JPS61162272A - Narrow groove 2-electrode submerged arc welding method - Google Patents

Narrow groove 2-electrode submerged arc welding method

Info

Publication number
JPS61162272A
JPS61162272A JP97285A JP97285A JPS61162272A JP S61162272 A JPS61162272 A JP S61162272A JP 97285 A JP97285 A JP 97285A JP 97285 A JP97285 A JP 97285A JP S61162272 A JPS61162272 A JP S61162272A
Authority
JP
Japan
Prior art keywords
welding
electrode
layer
submerged arc
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP97285A
Other languages
Japanese (ja)
Inventor
Masaaki Tokuhisa
徳久 正昭
Masao Hirai
平井 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP97285A priority Critical patent/JPS61162272A/en
Publication of JPS61162272A publication Critical patent/JPS61162272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To obtain a defectless weld zone which is stable even under low heat input conditions by converting a droplet droplet transfer state to a spray. CONSTITUTION:The inter-electrode distance in AC submerged arc welding in which a preceding electrode and succeeding electrode are longitudinally arranged in the welding advance direction is made 5-20mm and the phase difference between both electrodes is made 60 deg. or 90 deg.. The wire diameter of the respective electrodes is made 1.2-3mm and the welding heat quantity H (KJ/cm) corresponding to a groove gap width G is set for the narrow groove joint having >=8mm groove gap width G under the condition of 60-250A/mm<2> current density. More specifically, melti-layer building-up by the single layer single pass satisfying equation I in the case of <=18mm G and the single layer two pass lamination satisfying the equation II in the case of >14mm G is executed. The narrow groove 2-electrode submerged arc welding is thus executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 2電極サブマージアーク溶接法(以下TSAWと略す)
の改良に関しこの明細書では、極厚鋼が使用される圧力
容器、海洋構造物などの如く安全性の点から高性能、高
品質が要求さりる溶接構造物の組立に好適であって、製
作コストの低減と、能率の改善を実現1ツ1する狭開先
T S A W方法についての開発研究の成果を以下に
述べる。
[Detailed description of the invention] (Industrial application field) Two-electrode submerged arc welding method (hereinafter abbreviated as TSAW)
In this specification, we describe improvements that are suitable for assembling welded structures that require high performance and quality from the standpoint of safety, such as pressure vessels and offshore structures that use extra-thick steel. The results of research and development on the narrow gap T S A W method, which reduces costs and improves efficiency one by one, are described below.

(従来の技術) 極厚鋼板のTSIV方法における溶接欠陥の防1ににつ
いては、例えば、特公昭58−11312号公報にて電
極間距離lを15mm以下とし、アーク電圧を先行電極
■2よりも移行電圧1′の方を低くし、さらに後行電極
′I゛の電極径に適した溶接電流を採用することが開示
されている。この方法によるとワイヤ径4.8mmφに
対して550A〜750 A、 4.0 mmφに対し
て450A〜650 A、 3.2 **φでも450
Aのように溶接電流が比較的大電流であるために、狭開
先内部を1層1バス法で積層した場合、溶接ビート中央
部に高温われを発イしやすく、かつ17層の溶接でこの
われを完全に再溶融できず、われが残存して、有害な欠
陥となる。このため、特公昭58−11312号公報で
は1層2バス溶接法が採用されている。
(Prior art) Regarding the prevention of welding defects in the TSIV method for extra-thick steel plates, for example, in Japanese Patent Publication No. 11312/1982, the distance between the electrodes l is set to 15 mm or less, and the arc voltage is set to be lower than that of the preceding electrode (2). It is disclosed that the transition voltage 1' is lowered and that a welding current suitable for the electrode diameter of the trailing electrode 'I' is adopted. According to this method, the wire diameter is 550A to 750A for a wire diameter of 4.8mmφ, 450A to 650A for a wire diameter of 4.0mmφ, and 450A even for a wire diameter of 3.2**φ.
As shown in A, the welding current is relatively large, so if the inside of a narrow gap is laminated using the one-layer, one-bath method, high-temperature cracks are likely to occur in the center of the weld bead, and it is difficult to weld 17 layers. These cracks cannot be completely remelted, and they remain, creating harmful defects. For this reason, Japanese Patent Publication No. 58-11312 adopts a one-layer, two-bus welding method.

