JPS61162002A - Composition body of high refractive index plastic lens - Google Patents

Composition body of high refractive index plastic lens

Info

Publication number
JPS61162002A
JPS61162002A JP60002130A JP213085A JPS61162002A JP S61162002 A JPS61162002 A JP S61162002A JP 60002130 A JP60002130 A JP 60002130A JP 213085 A JP213085 A JP 213085A JP S61162002 A JPS61162002 A JP S61162002A
Authority
JP
Japan
Prior art keywords
coating
refractive index
high refractive
oxygen permeability
cmhg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002130A
Other languages
Japanese (ja)
Inventor
Kaoru Mori
薫 森
Takashi Taniguchi
孝 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60002130A priority Critical patent/JPS61162002A/en
Publication of JPS61162002A publication Critical patent/JPS61162002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • G02B1/105

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To provide a lens which is highly resistant to weather and light and is effective particularly for decreasing the yellowing when irradiated with UV rays by coating a transparent film having a specific value or below of coeff. of oxygen permeability on the surface of the high refractive index resin lens having an arom. ring at the main chain and/or side chain. CONSTITUTION:The composite body is obtd. by coating the transparent film consisting mainly of the org. polymer having <=100X10<-12>cm<3>.cm/cm<2>.sec.cmHg coefft. of oxygen permeability on the surface of the high refractive index resin lens having the arom. ring at the main chain and/or side chain. PVA, polyvinyl acetate and cellulose are preferably used for the ease of the film formation as the more specific examples of the transparent material to be used. There is substantially no effect of the coating and the improvement in the light resistance is not expected if the coefft. of the oxygen permeability of the org. polymer used for coating exceeds 100X10<-12>cm<3>.cm/cm<2>.sec.cmHg. The transparent film having <=50X10<-12>cm<3>.cm/cm<2>.sec.cmHg is further preferable in order to provide the effect with the thinnest possible film.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は制光性に優れた眼鏡用レンズ、カメラ用レンズ
などの光学用高屈折率プラスチックレンズに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high refractive index plastic lens for optical use such as an eyeglass lens or a camera lens, which has excellent light control properties.

〔従来の技術〕[Conventional technology]

プラスチックレンズは、極めて優れた耐衝撃性及び透明
性を有し、かつ軽量であり染色も容易であることから、
近年需要が増えている。
Plastic lenses have excellent impact resistance and transparency, are lightweight, and are easy to dye.
Demand has increased in recent years.

しかし、一方でプラスチックレンズは一般に無機カラス
レンズに較べて機械的強度が低く、この欠点を補う方法
として、レンズ中心厚みの増大などの対策がとられてい
る。またプラスチックは無機ガラスに較べて屈折率が低
いために特にマイナスの高度数レンズにおいては端部が
著しく厚くなり、見栄えが悪く1着用を敬遠する傾向が
あるという重大な欠点がある。これらの改良を目的に近
年はプラスチック基材の屈折率を上げることが検討され
、多くの提案がなされている(特公昭58−17527
号公報、特公昭58−14449号公報、特開昭57−
28117号公報、特開昭57−54901号公報、特
開昭57−102601号公報、特開昭57−1049
01号公報、特開昭58−18602号公報、特開昭5
8−72101号公報9%開昭59−87124号公報
However, on the other hand, plastic lenses generally have lower mechanical strength than inorganic glass lenses, and measures such as increasing the center thickness of the lens have been taken to compensate for this drawback. Furthermore, since plastic has a lower refractive index than inorganic glass, it has a serious drawback in that, especially in negative altitude number lenses, the edges become extremely thick, resulting in poor appearance and a tendency for people to avoid wearing them. In recent years, increasing the refractive index of plastic base materials has been studied for the purpose of these improvements, and many proposals have been made (Japanese Patent Publication No. 58-17527).
No. 14449, Japanese Patent Publication No. 58-14449, Japanese Unexamined Patent Publication No. 1987-14449
28117, JP 57-54901, JP 57-102601, JP 57-1049
No. 01, JP-A-58-18602, JP-A-Sho. 5
Publication No. 8-72101 9% Publication No. 87124/1983.

