JPS61162220A - Plate thickness automatic control method - Google Patents

Plate thickness automatic control method

Info

Publication number
JPS61162220A
JPS61162220A JP60001949A JP194985A JPS61162220A JP S61162220 A JPS61162220 A JP S61162220A JP 60001949 A JP60001949 A JP 60001949A JP 194985 A JP194985 A JP 194985A JP S61162220 A JPS61162220 A JP S61162220A
Authority
JP
Japan
Prior art keywords
plate thickness
deviation
roll opening
roll
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60001949A
Other languages
Japanese (ja)
Inventor
Kazuaki Kaya
賀屋 和昭
Eiji Sumiya
住谷 英治
Tetsumi Harakawa
哲美 原川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60001949A priority Critical patent/JPS61162220A/en
Publication of JPS61162220A publication Critical patent/JPS61162220A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/165Control of thickness, width, diameter or other transverse dimensions responsive mainly to the measured thickness of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To perform the plate thickness control with high accuracy and high stability by controlling a roll opening adjusting device, etc. with using the influence coefficient of the deviation in roll openings against the plate thickness deviation at the outlet side calculated from the signal transmitted from a plate thickness gate and roll opening detector. CONSTITUTION:The device is composed of the X ray plate thickness gage 2 to measure the plate thickness of a strip 1, various rolls 3, 4, a roll opening detector 5, arithmetic unit 8, roll opening adjusting device 9 and rolling reduction screw driving device 7, etc. The plate thickness deviation at the outlet side and roll opening deviation are taken up to an arithmetic unit 8 from the thickness gage 2 of stand outlet side. The opening command value for making the plate thickness deviation at the outlet side in zero from the arithmetic equation is outputted to the opening adjusting device 9. The opening adjusting device 9 takes up the opening deviation and controls the roll opening so as to make the command value = deviation via the rolling reduction screw driving device 7. The plate thickness automatic control of high accuracy and high stability can be thus performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷間圧延機で用いられる自動板厚制御(AG
C)方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to automatic sheet thickness control (AG) used in cold rolling mills.
C) Regarding the method.

(従来技術と問題点) す、鋼業では近年に至りユーザーの品質への要求はまず
まず蔽しくなっている。一方、近年のオイルショック以
降、省エネルギ化が推進され種々の対策が立てられてい
るが、ごれらのりI策(低温加熱、バー厚増大など)は
ストリップ品質を悪化さ−Uる傾向にある。
(Conventional technology and problems) In recent years, users' demands for quality in the steel industry have become more or less obscure. On the other hand, since the oil crisis in recent years, energy conservation has been promoted and various measures have been taken, but the GORERA glue I measures (low temperature heating, increased bar thickness, etc.) tend to deteriorate strip quality. be.