1層1パヌ積層法で以上のような欠陥を防止するには、
低電流を採用すべきではあるが、ワイヤ径が大きいため
、溶接中に短絡を生じ易く溶接作業が中断したり、ある
いは電流密度が小さくなって溶滴の移行形態が短絡移行
となり、溶融池の温度が低下して溶接し一ドの安定性が
損なわれ、溶接欠陥を発生したりする原因となる。
In order to prevent the above defects using the 1-layer 1-panu lamination method,
Although a low current should be used, because the wire diameter is large, it is easy to cause a short circuit during welding, which may cause the welding operation to be interrupted, or the current density may become small, causing the droplet transfer mode to become short-circuit transfer, resulting in the formation of a molten pool. The temperature decreases and the stability of the weld is impaired, causing welding defects.

この溶接欠陥には融合不良、スラグ巻込めなどがあげら
れ、これを未然に防ぐには、溶接入熱量を−1−=げる
ごとが必要となるが、溶接部の機械的性能が劣化するた
め好ましくない。
These welding defects include poor fusion and slag entrainment, and to prevent this, it is necessary to increase the welding heat input by -1-=, but this will deteriorate the mechanical performance of the weld. Therefore, it is undesirable.

(発明が解決しようとする問題点) に記欠点の解決、より具体的には低電流、低入熱条件で
能率が低下し、融合不良、スラグ巻き込みなどの溶接欠
陥か生して溶接部の品質が劣るなどの問題点を有利に克
服することかごの発明の目的である。
(Problems to be Solved by the Invention) Problems to be solved by the invention, more specifically, the efficiency decreases under low current and low heat input conditions, and weld defects such as poor fusion and slag entrainment occur, resulting in damage to the weld. It is an object of the invention of a basket to advantageously overcome problems such as poor quality.

(問題点を解決するだめの手段) この発明は 溶接進行方向に先行電極と後行電極とを縦
列とした交’/AE“リーブマージアーク溶接を、電極
間t?li 因f iコニ 5〜20mm、両電極間の
位相差は60″又は90°として、各電極のワイヤ径1
.2〜3.0 龍、電流密度60〜250 A/am2
の条件にて、開先間隙幅Gが8111以十の狭開先継手
に対し、該開先間隙幅Gに応しる溶接熱量H(K、I/
 cm)につき、G≦18mmのとき、 を満足する1層1バス積層また、 G〉14のとき、 を満足する1層2バス積層 による多層盛りを、適用することから成る狭開先2電極
サブマージアーク溶接方法である。
(Means for solving the problem) This invention performs cross/AE "leave merge arc welding" in which a leading electrode and a trailing electrode are arranged in tandem in the direction of welding progress. 20 mm, the phase difference between both electrodes is 60″ or 90°, and the wire diameter of each electrode is 1
.. 2-3.0 Dragon, current density 60-250 A/am2
Under the conditions, for a narrow groove joint with a groove gap width G of 8111 or more, the welding heat amount H (K, I/
cm), when G≦18 mm, one layer, one bus lamination that satisfies the following, and when G>14, one layer, two bus lamination that satisfies the following: Narrow gap two-electrode submerging. This is an arc welding method.

交流によるTSAW法において、両電極に接続する溶接
電源の結線方法としては、並列結線(0層位相差)、■
結線(60″位相差)、スコツト結!1! (90゜位
相差)、逆V結線(120°位相差)および逆並列結線
(180°位相差)などがあり、とくに狭開先での適用
で並列結線、逆V結線また逆並列結線でと電極間距離が
小さいと両電極間のアークの相互干渉のため溶鋼流が不
安定となり、アンダカソト、融合不良、スラグ巻き込み
などの溶接欠陥が発生しやすくなる。
In the AC TSAW method, the welding power source connected to both electrodes can be connected in parallel (0 layer phase difference),
Connection (60" phase difference), Scotto!1! (90° phase difference), reverse V connection (120° phase difference), and anti-parallel connection (180° phase difference) are available, especially for narrow gaps. If the distance between the electrodes is small in parallel connection, inverted V connection, or antiparallel connection, the flow of molten steel will become unstable due to mutual interference of the arc between both electrodes, and welding defects such as undercasting, poor fusion, and slag entrainment will occur. It becomes easier.

一方電極間距離を大きくするとアークの相互干渉GJ弱
くZ【るが、先行極のスラグが邪魔して先行電極のアー
クが不安定となり、溶接欠陥の発生原因となる。
On the other hand, if the distance between the electrodes is increased, mutual interference between the arcs GJ and Z will be weakened, but the slag of the leading electrode will interfere, making the arc of the leading electrode unstable and causing welding defects.

