept under a desired constant pressure equilibrium state within the rotation region of the rotating body. A hot air method that generates heat through rotational action and obtains this as hot air. ” and [inside a hollow body of an airtight structure having a gas inlet and a gas outlet, the amount of gas inhaled by the gas inlet and/or the gas outlet part of the gas outlet, which rotates with a larger gas inlet and outlet capacity. A hot air device in which a rotating body is provided with a heat generating function and a constant pressure balancing function. ” and “A plurality of rotating bodies that rotate with a gas suction and discharge capacity larger than the gas suction amount of the gas suction port and/or the gas discharge amount of the gas discharge port in a hollow body of an airtight structure having a gas suction port and a gas discharge port. We proposed a hot air device in which the rotors are arranged in series and each rotating body has a heat generation function and a constant pressure balancing function.

そしていづれの減圧も加圧も回転体の回転作用によって
生ずる減圧また加圧の恒圧平衡状態において空気との摩
擦作用によって主として得られる摩擦熱を、クリーンな
熱エネルギーとして利用するととを特徴とするもの′t
6る。しかしながら発明者は回転体を有する中空室を複
数個連続して温風を作成するにあたって最も吸気側の回
転体の能力に比し他の回転体の能力を低いものとしても
装置全体としての温風作成能力としては同一能力の回転
体を用いた場合に比し変わりがないことを知見した。ま
た3個以上の該中空室を連続する場合、吸気側から順次
回転体の能力を低いものとしても装置全体としての温風
作成能力は、回転体の能力を全て同一とした場合に比し
変わりがないことを知見した。
Both depressurization and pressurization are characterized in that the frictional heat obtained mainly by the frictional action with air in a constant pressure equilibrium state of depressurization or pressurization produced by the rotational action of a rotating body is used as clean thermal energy. thing't
6ru. However, when the inventor creates warm air using multiple hollow chambers each having a rotating body in succession, even if the capacity of the other rotating bodies is lower than the capacity of the rotating body closest to the intake side, the hot air as a whole of the apparatus is It was found that there is no difference in production ability compared to using a rotating body of the same ability. In addition, when three or more such hollow chambers are connected in succession, even if the capacity of the rotating bodies is lowered sequentially from the intake side, the hot air generation capacity of the entire device will be different compared to when the capacity of all the rotating bodies is the same. I found out that there is no.

この発明はこれら知見にもとずき、より電力消費等の少
ない効率のよい温風装置を提供することを目的とする。
Based on these findings, it is an object of the present invention to provide an efficient hot air device with lower power consumption.

以下に、この発明に係る装置の一実施例を図面と共に説
明する。なお、と\に示される実施例は減圧平衡の下に
室内暖房用に用いられる場合を示す。
An embodiment of the apparatus according to the present invention will be described below with reference to the drawings. In addition, the examples shown in and \ show the case where it is used for indoor heating under reduced pressure equilibrium.

各図に於て、1は部屋A、部屋Bを区劃する壁体な示し
、該壁体1内に中空体2が埋設されて両部屋A、Bを各
別または同時に暖房できるようになっている。3.4は
両部屋A、Bに開口されて中空体2の上部に臨まれる気
体吸入口、5.6は同じく両部屋AsBに開口されて中
空体2の下部に臨まれる気体排出口を示す。7は回転体
を示し1図示fは3個の電動モータ7a、7b、7cが
それぞれその回転軸8を中空体2の外郭を構成する前後
の気密〒耐圧性の隔板9.10に対して垂直方向に位置
させると共に順次と隣り合う電動モータ7a、7b、7
cが互いに異なる方向に配設しである。電動モータ7a
−7b、7c中では最吸気側の電動モータ7aが最も大
出力〒あり最吸気側の回転体が最も回転能力に優り、電
動モータ7b、電動モータ7cとなるにしたがい順次能
力が小さくなり : 7 c =A4 : 2 : 1
フある。
In each figure, 1 indicates a wall that separates room A and room B, and a hollow body 2 is embedded in wall 1 so that both rooms A and B can be heated separately or at the same time. ing. 3.4 indicates a gas inlet opening to both chambers A and B and facing the upper part of the hollow body 2, and 5.6 indicates a gas exhaust port opening to both chambers AsB and facing the lower part of the hollow body 2. . Reference numeral 7 indicates a rotating body, and 1 (f) shows three electric motors 7a, 7b, and 7c, each of which has its rotating shaft 8 relative to the front and rear airtight and pressure-resistant partition plates 9, 10 that constitute the outer shell of the hollow body 2. Electric motors 7a, 7b, 7 located vertically and sequentially adjacent to each other
c are arranged in mutually different directions. electric motor 7a
- Among 7b and 7c, the electric motor 7a on the most intake side has the highest output, and the rotating body on the most suction side has the best rotational ability, and the ability gradually decreases as the electric motor 7b and 7c become electric motors 7b and 7c. c = A4: 2: 1
There is a fu.

