JPS61163101A - Activation of hydrogen storing alloy and activation device - Google Patents

Activation of hydrogen storing alloy and activation device

Info

Publication number
JPS61163101A
JPS61163101A JP60004740A JP474085A JPS61163101A JP S61163101 A JPS61163101 A JP S61163101A JP 60004740 A JP60004740 A JP 60004740A JP 474085 A JP474085 A JP 474085A JP S61163101 A JPS61163101 A JP S61163101A
Authority
JP
Japan
Prior art keywords
alloy powder
hydrogen
furnace
activation
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60004740A
Other languages
Japanese (ja)
Inventor
Tomoka Mizushima
水島 朝香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60004740A priority Critical patent/JPS61163101A/en
Publication of JPS61163101A publication Critical patent/JPS61163101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PURPOSE:To eliminate requirement for activation under high pressure and to perform activation effectively by feeding a vessel contg. hydrogen storing alloy powder in an electric heating furnace having a specified structure, repeating activation, then, discharging the alloy powder by dipping in inactive fluid. CONSTITUTION:A vessel 11 filled with hydrogen storing alloy is charged to an electric heating furnace 1 and the alloy powder is heated by a heater 2 while evacuating through a gas drawing pipe 9. Then, gaseous H2 is forced through a H2 feed pipe 8 into the furnace 1 for cooling the furnace. The procedure is repeated plural times. After the procedure, an inactive fluid (e.g. pure water, etc.) being no reactive with the alloy powder is introduced into the vessel 11 through a feed pipe 10, then the alloy powder is dipped in the inactive fluid and discharged in the state shielded from atmospheric air. Since the alloy powder is activated before it is filled in the practical reaction vessel such as heat pump and requirement for activation at higher pressure than the used pressure is eliminated, the practical reaction vessel can be made light weight, and the reaction velocity for absorption and desorption of H2 are prompted. Thus, the reaction efficiency of the practical reaction vessel is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、金属中に多量の水素を貯蔵する水素貯蔵合
金の活性化処理方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method and apparatus for activating a hydrogen storage alloy that stores a large amount of hydrogen in a metal.

従来技術とその問題点 水素はTI系、Zr系、Mg系等の合金と反応し金属水
素化合物を形成する。水素貯蔵合金はこの反応を利用し
たもので、その用途は多岐にわたっている。水素貯蔵合
金の水素吸脱反応は金属−水素の相平衡度広であシ、そ
の反応式は ただし、MH:金属水素化物 △H:反応熱 で表わされ、上記可逆反応を満足に行なわせるためには
、 ■ 合金の活性化処理を事前に充分に行なうこと、■ 
反応の際の反応熱を迅速に処理すること、02点が特に
重要である。
Prior art and its problems Hydrogen reacts with alloys such as TI, Zr, and Mg to form metal hydride compounds. Hydrogen storage alloys utilize this reaction and have a wide variety of uses. The hydrogen adsorption/desorption reaction of hydrogen storage alloys has a wide range of metal-hydrogen phase equilibria, and the reaction formula is expressed by MH: metal hydride △H: heat of reaction, and the above reversible reaction can be carried out satisfactorily. In order to do this, ■ the alloy must be sufficiently activated in advance, ■
Point 02 is particularly important: quickly disposing of the reaction heat during the reaction.