そこでこの発明ばV結線、スコツト結線であれば、電極
間距離が小さくても、上記各結線方法よりも溶鋼流が安
定し、良好なビード形状を呈しやすくとくに狭開先溶接
法に好適な結線方法であるとの知見にもとづき、この結
線方法の採用を検削し従来商人熱量で施工されていた狭
開先2電極溶接法において、低入熱条件下でも溶接欠陥
を発生せず、高品質な溶接部を得る溶接方法を開発した
ものである。
Therefore, according to the present invention, if the distance between the electrodes is small, the molten steel flow will be more stable than each of the above-mentioned connection methods, and a good bead shape will be easily obtained if the V-connection or Scotto connection is used, which is particularly suitable for narrow-gap welding. Based on the knowledge that this connection method is a good method, we inspected the adoption of this connection method and achieved high quality with no welding defects even under low heat input conditions in the narrow gap two-electrode welding method that was conventionally performed by merchant heat. This welding method has been developed to obtain a welded part with a high quality.

ここで挟間先部を1層1バス積層法で多層盛りを行う場
合、開先間隙幅Gが小さいほど、溶接材料の消費量、溶
接工数およびコストの低域に対して好ましい反面、あま
り小さずぎると、スラグはく離性、溶接欠陥などについ
ては明らかに不利なのであり、開先間隙幅Gば8mm以
上が一般に必要とされる。
When stacking the gap tip in multiple layers using the one-layer, one-bus stacking method, the smaller the groove gap width G, the better for reducing welding material consumption, welding man-hours, and costs, but it is not too small. If it is too long, it is clearly disadvantageous in terms of slag peelability, welding defects, etc., and a groove gap width G of 8 mm or more is generally required.

溶接用電源は上記のようにして先行電極し、後行電極′
rともにアークの相互の干渉から交流電源を用い、■結
線(60″位相差)もしくはスコツ1〜結線(90″位
相差)として、低電流で高電流密度を得るように3.2
龍よりも小さいワイヤ径、たとえば実用的には1.2龍
φ、1.6■璽φ、2,41111φのように1.2〜
3.0flの電極棒を適用する。
The welding power source is connected to the leading electrode and the trailing electrode as described above.
For both r, use an AC power supply to avoid mutual interference of arcs, and use 3.2 to obtain high current density with low current by connecting (60'' phase difference) or Scot 1 to wiring (90'' phase difference).
Wire diameter smaller than the dragon, for example, practically 1.2 to 1.2, such as 1.2 dragon φ, 1.6 ■ seal φ, 2,41111 φ
Apply a 3.0 fl electrode rod.

溶接用フラックスは、焼成型、焼結型あるいは溶融型の
ものを使用でき、その組成は一般に市販されているもの
、とくに溶接金属中の酸素機、窒素量、拡散性水素量を
低減したものや溶接し−ト形状、スラグ剥離性を改善し
たものの使用が好ましい。
Flux for welding can be fired, sintered, or melted, and its composition is generally commercially available, especially those with reduced amounts of oxygen, nitrogen, and diffusible hydrogen in the weld metal. It is preferable to use a material with improved welded shape and slag removability.

以」二のような溶接方法を採用するごとにより、溶接+
A I!:lの消費■、溶接部「数およびコストの低減
は可能となるが、溶接部品質、性能をさらに改善するに
は)合接条件の制御が重要で、この発明の着眼点はここ
にある。
By adopting the following welding methods, welding +
AI! It is possible to reduce the number and cost of welded parts, but in order to further improve the quality and performance of welded parts, it is important to control the joining conditions, and this is the focus of this invention. .

ここで電極配置、溶接ヒート形成過程を該1図で説明す
ると次の通りである。
Here, the electrode arrangement and welding heat formation process will be explained with reference to FIG. 1 as follows.

