JPS61162022A - Reflection/refraction type zoom lens - Google Patents

Reflection/refraction type zoom lens

Info

Publication number
JPS61162022A
JPS61162022A JP60003032A JP303285A JPS61162022A JP S61162022 A JPS61162022 A JP S61162022A JP 60003032 A JP60003032 A JP 60003032A JP 303285 A JP303285 A JP 303285A JP S61162022 A JPS61162022 A JP S61162022A
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
moving
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60003032A
Other languages
Japanese (ja)
Inventor
Shigeru Aoki
滋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60003032A priority Critical patent/JPS61162022A/en
Publication of JPS61162022A publication Critical patent/JPS61162022A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To make the title device compact by moving the 2nd lens group having negative refractive force and the 3rd lens group having positive refractive force to the image side and the object side respectively to execute power variation and moving the 4th lens group having negative refractive force and the 5th lens group having positive refractive force to reduce the shading of light flux outside the axis. CONSTITUTION:The 3rd positive lens group is moved to the object side in accordance with the increase of a focal distance and at lease one out of the 4th negative lens group and the 5th positive lens group is simultaneously moved to prevent the image surface from movement and to attain power variation. Negative refractive force is applied to the lens group (2nd lens group) arranged in the front of the 3rd lens group. The 2nd lens group can be moved to execute focusing, but it should be fixed at the time of power variation. In addition, the 2nd lens group is separated far from an attached main mirror to strengthen the power. Consequently, the lens diameter of the 2nd lens group is contracted and the whole optical system can be reduced in size.

Description

【発明の詳細な説明】 本発明は屈折系と反射系を有した反射屈折式ズームレン
ズに関し、特に反射系と屈折系との間に配置した一部の
レンズ群を移動させて変倍を行った高性能な反射屈折式
ズームレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catadioptric zoom lens having a refractive system and a reflective system, and in particular, a zoom lens that changes magnification by moving a part of the lens group arranged between the reflective system and the refractive system. This invention relates to a high-performance catadioptric zoom lens.

従来より反射系と屈折系を有した反射屈折式ズームレン
ズは長焦点用のズームレンズに適しており各種の撮影レ
ンズに用いられる傾向にある。例えば特開昭48−42
509号公報では焦点距9500 m mから2000
mmまでの望遠用の反射屈折式ズームレンズが提案され
ている。前記のズームレンズは変倍を副鏡から数えて第
2番目と第3番目の2つのレンズ群を移動させて行って
いる。しかしながらこのズームレンズの場合、副鏡の次
のレンズ群が正のパワーを持つため小型化に不利である
Conventionally, catadioptric zoom lenses having a reflective system and a refractive system are suitable for long focal length zoom lenses, and tend to be used in various photographic lenses. For example, JP-A-48-42
In Publication No. 509, the focal length ranges from 9500 mm to 2000 mm.
A catadioptric zoom lens for telephoto viewing up to mm has been proposed. The zoom lens described above changes magnification by moving two lens groups, the second and third, counting from the secondary mirror. However, in the case of this zoom lens, the lens group following the secondary mirror has positive power, which is disadvantageous for miniaturization.

一般の反射屈折・式のズームレンズはレンズ系中を光束
が往復するので光束のケラレが多くなり所定の明るさを
有する光学系を得ようとすると光学系全体が大型化する
傾向がある。この為光束のケラレを少なくする為に変倍
の為のレンズ群の屈折力を強めて移動層を少なくすると
変倍に伴う収差変動が大きくなり更に高精度の機械的構
造が要求されてくる。又屈折力を弱めると所定の変倍比
を得るのに移動層を増加させねばならずレンズ系が大型
化する傾向があった。
In a general catadioptric type zoom lens, the light beam reciprocates in the lens system, so the light beam tends to be vignetted, and if an attempt is made to obtain an optical system with a predetermined brightness, the entire optical system tends to become larger. Therefore, in order to reduce vignetting of the light beam, if the refractive power of the lens group for zooming is strengthened and the moving layer is reduced, aberration fluctuations due to zooming will increase, and a more precise mechanical structure will be required. Furthermore, when the refractive power is weakened, the number of moving layers must be increased in order to obtain a predetermined variable power ratio, which tends to increase the size of the lens system.