特開昭59−95708号公報、特開昭59−9610
9号公報)。
JP-A-59-95708, JP-A-59-9610
Publication No. 9).

かかる従来技術からも明らかなとおり、樹脂の屈折率を
上げる目的でプラスチックレンズ用樹脂に芳香環を主鎖
および/または側鎖に導入し、さらに屈折率を向上させ
るため芳香環へのフッ素を除くハロゲン基の導入がなさ
れてきている。これらの樹脂は高屈折率が得られるもの
の1重合中に着色したり9重合後の樹脂を紫外線にさら
すと黄色に着色する欠点がある。この着色を防止する手
段として、紫外線吸収剤、酸化防止剤9着色防止剤、ケ
イ光染料などの添加剤を七ツマ−に添加する公知の方法
がとられている。また樹脂自体の改良についても提案さ
れている。たとえば核ハロゲン置換ベンゼンジカルボン
酸のエステル類と、屈折率が1.55以上の樹脂との共
重合体(特開昭59−8709号公報)やビスアリルカ
ーボネートまたはβ−メチルアリルカーボネートと、屈
折率が1.55以上の樹脂との共重合体(特開昭59−
8710号公報)などがある。
As is clear from such prior art, aromatic rings are introduced into the main chain and/or side chains of resins for plastic lenses in order to increase the refractive index of the resin, and fluorine is removed from the aromatic rings in order to further improve the refractive index. Introduction of halogen groups has been made. Although these resins have a high refractive index, they have the disadvantage that they become colored during one polymerization, or that they become yellow when exposed to ultraviolet light after nine polymerizations. As a means for preventing this coloring, a known method is used in which additives such as ultraviolet absorbers, antioxidants, coloring inhibitors, and fluorescent dyes are added to the sinter. Improvements to the resin itself have also been proposed. For example, copolymers of esters of nuclear halogen-substituted benzene dicarboxylic acids and resins with a refractive index of 1.55 or more (Japanese Patent Application Laid-open No. 1987-8709), bisallyl carbonate or β-methylallyl carbonate, and copolymers with a refractive index of copolymer with a resin having a value of 1.55 or more (JP-A-59-1999)
Publication No. 8710).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術による紫外線吸収剤、酸化防止剤など各種
添加剤による配光性の改良は、添加量にも限界があるこ
とや、添加剤による着色2重合への影響、染色性の低下
または染料の褪色促進などの問題がある。また基材その
ものの改良には限界があり、充分に満足できるものは得
られていない。
The improvement of light distribution using various additives such as ultraviolet absorbers and antioxidants in the conventional technology has limitations in the amount of addition, the influence of the additives on the coloring double polymerization, the decrease in dyeability, or the possibility of dye There are problems such as accelerated fading. Furthermore, there are limits to the improvement of the base material itself, and a fully satisfactory product has not been obtained.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の問題点を解決するために鋭意検討
した結果、以下に述べる本発明に到達した。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have arrived at the present invention described below.

すなわち1本発明は、主鎖および/または側鎖に芳香環
を有する高屈折率樹脂レンズの表面を酸素透過係数がi
oo x 10  cs −am/cs−gec−cw
+)1g以下の主として有機ポリマーからなる透明膜を
被覆したことを特徴とする高屈折率プラスチックレンズ
複合体に関するものである。
That is, 1 the present invention provides a surface of a high refractive index resin lens having an aromatic ring in the main chain and/or side chain with an oxygen permeability coefficient of i.
oo x 10 cs-am/cs-gec-cw
+) The present invention relates to a high refractive index plastic lens composite body coated with a transparent film mainly composed of an organic polymer weighing 1 g or less.

本発明における芳香環を主鎖および/または側鎖に有す
る高屈折率樹脂とは例えば下記一般式(1)で示される
スチレン誘導体の重合体。
The high refractive index resin having an aromatic ring in its main chain and/or side chain in the present invention is, for example, a polymer of a styrene derivative represented by the following general formula (1).

(ここで R′は水素、フッ素を除く)\ロゲン基。(Here, R' excludes hydrogen and fluorine)\logen group.