先行電極I7および後行電極]°にもちいるワイヤ径は
1.2〜3.0I11とし、これらのワイヤ断面積に対
する溶接電流密度が6OA/+u”から250八/ll
I2の範囲で適用する。いまかりにワイヤ径3.2宵m
φで電流密度が60  A/鰭2以」二の場合の溶接電
流は、482Aをごえ、たとえば開先間隙幅G=10m
mの開先を溶接電流482Aで1層1バス積層の2電極
SA−を行ったとすると溶接ビー1−′2に高温われを
発生ずる懸念がある。
The diameter of the wire used for the leading electrode I7 and the trailing electrode is 1.2 to 3.0I11, and the welding current density for the cross-sectional area of these wires is from 6OA/+u" to 2508/ll.
Applicable within the range of I2. Imakari wire diameter 3.2m
When the current density is 60 A/fin 2 or more at φ, the welding current exceeds 482 A, and for example, when the groove gap width G = 10 m
If two-electrode SA- is carried out with one layer and one bus laminated at a welding current of 482 A on the groove of 1-m, there is a concern that high-temperature cracks may occur in the weld bead 1-'2.

ワイヤ径3.2vaよりも小さい2.4mmψと1.6
I■φでの最小溶接電流は ワイヤ径166璽誤: 121 A ワイヤ径2.4mm: 271^ となり、G=](bsでワイヤ径1.6+nでの最小電
流121A、2.41φでの最小電流271^で、この
ように低い溶接電流では高温われを発生せず、良好な溶
接部が得られる。
Wire diameter 2.4mmψ and 1.6 smaller than 3.2va
The minimum welding current at I■φ is 121 A for a wire diameter of 166 mm, 271 A for a wire diameter of 2.4 mm, and the minimum welding current for a wire diameter of 1.6 + n is 121 A, and the minimum welding current for a wire diameter of 2.41 mm is 2.4 mm. At a current of 271^, such a low welding current does not cause high temperature cracks and a good welded joint can be obtained.

電流密度を60八71m2〜25OA/++12に制限
した最大の理由は熔滴移j−r形態3□3′をスプレー
移行とし、溶融池の温度を−にげて低入熱条件でも健全
な溶接部を7j4るところにある。X線透視観察装置を
用い、筒速度カメラで溶融移行を調べた結果、電流密度
が6(IA/mm2よりも小さい場合には溶滴3゜3′
が大きく短絡移行し、溶接ヒート形状も波目が不揃いで
安定したヒートが得られず、融合不良、スラグ巻き込め
などの溶接欠陥を発生することもある。一方、25OA
/am2よりも大きくなると、ワイヤの溶融速度が速く
なってアーク長(ずなわぢアーク電圧)が不安定となり
、さらにアーク力が強ずぎるために溶鋼流が過剰に妄動
し、安定性が損なわれ、これらのことから、アンダーカ
ット、スラグ巻き込みを発生ずることもある。
The biggest reason for limiting the current density to 60871m2 to 25OA/++12 is to use spray transfer for the droplet transfer j-r type 3□3', which lowers the temperature of the molten pool to ensure sound welding even under low heat input conditions. It is located at 7j4. As a result of examining the melt transfer using an X-ray fluoroscopic observation device and a cylinder velocity camera, it was found that if the current density was less than 6 (IA/mm2), the droplet was 3°3'
There is a large short-circuit transition, and the welding heat shape has irregular waves, making it difficult to obtain stable heat, and welding defects such as poor fusion and slag entrainment may occur. On the other hand, 25OA
/am2, the melting speed of the wire becomes faster and the arc length (Zunawaji arc voltage) becomes unstable, and the arc force becomes too strong, causing excessive movement of the molten steel flow and impairing stability. As a result, undercuts and slag entrainment may occur.

第2図に従来法とこの発明の方法で1層1バス積層2電
極サブマージアーク溶接した場合の開先間隙幅Gに月す
る適正入熱量Hの範囲を比較して示すが、この発明での
適正入熱量は、従来法に比較して約273程度まで低減
でき、さらに、開先間隙幅G −8mmまで2電極サブ
マージアーク溶接が行えることがわかる。
Figure 2 shows a comparison of the range of the appropriate heat input amount H relative to the groove gap width G when performing one-layer, one-bus, two-electrode submerged arc welding using the conventional method and the method of the present invention. It can be seen that the appropriate heat input can be reduced to about 273 compared to the conventional method, and furthermore, two-electrode submerged arc welding can be performed up to a groove gap width G -8 mm.