(目的) 本発明は高速のケラレが少なくしかも変倍により収差変
動の少ない小型の反射屈折式ズームレンズの提供を目的
とする。
(Objective) It is an object of the present invention to provide a small catadioptric zoom lens with less high-speed vignetting and less variation in aberrations due to zooming.

この目的を達成するため本反射屈折式ズームレンズは光
の進行方向に従って屈折系と主、副鏡の反射系より成る
正の屈折力の第1レンズ群、前記第1レンズ群の主鏡と
副鏡との間に位置した負の屈折力の第2レンズ群、正の
屈折力の第3レンズ群、負屈折力の第4レンズ群そして
正屈折力の第5レンズ群を順置し、第3レンズ群を光軸
に沿って移動し、これと同時に第3レンズ群と第4レン
ズ群の少なくとも一方を移動するものである。そして上
記構成では焦点距離が増加するに従って正の第3レンズ
群へ物体側へ移動させ、同時に負の第4レンズ群と正の
第5レンズ群の少なくとも一方を移動して像面移動を防
止するとともに変倍を行い、又第3レンズ群の前方に配
されたレンズ群(第2レンズ群)に負屈折力を付与した
点に特徴を持つ、この第2レンズ群は移動させてフォー
カシングを行うこともできるが、変倍時は固定である。
In order to achieve this purpose, this catadioptric zoom lens has a first lens group with positive refractive power consisting of a refractive system, a main mirror, and a secondary mirror reflection system according to the traveling direction of the light, a primary mirror of the first lens group, and a secondary mirror. A second lens group with negative refractive power located between the mirror, a third lens group with positive refractive power, a fourth lens group with negative refractive power, and a fifth lens group with positive refractive power are arranged in order, The three lens groups are moved along the optical axis, and at the same time, at least one of the third lens group and the fourth lens group is moved. In the above configuration, as the focal length increases, the positive third lens group is moved toward the object side, and at the same time, at least one of the negative fourth lens group and the positive fifth lens group is moved to prevent image plane movement. The lens group (second lens group) placed in front of the third lens group has negative refractive power.This second lens group performs focusing by moving. However, it is fixed when changing the magnification.

第2レンズ群を固定したのは、第1レンズ群からの収斂
光束を受けてアフォーカルに近づける作用を持ったレン
ズ群のため、変倍用に移動すると収差変動が大きく発生
しやすいからであり、また機械構造上主鏡の像側から主
鏡の開口を通して他レンズ群と連動させる構造になりや
すく、主鏡から遠いと移動機構に複雑さと精度が要求さ
れるためで・ある、。
The second lens group was fixed because it receives the convergent light beam from the first lens group and has the effect of bringing it closer to afocal, so if it is moved for zooming, it is likely to experience large fluctuations in aberrations. Also, due to the mechanical structure, it is easy to link other lens groups from the image side of the primary mirror through the aperture of the primary mirror, and if it is far from the primary mirror, the movement mechanism requires complexity and precision.

尚、第2レンズ群を主鏡から遠く離し、しかもパワーを
強くすることは第2レンズ群のレンズ径を縮小して光学
系全体を小型化するのに重要な役目を持つ。
Note that locating the second lens group far from the primary mirror and increasing its power plays an important role in reducing the lens diameter of the second lens group and downsizing the entire optical system.

また第2レンズ群を負で固定にして発散収の度合の暖め
られた光束が第3レンズ群に入射する様にしたから第3
レンズ群の移動による収差変動が抑制される。更に第2
レンズ群はその配置位置からいってできるだけ小さくす
るのが望ましいが、第3レンズ群以降のレンズ群もレン
ズ径をできるだけ小さく且つ平均化するのが、機械構造
上の精度を緩和し、収差変動を小さくするのに役立つ。
In addition, the second lens group is fixed at a negative value so that the light beam warmed by the degree of divergence and convergence enters the third lens group.
Aberration fluctuations due to movement of the lens group are suppressed. Furthermore, the second
It is desirable to make the lens group as small as possible considering its arrangement position, but it is also recommended to make the lens diameters of the third lens group and subsequent lens groups as small as possible and average them to reduce mechanical structural precision and reduce aberration fluctuations. Helps make it smaller.