冷間圧延工程ではストリップ製品の形状及び板厚が決定
される事から、従来より自動板■制御装置の高1.8i
能化、高応答化がIli進されている。第3図は自動板
厚制御装置の一例を示し、1はス) IJノブ、2は該
ストリップの板厚を測定するX線板厚計である。10は
圧延スタンドで3はそのワーり+:r−ル、4はバック
アップロール、5はロール開度検出器、6は自Wノ板厚
制御(A G C)装置、7は圧下スクリュー駆動装置
である。   ゛自動板厚制御(A G C)装置には
周知のようにビスラ方式とモニタ方式があり、ビスラ方
式ではゲージメータの式h=so+P/Mを用いて出(
則板厚りが所望値のときの圧延荷重Pを、ロール間隙S
及びミル定数Mより算出し、該荷重を七ノドしくタンデ
ムミルではそれで圧延しかつ修正して最終段出側板厚が
所定値になったときの圧延荷重をロックオンする、等の
方法もとられる)、圧延中は圧延荷重を測定して設定値
からの偏差に応してロール間隙を修正し、ひいては出側
板厚りが一定にな乞ようにする。このビスラ方式では板
厚の実δIl+はしないので板厚計が不要となり、また
板厚検出にロールから板厚計までのストリップ走行時間
に対応する遅れ時間が導入されないなどの利点があるが
、古1算により板厚を求めるので使用パラメータ値の変
化に対応しにくく実際値とはずれる傾向がある。この点
モニタ方式では板厚を実測し、所望値からのずれにより
圧Fを制御して所望の出側板厚がizIられるJ、)に
するので、板厚81が必要という間開はあるが、実際値
からずれるという問題はない。第3図はモニタ方式であ
って、板厚計2からのスタンド出側実測板厚をAGC装
置6が取込み、扱jV所望(pjからの偏差を求めて該
偏差により圧下スクリュー駆動装置7を介してLJ−小
間隙のib制御を行なう。このA C,C系の機械系の
伝達関数図目第4図の如くなる。
In the cold rolling process, the shape and thickness of the strip product are determined, so conventionally the height of the automatic sheet control device is 1.8i.
Improvements in functionality and high response have been made. FIG. 3 shows an example of an automatic plate thickness control device, in which 1 is an IJ knob, and 2 is an X-ray plate thickness meter for measuring the thickness of the strip. 10 is a rolling stand, 3 is its warp +:r-roll, 4 is a backup roll, 5 is a roll opening degree detector, 6 is an automatic double plate thickness control (AGC) device, and 7 is a rolling screw drive device It is. As is well known, there are two types of automatic plate thickness control (AGC) systems: the Bisla method and the monitor method.
The rolling load P when the plate thickness is the desired value is determined by the roll gap S
In a tandem mill, the load is calculated from the mill constant M, and in a tandem mill, the rolling load is locked on when the final stage exit plate thickness reaches a predetermined value. ), during rolling, the rolling load is measured and the roll gap is corrected according to the deviation from the set value, so that the thickness of the sheet at the exit side remains constant. This Bisla method does not calculate the actual plate thickness δIl+, so there is no need for a plate thickness gauge, and it also has the advantage of not introducing a delay time corresponding to the strip running time from the roll to the plate thickness gauge to detect the plate thickness. Since the plate thickness is determined by calculation, it is difficult to respond to changes in the values of the parameters used and tends to deviate from the actual value. In this regard, in the monitor method, the plate thickness is actually measured and the pressure F is controlled according to the deviation from the desired value to achieve the desired outlet plate thickness, so although there is a gap where a plate thickness of 81 is required, There is no problem of deviation from the actual value. FIG. 3 shows a monitor system in which the AGC device 6 takes in the actual plate thickness at the exit side of the stand from the plate thickness gauge 2, calculates the deviation from the desired value (pj), and uses the deviation to determine the thickness of the plate via the screw drive unit 7. The ib control of the LJ-small gap is carried out using this method.The transfer function diagram of the mechanical system of the AC and C systems is shown in FIG.

第4図でゾL:1ツク11は圧下系(圧下スクリュー駆
動装;H等)の伝達関数を示し、ブl’l ’7り12
゜13はスタンド10の伝達関数を示す。圧下制御系は
AGC装置6などからの制御信号SSを受けてロール間
隙修正量ΔSを生し、これにより出側板厚が変るが、そ
の程度はブ[」ツク12で表わされる。即らΔSにM/
(M+Q)を乗じたものが出側板厚偏差−Δh1になる
。出1ull板厚偏差は、入側板厚が変っても生し、こ
れによる分Δh 2は入側板厚偏差をΔt(iとすれば
hl(i −Q/ (M+Q)になる。従って全体の出
側板厚偏差ΔhはΔ 11+−Δ 112−Δ hl となる。この(1)式から出側板厚偏差Δhを零にする
にはil1式の右辺をOにする、即ちΔS=Q・Δ!I
i/M         ・・・・・・(2)にすれば
よい。この(2)式によるΔSの算出にはミル剛性定数
M及びストリップ平均変形抵抗Qを知る必要があり、前
者はロール替えなどで変り、後トtはスキン1′マーク
などで変り、これらの正確な値は容易には得られない。
In Fig. 4, 11 indicates the transfer function of the reduction system (reduction screw drive system;
13 indicates the transfer function of the stand 10. The rolling control system generates a roll gap correction amount ΔS in response to a control signal SS from an AGC device 6 or the like, and this changes the exit side plate thickness, the degree of which is represented by a block 12. That is, M/ to ΔS
The value multiplied by (M+Q) is the outlet side plate thickness deviation -Δh1. Output 1ull plate thickness deviation occurs even if the input side plate thickness changes, and the amount due to this Δh2 becomes hl(i - Q/ (M + Q) if the input side plate thickness deviation is Δt(i). Therefore, the overall output The side plate thickness deviation Δh is Δ 11+−Δ 112−Δ hl. From this formula (1), to make the exit side plate thickness deviation Δh zero, set the right side of the il1 formula to O, that is, ΔS=Q・Δ!I
i/M... (2) should be used. Calculation of ΔS using equation (2) requires knowing the mill stiffness constant M and the strip average deformation resistance Q. The former changes due to roll changes, etc., and the rear t changes due to skin 1' marks, etc., so it is necessary to know the mill stiffness constant M and strip average deformation resistance Q. values are not easily obtained.