すなわち、ワイヤ径1.2〜3.0+uのワイヤを用い
、低電流条件で溶iJ込み深さを浅くして、高温われの
発生を防ぎ、かつ高電流密度にすることによりスプレー
移行となってアークの安定性、溶融池温度の上昇および
ビート形状の改善が図れる結果、開先間隙幅Gの狭小化
が図れ、溶接+A I4の消費用、ン合接工数およびコ
ストの低減が達成され、さらに入熱量の低減にともなう
機械的性能の改善も同時に達成できるものである。
In other words, by using a wire with a wire diameter of 1.2 to 3.0+U and reducing the penetration depth under low current conditions to prevent the occurrence of high temperature cracks, and by setting a high current density, spray transfer can be achieved. As a result of improving the arc stability, increasing the molten pool temperature, and improving the bead shape, the groove gap width G can be narrowed, the consumption of welding + A I4, the number of welding man-hours, and the cost can be reduced. It is also possible to simultaneously improve mechanical performance by reducing heat input.

先行電極■5と後行電極Tとの中心電極間距離pは5龍
から20mmの範囲にずべきである。これが5鰭よりも
小さいと先行電極■7と後行電極Tに発ηニするアーク
4.4′が互いに干渉し合いアンダーカッ1〜、融合不
良、スラグ巻き込めなどを発生ずる原因となる。一方、
20111よりも大きいと先行電極I、の溶融によって
生成したスラグが邪魔して後行電極Tのアーク4′が不
安定となり、スラグ巻き込み、融合不良が発生しやすく
なる。この場合、好ましくは先行電極I7と後行電極T
の配置は開先中心線5上に置くことが必要で、いずれか
の電極がこの開先中心線5から大きくずれると開先側壁
部1,1′にアンダーカットあるいは融合不良、スラグ
巻き込みなどの欠陥が発生しやすくなる。
The center electrode distance p between the leading electrode (5) and the trailing electrode (T) should be within a range of 20 mm from the leading electrode (5). If this is smaller than 5 fins, the arcs 4, 4' generated at the leading electrode (7) and the trailing electrode (T) will interfere with each other, causing undercutting, poor fusion, and slag entrainment. on the other hand,
If it is larger than 20111, the arc 4' of the trailing electrode T becomes unstable because the slag generated by the melting of the leading electrode I becomes unstable, and slag entrainment and fusion failure are likely to occur. In this case, preferably the leading electrode I7 and the trailing electrode T
It is necessary to place the electrodes on the groove center line 5. If any electrode deviates significantly from the groove center line 5, it may cause undercuts, poor fusion, slag entrainment, etc. on the groove side walls 1, 1'. Defects are more likely to occur.

1層1バス積層する場合の開先間隙幅Gは、811から
18菖灘まで適用できるが、とくに14菖灘以上のとき
1層2パス積層が適している。
The groove gap width G in the case of laminating one layer and one bus can be applied from 811 to 18 irises, but one layer and two pass lamination is particularly suitable when the width is 14 irises or more.

開先間隙幅G(mu)に対する溶接入熱量H(MJ/m
)は溶接欠陥を防止するうえから適正範囲が存。
Welding heat input H (MJ/m
) has an appropriate range in order to prevent welding defects.

在する。Exists.

1層1パス積層の場合には、 m=・G −1−4< Hになると、両開先側壁1.1
′を十分に溶融できず、融合不良、スラグ巻き込みなど
の溶接欠陥を発生ずることがあり、これに反L  −−
G +12< Hでは入熱量が過大になってアンダーカ
ットが発生し、スラグはく離性が劣化するとともに、次
層溶接でこのアンダーカットが未熔融として残り、融合
不良の発生原因ともなる。
In the case of one-layer one-pass lamination, if m=・G −1-4<H, both groove side walls 1.1
′ may not be sufficiently melted, resulting in welding defects such as poor fusion and slag entrainment.
When G +12<H, the amount of heat input becomes excessive and an undercut occurs, deteriorating the slag releasability, and this undercut remains unmelted in the next layer welding, causing poor fusion.

一方、1層2パス積層の場合には、 の入熱量範囲にずべきであり、0.8(−・G+4)>
I+になると過小入熱量になって、再溶接ビードが開光
幅Gの中心近傍で活路せず、再溶接ビードの間にスラグ
巻き込め、融合不良を発生ずることがある反面 0.8
(−−・G +12) <I+  では、入熱量が過大
となり、オーバーラノブヒーFを発生しやすくなり、次
層溶接でこの部分を完全に熔融できず、融合不良、スラ
グ巻き込みを発生ずることもある。
On the other hand, in the case of one-layer, two-pass lamination, the heat input should be within the range of 0.8(-・G+4)>
When it becomes I+, the heat input becomes too small, and the rewelding bead does not survive near the center of the opening width G, and slag gets caught between the rewelding beads, which may result in poor fusion.
(--・G +12) <I+, the amount of heat input becomes excessive, and overflow nobuhi F is likely to occur, and this part cannot be completely melted in the next layer welding, resulting in poor fusion and slag entrainment. be.