水素貯蔵合金をヒートポンプ等に利用する場合、水素化
反応を活発化するために行なわれている従来の合金の活
性化処理方法は、予め粉砕した合金粉を実機反応容器(
ヒートポンプ等)に充填し、常用圧力の数倍で活性化処
理する方法が一般的である。したがって、従来の活性化
処理方法では、通常運転時の数倍の圧力で処理するため
、実損反応容器の壁厚は必要以上に厚くなり反応熱の熱
交換が迅速に行なわれない。このため実機の水素化反応
を著しく遅延せしめ、かつ実機製作コストも高くつき水
素貯蔵合金の実用化を防げる大きな要因の一つと麦って
いる。
When hydrogen storage alloys are used in heat pumps, etc., the conventional alloy activation treatment method used to activate the hydrogenation reaction is to place pre-pulverized alloy powder in an actual reaction vessel (
A common method is to fill a heat pump, etc.) and activate it at several times the normal pressure. Therefore, in the conventional activation treatment method, the treatment is carried out at a pressure several times that of normal operation, so that the wall thickness of the actual damaged reaction vessel becomes thicker than necessary, and the heat exchange of reaction heat cannot be carried out quickly. This significantly delays the hydrogenation reaction in actual equipment and increases the cost of manufacturing the actual equipment, which is considered to be one of the major factors preventing the practical use of hydrogen storage alloys.

発  明  の  目  的 この発明は、従来の前記問題点にかんがみ、なされたも
ので、水素貯蔵合金のヒートポンプ等実機において、高
圧力での活性化処理が不要のため水素の吸脱反応速度を
上げ効率を高めることができる水素貯蔵合金の活性化処
理方法及びその装置を提案することを目的とするもので
ある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and is capable of increasing the hydrogen adsorption and desorption reaction rate in actual equipment such as heat pumps using hydrogen storage alloys, since activation treatment at high pressure is not required. The purpose of the present invention is to propose a hydrogen storage alloy activation treatment method and apparatus that can increase efficiency.

発  明  の  構  成 空状態で合金粉末を加熱保持し、ついで水素を合金粉充
填容器内に供給しつつ冷却保持する操作、すなわち加熱
、ガス吸引、冷却、水素供給操作を所定回数繰返して活
性化処理し、活性化処理終了後合金と不活性である純水
、Arガス等の大気遮断用不活性流体を合金粉充填容器
内に張って合金粉を大気と遮断する方法及びこの方法を
実施するための装置である。
Composition of the invention The alloy powder is heated and held in an empty state, and then hydrogen is supplied into the alloy powder filling container while cooling and held, that is, the heating, gas suction, cooling, and hydrogen supply operations are repeated a predetermined number of times to activate it. After the activation process, the alloy is filled with an inert fluid for blocking the atmosphere, such as pure water or Ar gas, in an alloy powder filling container to isolate the alloy powder from the atmosphere, and this method is implemented. It is a device for

すなわち、この発明は、炉壁内面に沿って冷却パイプを
、炉壁内に加熱ヒーターを、炉壁部に水素供給口とガス
抜き口および大気遮断用不活性流体供給口を備えた密閉
構造の電気加熱炉内に、水素貯蔵合金粉を充填した容器
を装入し、前記ガス抜き口より真空引きしながら加熱ヒ
ーターにて合金粉を加熱保持し、ついで水素供給口より
水素ガスを圧送しながら炉内を冷却保持する操作を複数
回繰)返し行ない、操作完了後大気遮断用不活性流体供
給口より合金粉と不活性゛である流体を合金粉充填容器
内に注入し合金粉を不活性流体中に浸漬させ大気と遮断
した状態で取出すことを特徴とする方法であシ、またこ
の方法を実施するための装置として、加熱ヒーターを埋
設した炉壁の内面に沿って冷却パイプを配設し、かっ炉
壁部を貫通して水素供給管、ガス抜き管および大気遮断
用不活性流体供給管を有し、かつ底部を含めた炉壁の一
部を開口して水素貯蔵合金粉充填容器の出入れ口を設け
たことを特徴とするものである。
That is, this invention has a sealed structure that includes a cooling pipe along the inner surface of the furnace wall, a heating heater inside the furnace wall, and a hydrogen supply port, a gas vent port, and an inert fluid supply port for blocking the atmosphere in the furnace wall. A container filled with hydrogen storage alloy powder is placed in an electric heating furnace, and the alloy powder is heated and held by a heating heater while vacuum is drawn from the gas vent port, and then hydrogen gas is pumped through the hydrogen supply port while being pumped. After the operation is completed, the alloy powder and an inert fluid are injected into the alloy powder filling container from the inert fluid supply port for blocking the atmosphere to inactivate the alloy powder. This method is characterized by immersing it in a fluid and taking it out in a state where it is isolated from the atmosphere, and as a device for implementing this method, a cooling pipe is arranged along the inner surface of the furnace wall in which the heating heater is buried. The furnace wall is penetrated by a hydrogen supply pipe, a gas vent pipe, and an inert fluid supply pipe for blocking the atmosphere, and a part of the furnace wall including the bottom is opened to form a hydrogen storage alloy powder filling container. It is characterized by having an entrance/exit.