そこでこれらは一定値とするのが普通であるが、勿論こ
れでは誤差が入る。
Therefore, it is common practice to set these values to constant values, but of course this introduces errors.

ス1−リップのトップ、ボトム、及びスキ、ドマーク部
にお+Jるストリップ平均変形抵抗の変化に伴なう制御
装置の性能悪化を低減すべく、近年、ストリップ平均変
形抵抗を推定し、この推定結果に基づいて制御装置の等
価ゲインを適応修正する方法が提案されている。この方
法は有効であるが、これを実施するには冷間圧延機の前
、後面にストリップ板厚計を設置する必要があり、第3
図のような冷間圧延jl 18面にしかストリップ板厚
古1がない場合は上記修正方法は採用できない。圧延機
後面にのみ板厚81を備える圧延機は、単独型の圧延機
又はタンデムミルの初段圧延機などに見られる。
In recent years, in order to reduce the performance deterioration of the control device due to changes in the strip average deformation resistance at the top, bottom, gap, and mark portions of the slip, the average strip deformation resistance has been estimated in recent years, and the estimated A method has been proposed to adaptively modify the equivalent gain of the controller based on the results. Although this method is effective, it is necessary to install strip thickness gauges at the front and rear of the cold rolling mill.
If the strip plate thickness 1 is present only on the 18th surface of the cold rolling jl as shown in the figure, the above correction method cannot be adopted. A rolling mill having a plate thickness of 81 only on the rear surface of the rolling mill is found in stand-alone rolling mills or first-stage rolling mills of tandem mills.

本発明はか\る点を改善すべくなされたもので、冷間圧
延機後面にしかストリップ板厚81がない場合にも適用
できる、高精度自動板厚制御装置を提供しようとするも
のである。
The present invention has been made to improve these points, and aims to provide a high-precision automatic plate thickness control device that can be applied even when the strip thickness is 81 only at the rear of the cold rolling mill. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ロール開度調整装置とロール開度検出器を備
え、また圧延機出側に板厚計を備えた冷間圧延機の自動
板厚制御方法において、該板厚計及びロール開度検出器
からの信号を取込み、演算式によりロール開度偏差の出
側板厚偏差に対する影響係数及び板厚外乱を算出し、算
出した影響係数及び板厚外乱から出側板厚偏差を零とす
るロール開度指令値を求み、該指令値をロール開度調整
装置に与えること及びロール開度調整装置とロール開度
検出器を備え、また圧延機出側に板厚計を備えたん間圧
延機の自動板厚制御方法において、該板厚81及び1.
J−ル開度槙出器からの信号を取込み、f4算式により
ロール開度偏差の出側板厚偏差に対する影響係数を算出
し、算出した影響係数により、1」−ル開度調整装置及
び圧延機を含む圧下調整による自動板厚制御系のループ
ゲインを適応修正することを特徴とするものである。
The present invention provides an automatic plate thickness control method for a cold rolling mill that is equipped with a roll opening adjustment device, a roll opening detector, and a plate thickness gauge on the exit side of the rolling machine. The signal from the detector is taken in, and the influence coefficient of the roll opening deviation on the outlet side plate thickness deviation and the plate thickness disturbance are calculated using an arithmetic formula, and the roll opening that makes the outlet side plate thickness deviation zero is calculated from the calculated influence coefficient and plate thickness disturbance. A rolling mill equipped with a roll opening adjustment device, a roll opening detector, and a plate thickness gauge on the exit side of the rolling mill. In the automatic plate thickness control method, the plate thicknesses 81 and 1.
The signal from the J-ru opening rolling device is taken in, and the influence coefficient of the roll opening deviation on the exit side plate thickness deviation is calculated using the f4 formula. This system is characterized by adaptively correcting the loop gain of the automatic plate thickness control system by adjusting the rolling reduction including the following.