また更に本発明において収差補性上好ましくは前記第3
レンズ群の焦点距離をf  変倍にm゛ 伴う移動層を■  広角端のズーム位置におけm ゛ る全系の焦点距離をf  ズーム比をZとするW゛ とき なる条件を満足することである。
Furthermore, in the present invention, preferably the third
By satisfying the following conditions, where the focal length of the lens group is f, the moving layer accompanying magnification is m, and the focal length of the entire system is f at the wide-angle end zoom position, and W is the zoom ratio. be.

第3群の後方に複数のレンズ群を設けたのは屈折力を分
配させることでレンズ群を通る光束の縁があまり凹凸さ
せず、スムーズに細かい光束径で通過する様にしたため
で、これによりレンズ系の内在させる反射型レンズ特有
の構成にうまく適応させることができる。
The reason why multiple lens groups were provided behind the third group was to distribute the refractive power so that the edges of the light beam passing through the lens groups would not be too uneven, and the light beam would pass smoothly with a small diameter. It can be successfully adapted to the unique configuration of a reflective lens included in the lens system.

一方、条件式(1)、(2)はこのときの第3レンズ群
の屈折力と移動層を適切に設定し、変倍の際の収差変動
及びレンズ系全体の小型化及び軸外光束のケラレを少な
くする為のものである。
On the other hand, conditional expressions (1) and (2) appropriately set the refractive power and moving layer of the third lens group at this time, reduce aberration fluctuations during zooming, reduce the size of the entire lens system, and reduce off-axis light flux. This is to reduce vignetting.

条件式(1)の下限値を越えて第3レンズ群の屈折力が
弱ってくると所定の変倍比を得るのに第3レンズ群の移
動層を増大させねばならず、これに伴い軸外光束のケラ
レが多くなってくりるので好ましくない、又上限値を越
えて第3レンズ群の屈折力が強まってくると変倍の際の
移動層は少なくなってくるが、収差変動量が多くなり全
変倍範囲にわたり良好なる収差補性を達成するのが難し
くなる0条件式(2)は条件式(1)のもとで第3レン
ズ群の移動層とズーム比を適切に設定するものであり、
条件式(2)の下限値を越えて第3レンズ群の移動層を
ズーム比に比べて少なくすると第3レンズ群の屈折力を
強めなければならずこの結果変倍の際の収差変動が大き
くなってくる。又上限値を越えて第3レンズ群の移動層
をズーム比に比べて多くすると光束のケラレが増大して
くるので好ましくない。
If the lower limit of conditional expression (1) is exceeded and the refractive power of the third lens group weakens, the moving layer of the third lens group must be increased in order to obtain a predetermined variable power ratio. This is undesirable because it increases the vignetting of the external light beam.Also, if the refractive power of the third lens group increases beyond the upper limit, the moving layer during zooming will decrease, but the amount of aberration fluctuation will decrease. Conditional expression (2), which makes it difficult to achieve good aberration compensation over the entire magnification range, requires appropriately setting the moving layer and zoom ratio of the third lens group under conditional expression (1). It is a thing,
If the lower limit of conditional expression (2) is exceeded and the moving layer of the third lens group becomes smaller than the zoom ratio, the refractive power of the third lens group must be strengthened, and as a result, aberration fluctuations during zooming become large. It's coming. Furthermore, if the moving layer of the third lens group is increased beyond the upper limit compared to the zoom ratio, vignetting of the light beam will increase, which is not preferable.