メチル基、エチル基、メトキシ基、アミノ基、ニトロ基
、フェニル基、フェノキシ基を表わし、nはa〜5の整
数であり、n220時 R1は同種であっても、異種で
あってもよい)、フェノールまたは各種置換フェノール
、あるいはそれらのエチレンオキシドまたはプロピレン
オキシド付加物の(メタ)アクリル酸エステル類の重合
体、ビスフェノールまたは置換ビスフェノールあるいは
それらのエチレンオキシドまたはプロピレンオキシド付
加物の(メタ)アクリル酸エステル類やジ(メタ)アク
リル酸エステル類の重合体、さらには水酸基を有するモ
ノ(メタ)アクリル酸エステル類と各種インシアネート
化合物との付加反応物の重合体、ビフェニル骨格を有す
る(メタ)アクリル酸エステル類またはジ(メタ)アク
リル酸エステル類の重合体、ベンジルアルコールまたは
各種置換ベンジルアルコール類の(メタ)アクリル酸エ
ステル類の重合体、ジビニルベンゼンまたは各種置換ジ
ビニルベンゼン類の重合体、さらにはビスフェノールA
型エポキシ樹脂、ビスフェノールF型エポキシ樹脂など
がその具体例として挙げられるか、芳香環を有する高屈
折率樹脂であれば特に限定されるものではない。またこ
れらの芳香環を有するモノマーと共重合可能な芳香環を
有しない七ツマ−との共重合体樹脂であっても何ら問題
はない。
Represents a methyl group, ethyl group, methoxy group, amino group, nitro group, phenyl group, phenoxy group, n is an integer from a to 5, and when n220 R1 may be the same or different) , polymers of phenol or various substituted phenols, or (meth)acrylic esters of their ethylene oxide or propylene oxide adducts, bisphenols or substituted bisphenols, or (meth)acrylic esters of their ethylene oxide or propylene oxide adducts, Polymers of di(meth)acrylic esters, polymers of addition reaction products of mono(meth)acrylic esters having hydroxyl groups and various incyanate compounds, and (meth)acrylic esters having a biphenyl skeleton. or polymers of di(meth)acrylic esters, polymers of (meth)acrylic esters of benzyl alcohol or various substituted benzyl alcohols, polymers of divinylbenzene or various substituted divinylbenzenes, and even bisphenol A.
Specific examples thereof include a type epoxy resin, a bisphenol F type epoxy resin, and the resin is not particularly limited as long as it is a high refractive index resin having an aromatic ring. Further, there is no problem in using a copolymer resin of a monomer having these aromatic rings and a monomer having no copolymerizable aromatic ring.

本発明は前記の芳香環を主鎖および/または側鎖に有す
る樹脂の表面に主として有機ポリマーからなる酸素透過
係数が100 X 10”””w’、 cm /cw2
. gea、■Hg以下の透明膜を被覆して得られるも
のであるが、ここで酸素透過係数とは酸素ガスの透過性
を表わす尺度であり9次のように定義される値である。
In the present invention, the surface of the resin having the aromatic ring in the main chain and/or side chain has an oxygen permeability coefficient of 100 x 10""w', cm/cw2, which is mainly made of an organic polymer.
.. It is obtained by coating with a transparent film of less than gea, 2Hg, and the oxygen permeability coefficient here is a measure representing the permeability of oxygen gas, and is a value defined as the 9th order.

すなわち、厚さ1cIIの平板の表面において単位面積
(儂)あたり、酸素分圧差を1anHgかけた時の単位
時間(sea )あたりに透過する酸素量(cm”) 
 である。
In other words, the amount of oxygen permeating per unit time (sea) per unit area (I) on the surface of a flat plate with a thickness of 1 cII when an oxygen partial pressure difference of 1 anHg is applied.
It is.