3〜 11は回転体70回転羽根を示し、プロペラファン、シ
ロッコファンなど好みの構造をもたせることができ、所
望の傾斜角度を有しかつ。
3 to 11 indicate the rotating blades of the rotating body 70, which can have a desired structure such as a propeller fan or a sirocco fan, and have a desired inclination angle.

中空体2内において気体吸入口3,4より気体を吸入し
、気体排出口5.6よす気体を排出フきるように回転方
向が定められている。12は各回転体7の気体流入側に
設けられる気体導入部、13は前記回転羽根11と微少
な間隙gを・有して形成される開口部を示し、中空体2
の隔板9.1oと平行して区劃配着される側板14に穿
たれておりかつ前記開口部13に沿って回転体7の回転
領域Rが形成され、しかもこの回転領域Rの滞溜部15
に滞溜する吸引気体は、回転羽根11の摩擦作用の反核
継続によって摩擦熱が有効に発生して気体の温度を上昇
させることができるようになっている。16は各回転体
7の出力側に形成される気体の吸引部を示し。
The direction of rotation is determined so that gas is sucked into the hollow body 2 through the gas inlets 3 and 4 and the gas is exhausted through the gas exhaust ports 5 and 6. Reference numeral 12 indicates a gas introduction portion provided on the gas inflow side of each rotary body 7, 13 indicates an opening formed with a minute gap g between the rotary blades 11, and the hollow body 2.
The rotation region R of the rotating body 7 is formed along the opening 13, and the rotation region R of the rotation region Part 15
The suction gas accumulated in the rotary blade 11 effectively generates frictional heat due to the continuous anti-nucleation of the frictional action of the rotary vanes 11, thereby increasing the temperature of the gas. Reference numeral 16 indicates a gas suction section formed on the output side of each rotating body 7.

第1段、第2段の電動モータ7a、7bの吸引部16は
、次段と連通ずる気体導入部12と一体的に組み合って
一種の減圧部り1、L、を形成しており、最終段の第3
段の電動モータ7cの吸引部16は気体排出口5.6と
連通して一種の加圧部Hな形成している、 なお、気体吸入口3,4と接続される気体導入部12は
一種の減圧部Lθを形成するもの受ある0 17および
1Bは、気体吸入口3.4を形成した気体吸入室および
気体排出口5.6を形成した気体排出室を示し、それぞ
れ手動または自動によって切替ダン)’−19を可傾調
節して部屋A、Bへの連通操作が各別または同時併用が
!きるようになっている。20は壁体1に設けた回転体
7の操作用スイッチ機構、21は回転体7の電磁駆動部
を冷却する冷却管″r!する。
The suction parts 16 of the first and second stage electric motors 7a and 7b are integrally combined with the gas introduction part 12 communicating with the next stage to form a kind of pressure reducing part 1, L, and the final 3rd tier
The suction part 16 of the stage electric motor 7c communicates with the gas outlet 5.6 to form a kind of pressurizing part H. Furthermore, the gas introduction part 12 connected to the gas inlets 3 and 4 is a kind of pressurizing part H. 017 and 1B, which form the pressure reducing part Lθ, indicate the gas suction chamber where the gas inlet 3.4 is formed and the gas discharge chamber where the gas exhaust port 5.6 is formed, and these can be switched manually or automatically. Dan)'-19 can be tilted and operated to connect rooms A and B separately or at the same time! It is now possible to 20 is a switch mechanism for operating the rotating body 7 provided on the wall 1, and 21 is a cooling pipe "r!" for cooling the electromagnetic drive section of the rotating body 7.