尚本発明において変倍の際負屈折力の第4レンズ群を移
動させる場合には、変倍に伴う第4レンズ群の移動層を
V  焦点距離をfrvとす■゛ るとき なる条件を満足させることが好ましい。
In the present invention, when the fourth lens group with negative refractive power is moved during zooming, the following conditions are satisfied: the moving layer of the fourth lens group accompanying zooming is V, and the focal length is frv. It is preferable to let

又変倍の際正屈折力の第5レンズ群を移動させる場合に
は、変倍に伴う第5レンズ群の移動層をV  焦点距離
をfVとするとき V ゛ なる条件を満足させることが好ましい。
In addition, when the fifth lens group with positive refractive power is moved during zooming, it is preferable that the moving layer of the fifth lens group accompanying zooming satisfy the following condition: V, where fV is the focal length, and V. .

条件式(3)及び条件式(4)の下限値を越えて第4レ
ンズ群及び第5レンズ群の屈折力が弱まってくると、変
倍の際の像面補性を行う場合の移動層を多くしなければ
ならずズームレンズ全体の小型化を図るのが難しくなる
。又上限値を越えて第4レンズ群及び第5レンズ群の屈
折力が強くなってくると変倍に伴い収差変動が多くなる
と共に高次の収差が多く発生してくるので好ましくない
If the lower limits of conditional expressions (3) and (4) are exceeded and the refractive powers of the fourth and fifth lens groups weaken, the moving layer when performing image plane complementation during zooming This makes it difficult to downsize the zoom lens as a whole. Moreover, if the refractive power of the fourth lens group and the fifth lens group becomes strong beyond the upper limit, aberration fluctuations will increase with zooming, and many higher-order aberrations will occur, which is not preferable.

尚第4レンズ群と第5レンズ群の双方を移動させる場合
は前述各条件式を全て満足するように設定することが好
ましい。
Note that when both the fourth lens group and the fifth lens group are moved, it is preferable to set them so that all of the above-mentioned conditional expressions are satisfied.

また第4レンズ群を負、第5レンズ群を正とする構成は
第5レンズ群のパワーを比較的弱くして収差変動を抑制
するには都合が良いが、焦点距離2000mm以上仕様
ではバックフォーカスが長くなり易いから、むしろ10
00mm以下の焦点距離のときに特に有利である。
Also, the configuration in which the fourth lens group is negative and the fifth lens group is positive is convenient for making the power of the fifth lens group relatively weak and suppressing aberration fluctuations, but with a focal length of 2000 mm or more, the back focus is likely to be long, so I would rather use 10
This is particularly advantageous for focal lengths of 00 mm or less.

尚未実施例では特に変倍の際の収差変動を少なくし全変
倍範囲にわたり良好なる収差補性を達成する為には物体
側より順に第2レンズ群を両凹レンズ及び両凹レンズと
物体側へ凸面を向けたメニスカス状の正の屈折力のレン
ズを接合したレンズで構成し、第3レンズ群を両凸レン
ズ、両凸レンズそして像面側へ凸面を向けたメニスカス
状の負の屈折力のレンズ°の3つのレンズで構成し、第
4レンズ群を正の接合レンズと負の屈折力のレンズで構
成し、第5レンズ群を正レンズと負レンズの貼り合わせ
メニスカスレンズで構成している。又、第2レンズ群の
一部を分離し、これを光軸方向に移動してフォーカシン
グに利用することもできる。
In addition, in order to reduce aberration fluctuations especially during zooming and achieve good aberration compensation over the entire zooming range, the second lens group is configured with a biconcave lens and a biconcave lens with a convex surface toward the object side in order from the object side. The third lens group consists of a cemented lens with a meniscus-like positive refractive power that faces toward the image plane, and the third lens group consists of a biconvex lens, a biconvex lens, and a meniscus-like negative refractive lens with the convex surface facing the image plane. It is composed of three lenses, the fourth lens group is composed of a positive cemented lens and a lens with negative refractive power, and the fifth lens group is composed of a meniscus lens made of a positive lens and a negative lens. It is also possible to separate a part of the second lens group and move it in the optical axis direction to use it for focusing.

以上のように本発明によれば軸外光束のケラレの少ない
又変倍の際の収差変動の少ない小型の反射屈折式ズーム
レンズを達成することができる。
As described above, according to the present invention, it is possible to achieve a compact catadioptric zoom lens with less vignetting of off-axis light beams and less variation in aberrations during zooming.