以下、との発明を図面に基づいて説明する。Hereinafter, the invention will be explained based on the drawings.

第1図はこの発明方法を実施するための装置の一例を示
すもので、(1)は電気加熱炉で、側壁に加熱ヒーター
(2)が埋設され、下部開口部はシリンダー(図示せず
)により駆動される昇降式テープ〃(3)にて底部が構
成され、かつ電気加熱炉(1)と昇降式テーブル(3)
との接合面はシール材(4)にてシールされ、炉内が密
閉される構造となっている。また、電気加熱炉(1)は
架台(5)にて所望の高さに設置されており、架台(5
)の側面には合金粉充填容器(1υの出入れ口(6)が
設けられでいる。このwt9C加熱炉(1)の天井部に
は水素供給管(8)、ガス抜き管(9)および大気遮断
用不活性流体供給管(1■が配設され、それぞれ水素パ
ルプ(8v)、真空バルブ(9v)および不活性流体バ
〃プ(IOV)が設けられている。
Fig. 1 shows an example of an apparatus for carrying out the method of the present invention, in which (1) is an electric heating furnace, a heating heater (2) is embedded in the side wall, and the lower opening is a cylinder (not shown). The bottom part is composed of an elevating tape (3) driven by an electric heating furnace (1) and an elevating table (3).
The joint surface with the furnace is sealed with a sealing material (4), and the inside of the furnace is hermetically sealed. In addition, the electric heating furnace (1) is installed at a desired height on a pedestal (5).
) is provided with an alloy powder filling container (1υ inlet/outlet (6)).The ceiling of this wt9C heating furnace (1) is equipped with a hydrogen supply pipe (8), a gas vent pipe (9), and a An inert fluid supply pipe (1) for atmospheric isolation is provided, and each is equipped with a hydrogen pulp (8v), a vacuum valve (9v), and an inert fluid vap (IOV).

なお、合金粉充填容器αDは伝熱をよくするためAI、
Cu等で製作され、合金粉(至)の充填方法はまずAI
 、 Cu等ボーヲスで多数の充填孔lを有する円筒状
の伝熱促進材■を容器I内部に装入し、ついで合金粉(
至)を伝熱促進材@の充填孔(至)内に充填する方法を
採用することができる。合金粉充填容器(社)は、炉壁
内面に沿って例えば螺線状に配設された冷却パイプ(7
)からなる壁面に軽く接触する状態で装入する。図中、
α4は加熱温度測定用の熱電対を示す。
In addition, the alloy powder filled container αD is made of AI,
It is made of Cu, etc., and the filling method for alloy powder (to) is first of all AI.
, A cylindrical heat transfer accelerator (2) made of copper or the like and having a large number of filling holes (1) is charged into the container (I), and then alloy powder (
It is possible to adopt a method of filling the filling holes (to) of the heat transfer accelerator @. The Alloy Powder Filling Container Co., Ltd. has cooling pipes (7
) in a state that it is in light contact with the wall surface. In the figure,
α4 indicates a thermocouple for measuring heating temperature.

次に、上記装置により合金粉の活性化処理を行なう手順
について説明する。
Next, a procedure for activating alloy powder using the above apparatus will be explained.