ところで、前記気体吸入口3.4の開口面積は、設置し
た回転体7の気体吸入排出能力に比し、気体吸入量、気
体排出量がそれ以下に制限できる大きさに絞って構成し
、これにより順次と回転体7の気体流入側に形成される
気体導入部12には所望の平衡した減圧状態が形成され
るものであって、このように構成することによって回転
体7の回転領域Rに形成される滞溜部15には気体の滞
溜作用が生じて回転羽根11による摩擦作用が促進され
る。
By the way, the opening area of the gas suction port 3.4 is configured to be narrowed down to a size that can limit the gas suction amount and gas discharge amount to less than the gas suction and discharge capacity of the installed rotating body 7. Thus, a desired balanced reduced pressure state is formed in the gas introduction part 12 which is successively formed on the gas inflow side of the rotating body 7. By configuring this way, a desired balanced pressure reduction state is created in the rotational region R of the rotating body 7. A gas stagnation action occurs in the formed stagnation portion 15, and the frictional action of the rotating blade 11 is promoted.

なお、前記気体吸入口3,4の開口面積は。The opening area of the gas inlets 3 and 4 is as follows.

その大きさを調節自在に絞ることにより温風の吹出量と
温度を自在に調節できる。
By adjusting the size of the hot air, the amount and temperature of hot air can be adjusted freely.

また、図示していないが中空体2内には所望の蓄熱材料
を組み込んで温度の蓄熱を行わせたり、或はフィルター
などを着脱自在に組み入れて導入される気体中の塵埃を
除去することも1きる。
Although not shown, a desired heat storage material may be incorporated into the hollow body 2 to store the temperature, or a filter or the like may be detachably incorporated to remove dust from the introduced gas. 1 is over.

斜上の構成に基づいて、作用を説明する。The operation will be explained based on the diagonal configuration.

始めに暖めようとする部屋A、Bを選択し。First, select rooms A and B that you want to heat.

つぎに操作用スイッチ機構20を操作して回転体7を回
転させる。
Next, the operating switch mechanism 20 is operated to rotate the rotating body 7.

この回転体70回転により部屋A、Hのいずれかまたは
両者に開口した気体吸入口3.4がら空気が吸入され気
体排出口5.6より部屋A、Bのいずれかまたは両者に
温風が吐出される。
As the rotating body rotates 70 times, air is sucked in through the gas inlet 3.4 opened to either or both of rooms A and H, and hot air is discharged from the gas outlet 5.6 to either or both of rooms A and B. be done.

ところ〒第1段の電動モータ7aの回転作用によって気
体吸入口3,4から吸入される空気の吸入量は、電動モ
ータ7aの吸入排出能力に比し、それ以下に制限しであ
るので電動モータ7aの気体導入部12に比べて電動モ
ータ7aの出力側の吸引部16と気体導入部12とで形
成される減圧部り、の方が気体圧力が上昇しようとする
傾向があるが、連続した次段の電動モータ7bおよび第
3段の電動モータ7cが回転しているので電動モータ7
bの吸引部16と気体導入部12とマ形成される減圧部
り、、 L、は減圧状態を呈し、したがって第1段の気
体導入部12の減圧部LOが最先減圧度が高く順次と後
段の電動モータ7a、7b、7cに向うに従いその減圧
部り、、 L、内の気体圧力の減圧度が漸次低くなり所
謂段階的な減圧状態を呈して各々その減圧状態は気体の
流通状態すなわち動的な恒圧平衡を保つとと\なる。
However, the amount of air sucked in from the gas intake ports 3 and 4 by the rotational action of the first stage electric motor 7a is limited to less than the suction and discharge capacity of the electric motor 7a. Compared to the gas introduction section 12 of the electric motor 7a, the gas pressure tends to increase in the pressure reducing section formed by the suction section 16 on the output side of the electric motor 7a and the gas introduction section 12, but the continuous Since the next stage electric motor 7b and the third stage electric motor 7c are rotating, the electric motor 7
The decompression parts L formed by the suction part 16 and the gas introduction part 12 in b exhibit a reduced pressure state, and therefore the depressurization part LO of the first stage gas introduction part 12 has the highest degree of depressurization and is sequentially As the electric motors 7a, 7b, and 7c are moved toward the later stages, the degree of gas pressure reduction in the pressure reduction section L gradually decreases, creating a so-called stepwise pressure reduction state, and each pressure reduction state corresponds to the gas flow state, that is, the gas flow state. If we maintain a dynamic constant pressure equilibrium, it becomes \.