次に本発明の数値実施例を示す、数値実施例においすR
iは物体側より順に第i番目のレンズ面の曲率半径、D
iは物体側より第1番名のレンズ厚及び空気間隔、Ni
とνiは各々物体側より順に第i番目のレンズのガラス
の屈折率とアラへ数である。
Next, numerical examples of the present invention are shown.
i is the radius of curvature of the i-th lens surface in order from the object side, D
i is the lens thickness and air gap of the first name from the object side, Ni
and νi are numbers corresponding to the refractive index of the glass of the i-th lens in order from the object side.

尚DiとNtは光の進行方向左方より右方に測った長さ
を正として示しである。
Note that Di and Nt are shown assuming that the length measured from the left to the right in the direction of light travel is positive.

数値実施例1(第1図) f=744.7〜913.3  FNo、l:9.9〜
11.0] ] ] 〕 可変間隔 ジロー61.0 シフ、64.1 νa=ss、s ν9=55.5 ν1o=30.1 シ1l=63.4 シ12=63.4 ν13=25.4 ν14=25.4 ν15;50.9 ν16=55.5 数値実施例2(第2図) f=702.9〜8502  FNo、 1 : 9.
0〜IO,9R1=  859.223  D 1= 
 12.00  N 1=1.48749R2= −8
85,29602= 145.28R3= −243,
097D 3=  12.00  N 2=1.516
33R4= −437,86204= −12,00N
 3=1.51633I R5= −243,097D
 5=−131,28R6= −346,58106=
  −5,00N 4=1.51633可変間隔 シロ = 61.0 シフ=64.1 νg=55.5 ν9=55.5 ν1o=3o、t シ11=63.4 シ12=63.4 ν13=25.4 ν14=25.4 ν15=50.9 νts=ss、s シ17=25.4 ν18=49.6 数値実施例3(第3図) f=826.8〜1073.0  FNo、1:8.5
〜11.OR1=  859.223  D l=  
12.00  N l=1.48749R2= −88
5,29602= 145.28R3±−243,09
7D 3=  12.00  N 2=1.51633
R4冨−437,882D 4= −12,00N 3
−1.51633IR5±−243,09705=−1
31,28R6冨−346−58106=  −5,0
0N 4−1.51633R7=  121.015 
07=  −2,50N 5=1.58913R8= 
 365.500 08− −2.00R9= −20
8,76409=   2.00可変間隔 シロ = 61.0 シフ=64.1 νB=55.5 ν9=55.5 ν1O=30.1 シ11−63.4 シ12=63.4 ν13=25.4 ν14=25.4 ν15=50.9 ν1B=55.5 シ17=25.4 ν18=49.6 表−1は数値実施例1〜3と本発明の各条件式との関係
を示す。
Numerical Example 1 (Figure 1) f=744.7~913.3 FNo., l:9.9~
11.0 ] ] ] ] Variable spacing Giroux 61.0 Schiff, 64.1 νa=ss, s ν9=55.5 ν1o=30.1 SI1l=63.4 SI12=63.4 ν13=25.4 ν14=25.4 ν15; 50.9 ν16=55.5 Numerical Example 2 (Fig. 2) f=702.9 to 8502 FNo., 1: 9.
0~IO,9R1= 859.223 D 1=
12.00 N 1=1.48749R2=-8
85,29602= 145.28R3= -243,
097D 3 = 12.00 N 2 = 1.516
33R4=-437,86204=-12,00N
3=1.51633I R5=-243,097D
5=-131,28R6=-346,58106=
-5,00N 4 = 1.51633 Variable interval white = 61.0 Schiff = 64.1 νg = 55.5 ν9 = 55.5 ν1o = 3o, t Si11 = 63.4 Si12 = 63.4 ν13 = 25.4 ν14=25.4 ν15=50.9 νts=ss, s 17=25.4 ν18=49.6 Numerical Example 3 (Figure 3) f=826.8~1073.0 FNo, 1 :8.5
~11. OR1= 859.223 D l=
12.00 Nl=1.48749R2=-88
5,29602= 145.28R3±-243,09
7D 3= 12.00 N 2=1.51633
R4 Tomi -437,882D 4= -12,00N 3
-1.51633IR5±-243,09705=-1
31,28R6 Tomi-346-58106=-5,0
0N 4-1.51633R7= 121.015
07=-2,50N 5=1.58913R8=
365.500 08- -2.00R9= -20
8,76409 = 2.00 variable interval white = 61.0 Schiff = 64.1 νB = 55.5 ν9 = 55.5 ν1O = 30.1 11-63.4 12 = 63.4 ν13 = 25. 4 ν14=25.4 ν15=50.9 ν1B=55.5 ν17=25.4 ν18=49.6 Table 1 shows the relationship between numerical examples 1 to 3 and each conditional expression of the present invention.