〔実施例〕〔Example〕

前記+1j式の出側、入側板厚偏差、ロール開度偏差を
時間関数で表わす(ΔS、ΔHiに着目して)と、下記
(3)式になる。こ\でIは時間パラメータである。
When the outlet side, inlet side plate thickness deviation, and roll opening degree deviation of the above +1j equation are expressed as a time function (focusing on ΔS and ΔHi), the following equation (3) is obtained. Here, I is a time parameter.

この(3)式でM、Qは時々刻々変動するから(4)式
に変更する。
Since M and Q in this equation (3) change from time to time, it is changed to equation (4).

Δh(1)−ΔH(1) −a(I)Δ5(1)十δ 
(1)=・・−・(41ΔI+(+)−ΔHi(1)・
Q/(M十〇)a  (1)−M/ (M+Q) δ (1):ホワイ1−ノイズ この(4)式は時間的に変化するM/ (M+Q)をΔ
h (1)に対するΔ5(1)の影響係数a  (1)
とし、カルマルフィルタの手法でこれをIII定しよう
とするものである。ホヮイ(・ノイズδ 白)はΔ5(
1)などの実測値に含まれるノイズに対処するものであ
り、E(δ(+) δ(J))−σ2δ1」の性質があ
り、そしてこ\ではE(δ(■))−〇とする。こ−で
Eは統81的平均、σは標準偏差、JはIより離れた時
刻を示す。パラメータa(I)、ΔI+(1)について
は(5)式の仮定を置く。
Δh (1) - ΔH (1) -a (I) Δ5 (1) 10 δ
(1)=・・・-(41ΔI+(+)−ΔHi(1)・
Q/(M〇)a (1)-M/ (M+Q) δ (1): Why 1-Noise This equation (4) expresses the time-varying M/ (M+Q) by Δ
Influence coefficient a (1) of Δ5(1) on h (1)
This is an attempt to determine this using the Kalmar filter method. White (・noise δ white) is Δ5 (
1), etc., and has the property of ``E(δ(+) δ(J))-σ2δ1'', and in this case, E(δ(■))-〇. do. Here, E is the uniform average, σ is the standard deviation, and J is the time distant from I. Regarding the parameters a(I) and ΔI+(1), equation (5) is assumed.

これらのf41. i51式から次の(6)式が得られ
る(この導出過程は相当に複雑なので結果のみ示す)。
These f41. The following equation (6) can be obtained from the i51 equation (this derivation process is quite complicated, so only the results are shown).

(A  h(1) −A r((1−’1 )  + 
A S([) 二゛ (1−1))・・・・・・(6) 即らΔS (1)とΔh (1)を知れば入側板厚偏差
ΔH(1)及び影響係数a  (1)を求めることがで
き、これらが求まれば(4)式がら出側板厚偏差Δh(
1)を零にするためのロール開度指令値Δ5(1)rが
下式のように求まる。
(A h(1) -A r((1-'1) +
A S ([) 2゛ (1-1)) (6) That is, if you know ΔS (1) and Δh (1), you can calculate the entry side plate thickness deviation ΔH (1) and the influence coefficient a (1 ) can be obtained, and once these are obtained, the exit side plate thickness deviation Δh (
The roll opening command value Δ5(1)r for making 1) zero is determined as shown in the following formula.