ところフ各回転体7の気体吸入排出能力の大きさによっ
て気体圧力の段階的な減少度合は、必ずしも一定しない
がその能力が大きい程、概して気体圧力の減少は大きい
However, the degree of stepwise reduction in gas pressure is not necessarily constant depending on the gas suction and discharge capacity of each rotating body 7, but generally speaking, the larger the capacity, the greater the reduction in gas pressure.

したがって、中空体2内に吸入された気体は、各電動モ
ータ7a、7b、7Cの回転領域R内の滞溜部15にお
いて、滞溜する傾向が大きく、したがって該部1bマ回
転する回転羽根11による摩擦発熱作用の影響を受けて
気体の温度は上昇させられる。そして各電動モータ7a
、7b、7cの回転領域1発生した摩擦熱は順次と第1
段の電動モータ7aより第2.第3段の電動モータ7b
、7cに行くに従い温度が上昇し、最も高い温度に上昇
した温風を最終段の電動モータ7Cよす気体排出口5.
6を経て部屋A、Hに吐出させることができる。
Therefore, the gas sucked into the hollow body 2 has a strong tendency to accumulate in the retention part 15 within the rotation region R of each electric motor 7a, 7b, 7C, and therefore the rotating blade 11 rotating in the part 1b The temperature of the gas is raised under the influence of the frictional heat generation effect. and each electric motor 7a
, 7b, 7c, the frictional heat generated in rotation region 1 is sequentially
The second stage electric motor 7a. Third stage electric motor 7b
, 7c, the temperature rises, and the warm air that has risen to the highest temperature is passed to the final stage electric motor 7C through the gas exhaust port 5.
6 and can be discharged into rooms A and H.

なお、3個の電動モータ7a、7b、7cの気体吸入排
出能力が同一の場合各電動モータ7a、7b、7cの出
力側に形成される減圧部16から気体導入部12に至る
個処の圧力変動は順次と電動モータ7a、7b、7cに
向うに従って減圧度が1.1/2.173、と変化する
ことが分っている。
Note that when the three electric motors 7a, 7b, and 7c have the same gas suction and discharge capacity, the pressure at the point from the pressure reducing part 16 formed on the output side of each electric motor 7a, 7b, and 7c to the gas introduction part 12 is the same. It is known that the degree of pressure reduction changes to 1.1/2.173 as the electric motors 7a, 7b, and 7c sequentially move toward each other.

ところ〒、最終段の電動モータ7cの吸引部16は、中
を体2の気体排出口5.6と連通しであるので吸入気体
は強制的に外部に吐出するとと\なり、そのために一種
の加圧作用を呈し、したがって圧縮熱の発生を伴い、よ
り有効に温度が上昇した温風が得られる。
However, since the suction part 16 of the electric motor 7c at the final stage is in communication with the gas discharge port 5.6 of the body 2, the suction gas is forcibly discharged to the outside. It exhibits a pressurizing effect, and therefore generates heat of compression, making it possible to more effectively obtain hot air whose temperature has been increased.

ところで部屋A、B内の空気は、中空体2内の回転体7
の連続運転によって反覆して加熱されること\なるので
次第に部屋A、Hの空気温度は上昇1きる。
By the way, the air in rooms A and B flows through the rotating body 7 inside the hollow body 2.
As the air temperature in rooms A and H gradually rises by 1, the air temperature in rooms A and H gradually increases.

なお、中空体2の回転体7には部屋A、 Bの温度調節
が制御マきるようなサーモスタットを接続して断続1き
るように構成して置けば部屋A、Bの定温制御を簡単に
行なうことができる。
Furthermore, if a thermostat that can control the temperature of rooms A and B is connected to the rotating body 7 of the hollow body 2 and configured so that it can be turned on and off, constant temperature control of rooms A and B can be easily performed. be able to.