表−1 以上説明したように、負の屈折力の第2レンズ群の像側
に正の屈折力の第3レンズ群を物体側へ移動させること
により変倍を行い、同時に負の屈折力の第4レンズ群と
正屈折力の第5レンズ群の少なくとも一つのレンズ群を
移動させることにより軸外光束のケラレを少なくして。
Table 1 As explained above, magnification is changed by moving the third lens group with positive refractive power to the image side of the second lens group with negative refractive power, and at the same time, the third lens group with positive refractive power is moved toward the object side. By moving at least one lens group of the fourth lens group and the fifth lens group with positive refractive power, vignetting of off-axis light beams is reduced.

全体でコンパクト化する効果がある。This has the effect of making the whole structure more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は各々本発明の実施例1〜3の
レンズ断面図。 第4図、第5図、第6図は各々本発明の実施例1〜3の
諸政・差図である。 図中(A)は広角端、(B)は望遠端のズーム位置での
諸政差図、ΔSはサジタル像面、ΔMはメリデイオナ処
ル像面、Yは像高、Z1〜Z3は変倍の際の移動方向を
示す。 止嘔条汗 正弦奈僻
1, 2, and 3 are cross-sectional views of lenses of Examples 1 to 3 of the present invention, respectively. FIG. 4, FIG. 5, and FIG. 6 are diagrams showing various aspects and differences of Examples 1 to 3 of the present invention, respectively. In the figure, (A) is the zoom position at the wide-angle end, (B) is the difference diagram at the zoom position at the telephoto end, ΔS is the sagittal image plane, ΔM is the meridion image plane, Y is the image height, and Z1 to Z3 are the magnification changes. Indicates the direction of movement when Anti-vomiting sweat sine Nama

Claims (1)