なお、1層2パス積層の場合のワイヤの狙い位置は開先
側壁1あるいは1′から2+u〜6I1m程度はなした
ほうが好ましい。21よりも近づきすぎるとアンダーカ
ッI・を、6鰭よりはなれすぎると融合不良、スラグ巻
き込みを生しやすくなる。
In the case of one-layer, two-pass lamination, it is preferable that the wire is aimed at a distance of about 2+u to 6I1 m from the groove sidewall 1 or 1'. If it is too close to fin 21, it will cause undercuff I, and if it is too far from fin 6, it will tend to cause poor fusion and slag entrainment.

また、これまで述べた溶接入熱量IIは、電流、電圧、
溶接速度によって算出できるが、スプレー移行で、なお
かつ安定したワ・イヤ送給速度にするには適正電流がワ
イヤ径によって変化する。この発明の方法で採用しろる
溶接条件範囲の一例を示すと表1に示す通りであり、溶
接速度は適正入熱量になるように調整することができる
In addition, the welding heat input II described above is based on current, voltage,
It can be calculated based on the welding speed, but in order to achieve spray transfer and a stable wire feeding speed, the appropriate current changes depending on the wire diameter. An example of the range of welding conditions that can be employed in the method of the present invention is shown in Table 1, and the welding speed can be adjusted to provide an appropriate amount of heat input.

表1 各ワイヤ径に対する適用可能な溶接条件範囲なお
、先行電極I、および後行電極Tのワイヤ径、溶接条件
は適宜組合せることもできる。
Table 1 Applicable welding condition range for each wire diameter Note that the wire diameters and welding conditions of the leading electrode I and the trailing electrode T can be combined as appropriate.

先行電極の溶接進行方向に対する角度θ、と後行電極の
それに対する角度θ、は溶接進行方向に対して前方(→
−)もしくは(−)に±20°の範囲で8周整できる。
The angle θ of the leading electrode with respect to the welding direction and the angle θ of the trailing electrode with respect to that are the front (→
-) or (-) can be adjusted 8 times within a range of ±20°.

(実施例) 大施鼾 板厚50龍の鋼板(0,16χC,0,33χSi、 
 1.23χMn。
(Example) Steel plate with a thickness of 50 mm (0.16 χC, 0.33 χSi,
1.23χMn.

0.007χP、 0.004χS、 0.51χMo
、 0.024χA7りに第3図に示す形状 (t =
50mm、 t+=2o n、  θ−26)のU溝を
加工し、表2の溶接材料を用いて2電極SAWを行い、
各層の目視検査および3層溶接後X線透過試験により溶
接欠陥発生状況について調べた。その溶接条件と溶接欠
陥の有無を表3に示す。なお、溶接電源はAC−ACの
11■合せで、■結線(60°位相差)として、1層1
パス溶接し、その溶接長さは5層cmで行った。
0.007χP, 0.004χS, 0.51χMo
, 0.024χA7 has the shape shown in Figure 3 (t =
A U-groove of 50mm, t+=2on, θ-26) was machined, and two-electrode SAW was performed using the welding materials in Table 2.
The occurrence of welding defects was investigated by visual inspection of each layer and by an X-ray transmission test after three-layer welding. Table 3 shows the welding conditions and the presence or absence of welding defects. In addition, the welding power source is an AC-AC 11■ combination, and as ■ connection (60° phase difference), 1 layer 1
Pass welding was performed, and the welding length was 5 cm.

表2 ?栢釘A料の化学組成 IIItχ その結果を表3に示すようにこの発明によると溶接欠陥
は皆無で健全な溶接部が得られるが、適正入熱量1■の
範囲を逸脱した比較例では、スラグ巻き込め、融合不良
、高温われを発生し、良好な溶接部は得られなかった。
Table 2? As shown in Table 3, according to the present invention, a sound welded joint is obtained with no welding defects. However, in a comparative example in which the appropriate heat input amount was outside the range of 1■, slag Entrainment, poor fusion, and high-temperature cracks occurred, and a good welded joint could not be obtained.