まず、炉外で伝熱促進材圓がセットされた合金粉充填容
器I内に所定の合金粉■を充填し、架台(5)に設けた
容器出入口(6)より、下降している昇降式テープ1v
(3]の中心上に前記合金粉充填容器Jをa置し、その
状態で昇降式テープfVf3)を上昇させて合金粉充填
容器anfe−電気加熱炉(1)内に位置させるととも
に、所定圧力でシール材(4)を押圧し炉内を外部から
密閉する。
First, a predetermined alloy powder ■ is filled into an alloy powder filling container I in which a heat transfer accelerator circle is set outside the furnace, and the elevating type is lowered from the container entrance (6) provided on the pedestal (5). tape 1v
Place the alloy powder filling container J a on the center of (3), and in that state raise the elevating tape fVf3) to position it in the alloy powder filling container anfe-electric heating furnace (1), and set the predetermined pressure Press the sealing material (4) to seal the inside of the furnace from the outside.

次に、真空バルブ(9v)を開いてガス抜き管(9)よ
り合金粉充填容器I内を真空引きしながら加熱ヒーター
(2)にて合金粉を加熱していき、所定温度、所定真空
になった時点で保持する。その後、真空パルプ(9v)
を閉じ水素バルブ(8v)を徐々に開いて水素供給管(
8)より水素を炉内に供給し所定圧力まで昇圧する。こ
の時、合金粉充填容器I内の温度は冷却パイプ(7)に
より一定低温度に保持されている。容器(11)内の合
金粉−は水素を吸蔵しながら発熱反応を起こしているが
、冷却することにより水素の吸蔵を増進させる。この状
態を所定時間保持する。
Next, the vacuum valve (9v) is opened and the inside of the alloy powder filling container I is evacuated through the gas vent pipe (9) while the alloy powder is heated with the heating heater (2) until it reaches a predetermined temperature and a predetermined vacuum. Keep it when it becomes available. Then vacuum pulp (9v)
Close the hydrogen valve (8V) and gradually open the hydrogen supply pipe (
8) Supply hydrogen into the furnace and increase the pressure to a predetermined pressure. At this time, the temperature inside the alloy powder filling container I is maintained at a constant low temperature by the cooling pipe (7). The alloy powder in the container (11) is causing an exothermic reaction while occluding hydrogen, but by cooling it, the occlusion of hydrogen is increased. This state is maintained for a predetermined time.

その後、水素バルブ(8v)を閉じて真空パルプ(9v
)を開き加熱ヒーター(2)にて所定高温度を保ちなか
らガス抜き管(9)より水素を排出する。この時合金粉
lは水素を放出しながら吸熱反応を起こしているが、加
熱することにより水素の放出を増進させる。この状態を
所定時間保持する。合金粉が水素放出を終った時点で1
サイクμが終了する。
After that, close the hydrogen valve (8v) and vacuum pulp (9v).
) is opened and a predetermined high temperature is maintained with the heating heater (2), and then hydrogen is discharged through the gas vent pipe (9). At this time, the alloy powder 1 is undergoing an endothermic reaction while releasing hydrogen, but heating increases the release of hydrogen. This state is maintained for a predetermined time. 1 when the alloy powder finishes releasing hydrogen.
The cycle μ ends.

以下、上記の手順で活性化サイクルを所定回数繰返し活
性化処理を完了する。活性化処理完了後は不活性流体バ
μプ(10マ)を開き大気遮断用不活性流体供給管(1
■より例えば純水を合金粉充填容器I内に合金粉(至)
が完全に浸漬するまで注入する。なお、純水に替えて、
合金粉との不活性溶剤あるいは大気より重い不活性ガス
を用いてもよい。
Thereafter, the activation cycle is repeated a predetermined number of times according to the above procedure to complete the activation process. After the activation process is completed, open the inert fluid bath (10mm) and connect the inert fluid supply pipe (10 mm) to block the atmosphere.
■For example, pour pure water into alloy powder filling container I.
Inject until completely immersed. In addition, instead of pure water,
An inert solvent with the alloy powder or an inert gas heavier than the atmosphere may be used.