なお、隣9合う運動モータ7a、7b、7cはその回転
方向を互いに反対向にして中空体2内1気体の流れ方向
をジグザグ状に制御しであるの1発熱効果が頗る高くき
わめて高能率に行わせることができる。
The nine adjacent motion motors 7a, 7b, and 7c rotate in opposite directions to each other to control the flow direction of the gas inside the hollow body 2 in a zigzag manner, resulting in a high heat generation effect and extremely high efficiency. You can make it happen.

ところマ、上述の実施例では、減圧平衡の下に気体の入
口側すなわち気体吸入口3.4を絞り、気体の流入量を
大小自在に変化させて中空体2内を゛恒圧状態に保持し
た場合を記述したが、反対に気体の出口側すなわち気体
排出口5゜6を絞や、前述したと同様に回転体7を駆動
させて温風を得ることができる。
However, in the above-mentioned embodiment, the gas inlet side, that is, the gas inlet 3.4 is throttled under reduced pressure equilibrium, and the amount of gas inflow is freely changed to maintain a constant pressure inside the hollow body 2. Although the case described above has been described, hot air can be obtained by constricting the gas outlet side, that is, the gas discharge port 5.degree.6, or by driving the rotating body 7 in the same manner as described above.

たソ、この場合、中空体2内の第1段の電動モータ7a
以後第2段、第3段と進むに従い。
In this case, the first stage electric motor 7a inside the hollow body 2
After that, proceed to the second stage and then the third stage.

それぞれの電動モータ7a、7b、7cの吸引部16お
よび気体導入部12で構成される空間は、一種の加圧部
を構成し、し力1もその加圧度は順次と段階的に高くな
り、そしてその加圧状態は、気体の流通状態すなわち、
動的な恒圧平衡を呈することとなる。
The space constituted by the suction section 16 and gas introduction section 12 of each of the electric motors 7a, 7b, and 7c constitutes a kind of pressurizing section, and the degree of pressurization of the force 1 gradually increases. , and the pressurized state is the gas flow state, that is,
This results in a dynamic constant pressure equilibrium.

したがって、このような加圧の恒圧平衡の下に摩擦熱の
発生が促がされ、順次と第1段、第2段、第3段と後段
の電動モータに行くに従い発熱量も高くなり結局の処、
気体排出口5,6よυ温風を吐出できる。
Therefore, the generation of frictional heat is promoted under the constant pressure equilibrium of such pressurization, and as it goes to the first stage, second stage, third stage, and later stage electric motors, the amount of heat generated increases eventually. Where,
υ warm air can be discharged from the gas exhaust ports 5 and 6.

なお、減圧の場合も加圧の場合も始動時、気体吸入口3
,4、気体排出口5,6を全閉の状態に保持して流体の
流れのない所謂静的な恒圧平衡の下に発熱効果を一時的
に増進させるこ七もできる。
In addition, in both cases of depressurization and pressurization, when starting, the gas inlet 3
, 4. It is also possible to temporarily enhance the heating effect by keeping the gas discharge ports 5 and 6 in a fully closed state under a so-called static constant pressure equilibrium without fluid flow.

以上、この発明について一実施例を説明したがこの発明
は上述の実施例に限定されるものfはなく1図示してい
ないがつぎに示す構成としても実施マきる。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can also be implemented with the following configuration, which is not shown in the drawings.

(a) 複数の回転体の回転方向が隣り合う同士互いに
同一方向でも良い。
(a) The rotation directions of a plurality of adjacent rotating bodies may be the same direction.

(b) 中空体は壁面のみならず、床面、天井面にも埋
設〒きる。
(b) Hollow bodies can be buried not only on walls, but also on floors and ceilings.

(c) 中空体は埋込構造!なく種々の面上に据置設置
しても使用費きる− (d) 中空体は、起立〒バる衝立型、滑車のついた移
動型など自由に構成〒敦る。
(c) The hollow body is an embedded structure! (d) The hollow body can be freely constructed such as a screen type that can stand up or a movable type with a pulley.