大側M−η 実施例1と同しく板厚53mmで第3図に示す形状(t
 =50mm、 t、−30++m、  θ−2°)の
u 4を加工し、表2の溶接材料を用いて2電極SAW
を行い、各層の目視検査および4層溶接後X線透過試験
により溶接欠陥発生状況について調べた。その溶接条件
と溶接欠陥の有無を表4に示す。なお、ン合接電源はA
C−ACの組合せで、スニ1ノド結線(90°位相差)
として、1層2パス溶接し、その溶接長さは50c1で
行った。
Large side M-η The plate thickness is 53 mm as in Example 1, and the shape (t
=50mm, t, -30++m, θ-2°), and using the welding materials in Table 2, welded a two-electrode SAW.
The occurrence of welding defects was investigated by visual inspection of each layer and by an X-ray transmission test after four-layer welding. Table 4 shows the welding conditions and the presence or absence of welding defects. In addition, the junction power supply is A.
C-AC combination, 1-node connection (90° phase difference)
One layer was welded in two passes, and the welding length was 50c1.

その結果を表4に示すようにこの発明によると溶接欠陥
は皆無で健全な溶接部が得られるが、適正条件を逸脱し
た比較例では、スラグ巻き込み、融合不良などの欠陥を
発生し、良好な溶接部は得られなかった。
The results are shown in Table 4. According to the present invention, a sound welded part is obtained with no welding defects. However, in the comparative example where the proper conditions were deviated, defects such as slag entrainment and poor fusion occurred, and a good welded part was obtained. No welds were obtained.

夫硲凱す 板厚75mmの2−−Cr−IMO鋼板(0,14χC
50,22χSi、  0.48χMn、0.003χ
P、  0.004χS、  2.26XCr。
2-Cr-IMO steel plate (0,14χC
50,22χSi, 0.48χMn, 0.003χ
P, 0.004χS, 2.26XCr.

1.00!Mo、 0.13XNi) ニ第4図に示す
開先形状(を−75mm、 L=65 *va、  θ
−3°)を加工し、表5に示す溶接材料を組み合わせて
1層1バス積層の多層盛溶接を行った。溶接条件は表6
のごとくである。溶接金属の化学成分を表7に、機械的
性能を表8に示す。
1.00! Mo, 0.13
-3°), and the welding materials shown in Table 5 were combined to perform multilayer welding of one layer and one bath. Welding conditions are shown in Table 6.
It is as follows. The chemical composition of the weld metal is shown in Table 7, and the mechanical performance is shown in Table 8.

表7 ン治1鈴属のイヒソ肩■戊 表8 機橘町生H旨障検結果 *)SOCALl’hltype この発明の方法と、比較例の開先間隙G=14鰭の溶接
部には欠陥は認められず、良好であったが、比較例のG
=10mmではスラグ巻込め、高温ねれ、融合不良など
の欠陥が多数発生した。また板厚中央部から採取した衝
撃試験片で溶接金属の衝撃値は表8かられかる通り、比
較例のG−14m11では入熱量が大きいため低じん性
を示したが、この発明法では入熱量の低減が達成され、
極めてずぐれたしん性が得られている。
Table 7 Ihiso shoulder of Nji 1 Suzu genus Table 8 Results of inspection of defects in Kitachibana town *) SOCALl'hltype There are defects in the welded part of the groove gap G = 14 fin of the method of this invention and the comparative example. was not observed and was good, but the comparative example G
= 10 mm, many defects such as slag entrainment, high temperature twisting, and poor fusion occurred. In addition, as shown in Table 8, the impact value of the weld metal in the impact test piece taken from the center of the plate thickness showed low toughness in the comparative example G-14m11 due to the large heat input, but in this invention method, the impact value of the weld metal was low due to the large heat input. A reduction in the amount of heat is achieved,
Extremely excellent toughness is obtained.

(発明の効果) 以上の通り、従来、高大熱量で溶接施工されていた分野
において機械的性能を改善するために仙人熱化を図ると
溶接欠陥を多発することがあったのに反しこの発明によ
ると、溶滴移行形態をスプレー化することにより低入熱
条件でも安定した健全な溶接部が得られ、かつ、機械的
性能も大幅に改善しうる。
(Effects of the Invention) As described above, in the past, in fields where welding was performed using a high amount of heat, when welding was carried out to improve mechanical performance, welding defects often occurred, but this invention By changing the droplet transfer mode to a spray type, a stable and sound weld can be obtained even under low heat input conditions, and the mechanical performance can also be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電極配置を示す正面図と側面図
、 第2図は開先間隙幅Gに対する適正入熱量範囲の比較グ
ラフであり、第3図、第4図は実施例における開先形状
を示す断面図である。
Fig. 1 is a front view and side view showing the electrode arrangement according to the present invention, Fig. 2 is a comparison graph of the appropriate heat input amount range with respect to the groove gap width G, and Figs. It is a sectional view showing a shape.