ΔS(+)r−ΔI((1) / a  (1)   
・=・f?1か\る制御を行なうAGC系を第1図に示
す。この図で第3図と同じ部分には同し符号を付してあ
り、そして8は演算装置で(第3図のAGC装置6に相
当)、スタンド出側板厚計2より出側板厚偏差Δh N
)をまたロール開度検出器5よりロール開度偏差ΔS 
(1)を取込み、(6)式の演算を行なってΔH(1)
及びa  (1)を算出し、更に(7)式の演算を行な
ってΔh (1)を0にするための開度指令値Δ5(1
)rを出力する。9はロール開度調整装置で、該指令値
Δ5(1)r及びロール開度偏差ΔS (1)を取込み
、圧下スクリュー駆動装置7を介してΔS (1) =
Δ5(1)rになるようにロール開度を制御する。
ΔS(+)r−ΔI((1)/a(1)
・=・f? FIG. 1 shows an AGC system that performs the following control. In this figure, the same parts as in FIG. 3 are given the same reference numerals, and 8 is a calculation device (corresponding to the AGC device 6 in FIG. 3). N
) and the roll opening deviation ΔS from the roll opening detector 5.
Take in (1) and calculate ΔH(1) using equation (6).
and a (1), and further calculates equation (7) to set the opening command value Δ5(1) to 0.
) outputs r. Reference numeral 9 denotes a roll opening degree adjusting device, which takes in the command value Δ5(1)r and the roll opening degree deviation ΔS (1), and converts it via the reduction screw drive device 7 to ΔS (1) =
The roll opening degree is controlled so that Δ5(1)r.

影響係数a (1)を用いて従来より行なわれているA
GC系の構成を示すと第2図になる。ブロック16、加
算点、及び板厚外乱ΔI((1)が圧延機10を示して
おり、ブロック16の入力信号がロール開度偏差ΔS 
(1)である。ブロック14はロール開度調整装置9み
、ブロック15は圧下スクリュー駆動装置7の伝達関数
を示しており、Δh refはスタンド10の出側板厚
変更の目標値、Δh(1)は出側板厚偏差の実測値であ
り、△h(1)がロール開度調整装置9に負帰還され、
該装置9の出力が圧下スクリュー駆動装置7を動作さ”
已、ロール開度偏差Δ5(1)を生しる。
A, which is conventionally performed using the influence coefficient a (1)
Figure 2 shows the configuration of the GC system. Block 16, addition point, and plate thickness disturbance ΔI ((1) indicates the rolling mill 10, and the input signal of block 16 is the roll opening deviation ΔS
(1). Block 14 shows the transfer function of the roll opening adjustment device 9, block 15 shows the transfer function of the reduction screw drive device 7, Δh ref is the target value for changing the thickness of the outlet side of the stand 10, and Δh(1) is the deviation of the thickness of the outlet side. is the actual measured value, and Δh(1) is negatively fed back to the roll opening adjustment device 9,
The output of said device 9 operates the reduction screw drive device 7.
However, a roll opening deviation Δ5(1) is produced.