(e) 複数の回転体は直線状に連続することなく中空
体を平面的にm成しても、屈曲構造として立体的に構成
しても良い。
(e) The plurality of rotating bodies may not be continuous in a straight line, but may be formed into a two-dimensional hollow body, or may be three-dimensionally formed into a bent structure.

(f) 気体吸入口および気体排出口は、中空体の好み
の場所に少くとも1何処以上形成させることがtきる。
(f) At least one gas inlet and gas outlet can be formed at any desired location in the hollow body.

この発明は、斜上のように回転体の減圧または加圧の恒
圧平衡回転作用と摩擦発熱作用などによって効率よくた
えずクリーンな温風を有効に取り出すことができ、しか
も構造が簡単″11’6るから安価に提供でき、室内の
暖房施設内の恒温管理、ハウス栽培の温風管理など各種
産業。
This invention is capable of efficiently and constantly extracting clean hot air by the constant pressure equilibrium rotation action of depressurizing or pressurizing the rotating body like an inclined top, and the friction heat generation action, and has a simple structure. It can be provided at low cost because of its 6-cell structure, and is used in various industries such as constant temperature control in indoor heating facilities and hot air control in greenhouse cultivation.

農業への幅広い分野に実施できる効果を有する。It has effects that can be implemented in a wide range of agricultural fields.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る温風装置の一実施例を示す縦断
面図、第2図は同上の正面図である。 2・・・中空体、3,4・・・気体吸入口、5.6・・
・気体排出口、7・・・回転体、7a、7b、7C・・
・電動モータ、9.10・・・隔板、11・・・回転羽
根、12・・・気体導入部、16・・・吸引部1g・・
・微少な間隙、R・・・・回転領域 特許出願人 久保山 信 義 代理人弁理士 安 原 正 之 同 安 原 正 義
FIG. 1 is a longitudinal sectional view showing an embodiment of a hot air device according to the present invention, and FIG. 2 is a front view of the same. 2...Hollow body, 3, 4...Gas inlet, 5.6...
・Gas exhaust port, 7...Rotating body, 7a, 7b, 7C...
・Electric motor, 9.10... Partition plate, 11... Rotating vane, 12... Gas introduction part, 16... Suction part 1g...
・Small gap, R...Rotation area patent applicant Nobuyoshi Kuboyama Representative patent attorney Masayuki Yasuhara Masayoshi Yasuhara

Claims (4)