合金粉充填容器I内に純水を入れ終ると、昇降式テープ
A/(3)を容器取出し位置まで下降させ、合金粉充填
容器(5)を出入れ口(6)より炉外へ取出す。
When the pure water is completely poured into the alloy powder filling container I, the elevating tape A/(3) is lowered to the container take-out position, and the alloy powder filling container (5) is taken out of the furnace through the entrance/exit (6).

なお、この発明方法を実施するための処理装置としては
、ここに示したものに限らず、例えば加熱炉の側壁より
合金粉充填容器を出し入れする構造や、炉底が固定で熔
体を上下方向に昇降させて設置する構造のもの等を用い
るととができる。
Processing equipment for carrying out the method of the present invention is not limited to the one shown here, for example, a structure in which an alloy powder filling container is taken in and out from the side wall of a heating furnace, or a structure in which the furnace bottom is fixed and the melt is moved in the vertical direction. It is possible to use a structure that allows the installation to be lifted up and down.

合金粉をヒートポンプ等実損反応容器に充填する前に活
性化処理することができ、使用圧以上の高圧による活性
化処理が不要となるので、実機反応容器を軽量化でき水
素の吸・脱ズ応速度の迅速化がはかられ、実機の反応効
率を著しく向上できる。
It is possible to activate the alloy powder before filling it into the actual loss reaction vessel such as a heat pump, and there is no need for activation treatment using a high pressure higher than the working pressure, so the weight of the actual reaction vessel can be reduced, and hydrogen absorption and desorption are possible. The response speed can be accelerated, and the reaction efficiency of the actual machine can be significantly improved.

従って、実機反応容器での試運転時間も大巾に短縮され
る。また、実機反応容器の軽量化により装状態で活性化
処理することができ、かつ活性化処理後も大気と遮断し
た状態を保持して搬送できる効果を奏する。
Therefore, the trial run time in the actual reaction vessel is also greatly shortened. In addition, by reducing the weight of the actual reaction vessel, it is possible to carry out the activation treatment in a loaded state, and even after the activation treatment, it is possible to transport the vessel while keeping it isolated from the atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はとの発明方法を実施するための装置の一例を示
す縦断正面図である。 1・・・・電気加熱炉、2・・・・加熱ヒーター、3・
・・・昇降式テーブル、4・・・・シール材、5・・・
・架台、6・・・・出入れ口、7・・・・冷却パイプ、
8・・・・水素供給管、9・・・・ガス抜き管、1o・
・・・大気遮断用不活性流体供給管、11・・・・合金
粉充填容器、15・・・・合金粉。
FIG. 1 is a longitudinal sectional front view showing an example of an apparatus for carrying out the method of the invention. 1... Electric heating furnace, 2... Heating heater, 3...
... Elevating table, 4... Seal material, 5...
・Frame, 6... Inlet/outlet, 7... Cooling pipe,
8... Hydrogen supply pipe, 9... Gas venting pipe, 1o.
... Inert fluid supply pipe for atmospheric isolation, 11 ... Alloy powder filling container, 15 ... Alloy powder.

Claims (1)