このような自動板厚制御系において、−F記のようにし
て影響係数a (1)=M/ <M→Q)が推定された
ら、調整装置9の利得Gと該影響係数a(1)との槓G
−a(1)が一定になるように利得Gを調整すれば、こ
の自動板厚系のループゲインが一定になり、安定度を高
め及び又は連応性を向上さゼることができる。この場合
は、演算装置△    △      Δ 8が算出したΔ11 (1)、  a  (1)のうち
a (1)しか利用しないが、第2図のGを変えるのみ
であるから既設自動板厚制御系を殆んど改変する必要が
ない(調整装置9の増幅器の利得を可変にするだ+J)
という利点がある。なお利得調整は、レジスタとI) 
/ A変換器と該変換器のアナログ出力で利得制御され
る増幅器を用いると、言1算機により所要数値を該レジ
スタに七ノドするだ+J容易に行なえる。この利得調整
に対して第1図の方式は、第2図で言えばΔ5(1)r
とΔ5(1)の差をブロック15に入力し、ブロック1
4及び(Δhref−Δh(+))の演W器は取除く、
など若干の改変が必要になる。但し第1図では板厚外乱
ΔH(+)に夕1してそれを打ち消すΔS (1)を算
出して直ちに圧下制御を行なうので出側板厚は時間的に
も変化しない(△h(1)=0)ようにすることができ
るが、第2図ごはΔ11(1)によりΔh(1)が生し
、それが負帰還されて0に修正されるという経過を経る
のでΔh(1)iJ先ず立上りやがて消滅するという変
化を行な・う。
In such an automatic plate thickness control system, if the influence coefficient a (1)=M/<M→Q) is estimated as shown in −F, then the gain G of the adjustment device 9 and the influence coefficient a(1) Tono G
If the gain G is adjusted so that -a(1) is constant, the loop gain of this automatic plate thickness system becomes constant, and stability and/or coordination can be improved. In this case, only a (1) of Δ11 (1), a (1) calculated by the arithmetic unit △ △ Δ 8 is used, but since the only change is G in Fig. 2, the existing automatic plate thickness control system can be used. There is almost no need to modify (just make the gain of the amplifier of adjustment device 9 variable)
There is an advantage. Note that the gain adjustment is done using the register and I)
Using a /A converter and an amplifier whose gain is controlled by the analog output of the converter, it is easy to input the required value into the register using a calculator. For this gain adjustment, the method in Figure 1 is Δ5(1)r in Figure 2.
and Δ5(1) is input into block 15, and block 1
4 and the W operator of (Δhref−Δh(+)) are removed,
Some modifications will be required. However, in Fig. 1, the plate thickness disturbance ΔH(+) is calculated by ΔS (1), which cancels it, and the reduction control is immediately performed, so the exit side plate thickness does not change over time (△h(1) = 0), but in Figure 2, Δh(1) is generated by Δ11(1), which is then negatively fed back and corrected to 0, so Δh(1)iJ Let's make a change that first rises and then disappears.

(発明の効果〕 以上説明したように本発明では、実測出側板厚偏差と同
ロール開度偏差を用いて、ロール開度調整の出側板厚に
対する影響係数を板厚外乱(入側板厚偏差が住しる出側
Fj、WJ偏差)と共に演W式により算出し、これらに
より所要ロール開度修正量を求めて該11y正量により
1コ一ル開度調整を行なうので、又は上記算出した影響
係数により、圧下による自動板厚制御系のループゲイン
を一定に適応制御するので、ミル剛性係数及びスl−リ
ップ平均変形抵抗の変動にもかかわらず高精度、高安定
度の自動板厚制御を行なうことができる。また取り込む
信号は出側板厚とロール開度のみなので、入側板7言1
を有しない圧延機にも適用できる。
(Effects of the Invention) As explained above, in the present invention, the influence coefficient of the roll opening adjustment on the exit side plate thickness is calculated by the thickness disturbance (inlet side plate thickness deviation) using the actually measured exit side plate thickness deviation and the same roll opening deviation. The required roll opening correction amount is calculated using the formula W along with the exit side Fj and WJ deviation), and the required roll opening correction amount is calculated using the 11y correct amount to adjust the opening of one coil, or the influence calculated above The loop gain of the automatic plate thickness control system due to rolling reduction is adaptively controlled to a constant value by the coefficient, so automatic plate thickness control with high precision and high stability can be achieved despite fluctuations in the mill stiffness coefficient and slip average deformation resistance. In addition, since the signals to be captured are only the exit side plate thickness and roll opening degree, the input side plate 7 words and 1
It can also be applied to rolling mills that do not have

【図面の簡単な説明】[Brief explanation of drawings]

第1図及びff12図は本発明を説明する説明図および
ブロック図、第3図及び第4図は従来のAGC系の説明
図およびブロック図である。 図面で9はロール開度調整装置、5はロール開度検出器
、2は板厚81、Δ5(1)’はロール開度指令値であ
る。
1 and ff12 are explanatory diagrams and block diagrams for explaining the present invention, and FIGS. 3 and 4 are explanatory diagrams and block diagrams for a conventional AGC system. In the drawing, 9 is a roll opening adjustment device, 5 is a roll opening detector, 2 is a plate thickness 81, and Δ5(1)' is a roll opening command value.