【特許請求の範囲】 (1)光の進行方向に従って屈折系と主、副鏡の反射系
より成る正の屈折力の第1レンズ群、前記第1レンズ群
の主鏡と副鏡との間に位置した負の屈折力の第2レンズ
群、正の屈折力の第3レンズ群、負屈折力の第4レンズ
群そして正屈折力の第5レンズ群を順置し、第3レンズ
群を光軸に沿って移動し、これと同時に第3レンズ群と
第4レンズ群の少なくとも一方を移動することで変倍を
行うことを特徴とする反射屈折式ズームレンズ。 (2)前記第3レンズ群の焦点距離をf_III、変倍に
伴う移動層をV_III、広角端のズーム位置における全
系の焦点距離をf_W、ズーム比をZとするとき 7<f_W/f_III<13 12<f_III/Z<16 なる条件を満足する特許請求の範囲第1項記載の反射屈
折式ズームレンズ。 (3)変倍の際前記第4レンズ群を移動させる場合、変
倍に伴う移動層をV_IV、焦点距離をf_IVとするとき 2.5<|f_W/f_IV|<5.0 0.2<|f_IV/Z|<7 なる条件を満足することを特徴とする特許請求の範囲第
1項又は第2項記載の反射屈折式ズームレンズ。 (4)変倍の際前記第5レンズ群を移動させる場合、変
倍に伴う移動層をV_V、焦点距離をf_Vとすると 0.3<f_W/f_V<3.0 5<|f_V/Z|<25 なる条件を満足することを特徴とする特許請求の範囲第
1項又は第2項記載の反射屈折式ズームレンズ。
[Claims] (1) A first lens group with positive refractive power consisting of a refractive system and a reflection system of main and secondary mirrors according to the traveling direction of light, and between the primary mirror and the secondary mirror of the first lens group. A second lens group with negative refractive power, a third lens group with positive refractive power, a fourth lens group with negative refractive power, and a fifth lens group with positive refractive power are placed in order, and the third lens group is A catadioptric zoom lens characterized by moving along an optical axis and changing magnification by simultaneously moving at least one of a third lens group and a fourth lens group. (2) When the focal length of the third lens group is f_III, the moving layer due to zooming is V_III, the focal length of the entire system at the wide-angle end zoom position is f_W, and the zoom ratio is Z, then 7<f_W/f_III< 13. The catadioptric zoom lens according to claim 1, which satisfies the following condition: 12<f_III/Z<16. (3) When the fourth lens group is moved during zooming, when the moving layer accompanying zooming is V_IV and the focal length is f_IV, 2.5<|f_W/f_IV|<5.0 0.2< A catadioptric zoom lens according to claim 1 or 2, which satisfies the following condition: |f_IV/Z|<7. (4) When moving the fifth lens group during zooming, if the moving layer associated with zooming is V_V and the focal length is f_V, then 0.3<f_W/f_V<3.0 5<|f_V/Z| The catadioptric zoom lens according to claim 1 or 2, wherein the catadioptric zoom lens satisfies the condition <25.
JP60003032A 1985-01-11 1985-01-11 Reflection/refraction type zoom lens Pending JPS61162022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003032A JPS61162022A (en) 1985-01-11 1985-01-11 Reflection/refraction type zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003032A JPS61162022A (en) 1985-01-11 1985-01-11 Reflection/refraction type zoom lens

Publications (1)

Publication Number Publication Date
JPS61162022A true JPS61162022A (en) 1986-07-22

Family

ID=11545970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003032A Pending JPS61162022A (en) 1985-01-11 1985-01-11 Reflection/refraction type zoom lens

Country Status (1)

Country Link
JP (1) JPS61162022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198407A (en) * 1988-10-17 1990-08-06 Hughes Aircraft Co Continuously variable focus total reflection optical apparatus
WO2013161995A1 (en) * 2012-04-27 2013-10-31 コニカミノルタ株式会社 Zoom lens, image-capturing device, and digital instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198407A (en) * 1988-10-17 1990-08-06 Hughes Aircraft Co Continuously variable focus total reflection optical apparatus
WO2013161995A1 (en) * 2012-04-27 2013-10-31 コニカミノルタ株式会社 Zoom lens, image-capturing device, and digital instrument

Similar Documents

Publication Publication Date Title
US5050972A (en) Zoom lens
JPS5895315A (en) High variable magnification zoom lens system containing wide angle area
JPH05173071A (en) Wide angle zoom lens
JPH042169B2 (en)
JPH06148523A (en) Rear focus type zoom lens
JPH1020193A (en) Zoom lens
JPH04361214A (en) Rear focus type zoom lens
JPH05323194A (en) Rear focus type zoom lens
JP3018723B2 (en) Zoom lens
JPH10104520A (en) Wide angle zoom lens
JPH06265788A (en) Zoom lens with high variable power ratio
JP2006106091A (en) Zoom lens
JPH0921950A (en) Zoom lens
US5144488A (en) Zoom lens
JPS6021019A (en) Zoom lens
JPH02296208A (en) Wide angle zoom lens
JPH07151975A (en) Zoom lens
US4712883A (en) Rear focus zoom lens
JP3039044B2 (en) Rear focus zoom lens
JPH0682698A (en) Large-diameter wide-angle zoom lens
JPH09146001A (en) Variable power optical system
JPS61162022A (en) Reflection/refraction type zoom lens
JP3376142B2 (en) Zoom lens
JPH04301612A (en) Rear focus type zoom lens
JPH0829688A (en) Zoom lens