【特許請求の範囲】 1 炉壁内面に沿つて冷却パイプを、炉壁内に加熱ヒー
ターを、炉壁部に水素供給口とガス抜き口および大気遮
断用不活性流体供給口を備えた密閉構造の電気加熱炉内
に、水素貯蔵合金粉を充填した容器を装入し、前記ガス
抜き口より真空引きしながら加熱ヒーターにて合金粉を
加熱保持し、ついで水素供給口より水素ガスを圧送しな
がら炉内を冷却保持する操作を複数回繰り返し行ない、
操作完了後大気遮断用不活性流体供給口より合金粉と不
活性である流体を合金粉充填容器内に注入し合金粉を不
活性流体中に浸漬させ大気と遮断した状態で取出すこと
を特徴とする水素貯蔵合金の活性化処理方法。 2 加熱ヒーターを埋設した炉壁の内面に沿つて冷却パ
イプを配設し、かつ炉壁部を貫通して水素供給管、ガス
抜き管および大気遮断用不活性流体供給管を有し、かつ
底部を含めた炉壁の一部を開口して水素貯蔵合金粉充填
容器の出入れ口を設けたことを特徴とする水素貯蔵合金
の活性化処理装置。
[Scope of Claims] 1. A sealed structure with a cooling pipe along the inner surface of the furnace wall, a heating heater inside the furnace wall, and a hydrogen supply port, a gas vent port, and an inert fluid supply port for blocking the atmosphere in the furnace wall. A container filled with hydrogen storage alloy powder is placed in an electric heating furnace, and the alloy powder is heated and held by a heating heater while vacuum is drawn from the gas vent port, and then hydrogen gas is pumped through the hydrogen supply port. The operation of keeping the inside of the furnace cool while repeating the operation several times,
After the operation is completed, the alloy powder and an inert fluid are injected into the alloy powder filling container through the inert fluid supply port for blocking the atmosphere, and the alloy powder is immersed in the inert fluid and taken out while being isolated from the atmosphere. A method for activating hydrogen storage alloys. 2 A cooling pipe is arranged along the inner surface of the furnace wall in which the heating heater is buried, and a hydrogen supply pipe, a gas vent pipe, and an inert fluid supply pipe for blocking the atmosphere are provided through the furnace wall, and the bottom part 1. A hydrogen storage alloy activation processing apparatus, characterized in that a part of the furnace wall including the furnace wall is opened to provide an entrance/exit for a container filled with hydrogen storage alloy powder.
JP60004740A 1985-01-14 1985-01-14 Activation of hydrogen storing alloy and activation device Pending JPS61163101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60004740A JPS61163101A (en) 1985-01-14 1985-01-14 Activation of hydrogen storing alloy and activation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60004740A JPS61163101A (en) 1985-01-14 1985-01-14 Activation of hydrogen storing alloy and activation device

Publications (1)

Publication Number Publication Date
JPS61163101A true JPS61163101A (en) 1986-07-23

Family

ID=11592309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60004740A Pending JPS61163101A (en) 1985-01-14 1985-01-14 Activation of hydrogen storing alloy and activation device

Country Status (1)

Country Link
JP (1) JPS61163101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258335A (en) * 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258335A (en) * 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device

Similar Documents

Publication Publication Date Title
JP5820731B2 (en) Substrate processing apparatus and solid material replenishment method
US4817557A (en) Process and apparatus for low pressure chemical vapor deposition of refractory metal
US4448747A (en) High density sintering method for powder molded products
US5042561A (en) Apparatus and process for countergravity casting of metal with air exclusion
JPH0371481B2 (en)
GB2223009A (en) Impregnating porous carbon bodies
JPS59222569A (en) Method and device for melt coating heat resistant metal thinfilm on semiconductor substrate
GB1370274A (en) Method and apparatus for sintering compacts of powder materials
JP2010040695A (en) Substrate processing apparatus and raw material replenishment method
US3510546A (en) Methods for powdering metals
JPH02118064A (en) Vacuum deposition device
JPS61163101A (en) Activation of hydrogen storing alloy and activation device
US4365409A (en) Method and apparatus for filling sodium into sodium sulphur cells
JP4502411B2 (en) Substrate processing equipment
US4726961A (en) Process for low pressure chemical vapor deposition of refractory metal
EP0388235A2 (en) Method and apparatus for casting
JPH0362515A (en) Vacuum heating processor
JPH04157162A (en) Surface treating device
JPS623672Y2 (en)
JP2628264B2 (en) Heat treatment equipment
JPWO2020039465A1 (en) Casting equipment and continuous casting method
JPH0512716Y2 (en)
JPS6329185A (en) Auxiliary station in hot isotropic pressure press facility
JPH0533010A (en) Pressure sintering furnace and method
JPH01293129A (en) Continuous high temperature and high pressure treatment device