Claims (1)

【特許請求の範囲】 1、溶接進行方向に先行電極と後行電極とを縦列とした
交流サブマージアーク溶接を、電極間距離は5〜20m
m、両電極間の位相差は60°又は90°として、各電
極のワイヤ径1.2〜3.0mm、電流密度60〜25
0A/mm^2の条件にて、開先間隙幅Gが8mm以上
の狭開先継手に対し、該開先間隙幅Gに応じる溶接熱量
H(KJ/cm)につき、 G≦18mmのとき、 8/6・G+4≦H≦8/6・G+12 を満足する1層1パス積層また、 G>14mmのとき、 0.8(8/6・G+4)≦H≦0.8(8/6・G+
12)を満足する1層2パス積層 による多層盛りを、適用することから成る狭開先2電極
サブマージアーク溶接方法。
[Claims] 1. AC submerged arc welding in which a leading electrode and a trailing electrode are arranged in tandem in the welding direction, and the distance between the electrodes is 5 to 20 m.
m, the phase difference between both electrodes is 60° or 90°, the wire diameter of each electrode is 1.2 to 3.0 mm, and the current density is 60 to 25
Under the condition of 0 A/mm^2, for a narrow groove joint with a groove gap width G of 8 mm or more, the welding heat amount H (KJ/cm) corresponding to the groove gap width G, when G≦18 mm, 8/6・G+4≦H≦8/6・G+12 One layer, 1 pass lamination that satisfies G+
12) A narrow gap two-electrode submerged arc welding method comprising applying multi-layer stacking by laminating one layer and two passes, satisfying the following.
JP97285A 1985-01-09 1985-01-09 Narrow groove 2-electrode submerged arc welding method Pending JPS61162272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP97285A JPS61162272A (en) 1985-01-09 1985-01-09 Narrow groove 2-electrode submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP97285A JPS61162272A (en) 1985-01-09 1985-01-09 Narrow groove 2-electrode submerged arc welding method

Publications (1)

Publication Number Publication Date
JPS61162272A true JPS61162272A (en) 1986-07-22

Family

ID=11488534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP97285A Pending JPS61162272A (en) 1985-01-09 1985-01-09 Narrow groove 2-electrode submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS61162272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200920A (en) * 2010-03-26 2011-10-13 Ihi Corp Method and apparatus for submerged arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200920A (en) * 2010-03-26 2011-10-13 Ihi Corp Method and apparatus for submerged arc welding

Similar Documents

Publication Publication Date Title
JP5014833B2 (en) MIG welding method for aluminum and steel
CA1144092A (en) Thick welded steel pipe of large diameter and production thereof
JP6025620B2 (en) Submerged arc welding method, method of manufacturing steel pipe using the submerged arc welding method, welded joint, and steel pipe having the welded joint
JP2007283363A (en) Method of manufacturing uoe steel pipe
JP2006116599A (en) Different material joining method
KR102126667B1 (en) Method for vertical narrow gas shield arc welding
RU2583971C2 (en) Submerged arc welding method for steel sheets
JP3801186B2 (en) Ultra-thick welded material by multilayer submerged arc welding
WO2017098692A1 (en) Vertical narrow gap gas shielded arc welding method
JP2002011575A (en) Welding method for steel pipe
JPS61162272A (en) Narrow groove 2-electrode submerged arc welding method
JPS60221173A (en) Production of clad pipe
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JPS5813269B2 (en) DC gas shield arc welding method
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JPS61115682A (en) Two-electrode submerged arc welding
JPH0428472B2 (en)
JP3624727B2 (en) Multi-layer submerged arc welding method for extra-thick steel plates
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JPS60154875A (en) Longitudinal seam welding of uoe steel pipe
JP2833279B2 (en) Steel pipe welding method
JPH08257752A (en) Three electrode two layer submerged arc welding of thick plate
KR101103295B1 (en) Joining method of different materials
JPH11277239A (en) Four-electrode one-side submerged arc welding method
JPH0532155B2 (en)