【特許請求の範囲】[Claims] (1) 気体吸入口および気体排出口を有し、気体吸入
口の気体吸入能力より大きな気体吸入能カフ回転する回
転体を有する気密構造の中空体を、各中空体の気体排出
口と気体吸入口を順次接続することで、複数連続する温
風装置において、最吸気側の中空体に設置する回転体の
回転能力が他の回転体の回転能力より大であることを特
徴とする温風装置。
(1) A hollow body with an airtight structure having a gas inlet and a gas outlet, and a cuff with a gas inhalation capacity larger than the gas inhalation capacity of the gas inlet. A hot air device characterized in that the rotational capacity of a rotary body installed in the hollow body on the most intake side is greater than the rotational capacity of other rotary bodies in a plurality of consecutive hot air devices by sequentially connecting ports. .
(2) 気体吸入口および気体排出口を有し、気体吸入
口の気体吸入能力より大きな気体吸入能力で回転する回
転体を有する気密構造の中空体を、各中空体の気体排出
口と気体吸入口を順次接続することで複数連続する温風
装置において、中空体に設置する回転体の回転能力が最
吸気側から最排気側にいくにしたがい、順次小さくなる
ことを特徴とする温風装置。
(2) A hollow body with an airtight structure, which has a gas inlet and a gas outlet, and has a rotating body that rotates with a gas suction capacity greater than the gas suction capacity of the gas inlet, is connected to the gas outlet and gas inlet of each hollow body. This hot air device is characterized in that the rotational capacity of a rotating body installed in a hollow body gradually decreases from the most intake side to the most exhaust side, in a hot air device in which a plurality of hot air devices are successively connected by sequentially connecting ports.
(3)気体吸入口および気体排出口を有する気密構造の
中空体内に気体吸入口の気体吸入能力/および気体排出
口の気体排出能力より大きな気体吸入排出能力1回転す
る回転体を有する複数の中空体を、各中空体の気体排出
口と気体吸入口とを順次接続して連続する温風装置にお
いて、最吸気側の中空体に設置する回転体が他の回転体
より能力が大〒あることを特徴とする温風装置。
(3) A plurality of hollow spaces having a gas suction capacity of the gas inlet and a gas suction and discharge capacity larger than the gas discharge capacity of the gas discharge port and a rotating body that rotates once in a hollow body with an airtight structure having a gas inlet and a gas discharge port. In a hot air device that connects the gas outlet and gas inlet of each hollow body in sequence, the rotating body installed in the hollow body on the side closest to the intake side has a larger capacity than the other rotating bodies. A hot air device featuring:
(4)気体吸入口および気体排出口を有する気密構造の
中空体内に気体吸入口の気体吸入能力/および気体排出
口の気体排出能力より大きな気体吸入排出能力1回転す
る回転体を有する複数の中空体を、中空体の各気体排出
口と各気体吸入口とを順次接続して連続する温風装置に
おいて、中空体に設置する回転体の回転能力が最吸気側
から最排気側にいくにしたがい順次小さくなることを特
徴とする温風装置。
(4) A plurality of hollow spaces having a gas suction capacity of the gas inlet and a gas suction and discharge capacity greater than the gas discharge capacity of the gas discharge port and a rotating body that rotates once in a hollow body of an airtight structure having a gas inlet and a gas discharge port. In a continuous hot air device in which the body is connected to each gas outlet and each gas inlet of the hollow body sequentially, the rotational capacity of the rotating body installed in the hollow body increases from the most inlet side to the most exhaust side. A hot air device that is characterized by becoming smaller in size.
JP58164359A 1983-09-07 1983-09-07 Air heater device Granted JPS6057158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164359A JPS6057158A (en) 1983-09-07 1983-09-07 Air heater device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164359A JPS6057158A (en) 1983-09-07 1983-09-07 Air heater device

Publications (2)

Publication Number Publication Date
JPS6057158A true JPS6057158A (en) 1985-04-02
JPH0135260B2 JPH0135260B2 (en) 1989-07-24

Family

ID=15791645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164359A Granted JPS6057158A (en) 1983-09-07 1983-09-07 Air heater device

Country Status (1)

Country Link
JP (1) JPS6057158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176930A2 (en) * 1984-09-29 1986-04-09 Nobuyoshi Kuboyama Heat generating device and its applied system
CN105066441A (en) * 2015-07-22 2015-11-18 林钧浩 High-temperature warm air machine achieving heat generation through convection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176930A2 (en) * 1984-09-29 1986-04-09 Nobuyoshi Kuboyama Heat generating device and its applied system
EP0176930A3 (en) * 1984-09-29 1987-11-19 Nobuyoshi Kuboyama Heat generating device and its applied system
CN105066441A (en) * 2015-07-22 2015-11-18 林钧浩 High-temperature warm air machine achieving heat generation through convection

Also Published As

Publication number Publication date
JPH0135260B2 (en) 1989-07-24

Similar Documents

Publication Publication Date Title
US3936240A (en) Centrifugal-vortex pump
JPH0135259B2 (en)
US3232522A (en) Fluid flow machine
US4252181A (en) Heat recovering fan
US9624944B2 (en) Bladeless fan
JPS6057158A (en) Air heater device
JPH0128865B2 (en)
JPH0128866B2 (en)
JPS6116479B2 (en)
JPS6324379B2 (en)
US5295533A (en) Heat exchanger
JPS6030957A (en) Rotary heat generating device
JPS6057161A (en) Ceiling heater
JPH0139774B2 (en)
JPS6057159A (en) Mobile fan forced heater
JPS60196554A (en) Rotator unit equipped with multiple-stage fan
JPH0222868B2 (en)
JPS639444B2 (en)
US3322334A (en) Radial-flow molecular pump
JPH09209988A (en) Blast device, air conditioner and blast duct
JPS6058144A (en) Dermatophytosis treating device
JPS6144227B2 (en)
JPS5847621B2 (en) Decompression equilibrium forced swirl convection heating method and its device
WO2017131560A2 (en) Buffer device
JPS61107054A (en) Pressure reduction heater