Claims (2)

【特許請求の範囲】[Claims] (1)ロール開度調整装置とロール開度検出器を備え、
また圧延機出側に板厚計を備えた冷間圧延機の自動板厚
制御方法において、 該板厚計及びロール開度検出器からの信号を取込み、演
算式によりロール開度偏差の出側板厚偏差に対する影響
係数及び板厚外乱を算出し、算出した影響係数及び板厚
外乱から出側板厚偏差を零とするロール開度指令値を求
め、該指令値をロール開度調整装置に与えることを特徴
とする自動板厚制御方法。
(1) Equipped with a roll opening adjustment device and a roll opening detector,
In addition, in an automatic plate thickness control method for a cold rolling mill equipped with a plate thickness gauge on the exit side of the rolling mill, signals from the plate thickness gauge and roll opening detector are taken in, and a calculation formula is used to determine the roll opening deviation of the exit side plate. Calculate the influence coefficient and plate thickness disturbance on the thickness deviation, determine the roll opening command value that makes the exit side plate thickness deviation zero from the calculated influence coefficient and plate thickness disturbance, and give the command value to the roll opening adjustment device. An automatic plate thickness control method characterized by:
(2)ロール開度調整装置とロール開度検出器を備え、
また圧延機出側に板厚計を備えた冷間圧延機の自動板厚
制御方法において、 該板厚計及びロール開度検出器からの信号を取込み、演
算式によりロール開度偏差の出側板厚偏差に対する影響
係数を算出し、算出した影響係数により、ロール開度調
整装置及び圧延機を含む圧下調整による自動板厚制御系
のループゲインを適応修正することを特徴とした自動板
厚制御方法。
(2) Equipped with a roll opening adjustment device and a roll opening detector,
In addition, in an automatic plate thickness control method for a cold rolling mill equipped with a plate thickness gauge on the exit side of the rolling mill, signals from the plate thickness gauge and roll opening detector are taken in, and a calculation formula is used to determine the roll opening deviation of the exit side plate. An automatic plate thickness control method characterized by calculating an influence coefficient on thickness deviation and adaptively correcting the loop gain of an automatic plate thickness control system by rolling reduction adjustment including a roll opening adjustment device and a rolling mill using the calculated influence coefficient. .
JP60001949A 1985-01-09 1985-01-09 Plate thickness automatic control method Pending JPS61162220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001949A JPS61162220A (en) 1985-01-09 1985-01-09 Plate thickness automatic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001949A JPS61162220A (en) 1985-01-09 1985-01-09 Plate thickness automatic control method

Publications (1)

Publication Number Publication Date
JPS61162220A true JPS61162220A (en) 1986-07-22

Family

ID=11515856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001949A Pending JPS61162220A (en) 1985-01-09 1985-01-09 Plate thickness automatic control method

Country Status (1)

Country Link
JP (1) JPS61162220A (en)

Similar Documents

Publication Publication Date Title
JPS61283406A (en) Method for compensating and controlling crown control of multi-stage rolling mill
JPS61162220A (en) Plate thickness automatic control method
JPH0569021A (en) Method and device for controlling rolling mill
JP2803573B2 (en) Manufacturing method of tapered steel plate
JPS6124082B2 (en)
JPH02117709A (en) Method for controlling sheet thickness in rolling mill
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPS63137510A (en) Strip thickness control method for hot continuous rolling mill
JP3205175B2 (en) Strip width control method in hot rolling
JP3344092B2 (en) Rolling machine tension control method
JP2950182B2 (en) Manufacturing method of tapered steel plate
JPS6024725B2 (en) Hot rolling mill strip width control method and device
JPH10225701A (en) Method for automatically controlling dimension in universal rolling of shape
JPH03138002A (en) Wet rolling method
JPH0441010A (en) Method for controlling edge drop in cold rolling
JPS63174711A (en) Device for controlling plate thickness in rolling mill
SU1013009A1 (en) Apparatus for stabilizing rolled stock thickness
JPH10263658A (en) Flatness control method of rolled stock in hot finishing mill
JPS62289307A (en) Sheet width controlling method in rolling mill
JPS63238917A (en) Tension correcting automatic plate thickness controller
JPH04100625A (en) Method for automatically controlling sheet thickness
JPH0413410A (en) Method for automatically controlling plate thickness in continuous mill
JPH0890030A (en) Method for controlling width of rolling stock
JPH06114427A (en) Method for automatically controlling sheet thickness in roll mill
JPH0957322A (en) Method for controlling plate width in hot rolling