酸素透過係数が100 X 10  cy 、 CII
/ an 、 sea、 cmHg以下の透明材料の具
体的な例としてはポリビニルアルコール、ポリ酢酸ビニ
ルの部分ケン化物、ポリアクリロニトリル、セルローズ
、ポリ塩化ビニリデン、ポリ塩化ビニリデン/塩化ビニ
ル共重合体、ポリカプロラクタム、ポリ史チレンテレフ
タレート、ポリ塩化ビニル、ポリオキシメチレンなどが
挙げられる。中でも、ポリビニルアルコール。
Oxygen permeability coefficient is 100 x 10 cy, CII
/an, sea, cmHg or less, specific examples of transparent materials include polyvinyl alcohol, partially saponified polyvinyl acetate, polyacrylonitrile, cellulose, polyvinylidene chloride, polyvinylidene chloride/vinyl chloride copolymer, polycaprolactam, Examples include polyethylene terephthalate, polyvinyl chloride, and polyoxymethylene. Among them, polyvinyl alcohol.

ポリ酢酸ビニル、セルロースが被膜形成の容易さから好
ましく用いられる。また、酸素透過係数の条件を満足さ
せ、かつ透明性を損わない範囲で上記透明材料に各種の
有機および/または無機化合物を添加させることも可能
である。添加剤として用いられる主な具体例を挙げると
1表面平滑性を改良する目的で各種の界面活性剤が添加
可能であり。
Polyvinyl acetate and cellulose are preferably used because they are easy to form a film. Furthermore, it is also possible to add various organic and/or inorganic compounds to the above-mentioned transparent material within a range that satisfies the oxygen permeability coefficient conditions and does not impair transparency. Main specific examples of additives used include: 1. Various surfactants can be added for the purpose of improving surface smoothness.

例えば、シリコーン系化合物、フッ素系界面活性剤。For example, silicone compounds, fluorine surfactants.

有機界面活:性剤などが使用できる。さらに測候性を向
上させる目的で紫外線吸収剤、耐熱劣化向上を目的で酸
化防止剤を添加することも容易に可能である。また被膜
の酬久性を向上する目的で架橋剤を添加することも可能
であり、好ましく用いられる架橋剤として、各種シラン
カップリング剤。
Organic surfactant: A surfactant can be used. Furthermore, it is easily possible to add an ultraviolet absorber for the purpose of improving weatherability, and an antioxidant for the purpose of improving heat deterioration resistance. It is also possible to add a crosslinking agent for the purpose of improving the durability of the coating, and various silane coupling agents are preferably used as crosslinking agents.

1  メラミン樹脂、コロイダルシリカ、さらにはチタ
ン、アルミニウム、ジルコニウムの金属塩が挙げられる
。これらの架橋剤は1種のみならず2種以上添加するこ
とももちろん可能であり、また架橋を促進させるための
触媒を添加するも可能である。
1. Examples include melamine resin, colloidal silica, and metal salts of titanium, aluminum, and zirconium. It is of course possible to add not only one type of these crosslinking agents but also two or more types, and it is also possible to add a catalyst for promoting crosslinking.

これらの添加剤の添加量は実験的に定められるべきであ
るが、被覆される有機ポリマーの酸素透過係数が100
 x 10  m 、 > / am 、 sea、r
s Hgより大きくなると被覆効果がほとんどなく、耐
光性の改良は期待されない。できるだけ薄膜で効果を発
揮させるためには、酸素透過係数が50x10  C1
l、elI/a+ 、 sec、cmHg以下の透明膜
が更に好ましい。
The amount of these additives should be determined experimentally, but the oxygen permeability coefficient of the organic polymer to be coated is 100.
x 10 m, > / am, sea, r
When it is larger than s Hg, there is almost no coating effect and no improvement in light resistance is expected. In order to exhibit the effect with a thin film as possible, the oxygen permeability coefficient should be 50x10 C1
1, elI/a+, sec, cmHg or less transparent film is more preferable.

前記透明材料は高屈折率プラスチックンンズ基材表面に
被覆させて用いられるが、その被覆厚さはとくに限定さ
れるものではない。しかし、接着強度の保持、耐光性な
どの点から0.1ミクロン〜20ミクロンの間で好まし
く適用される。
The transparent material is used by coating the surface of a high refractive index plastic lens substrate, but the thickness of the coating is not particularly limited. However, from the viewpoint of maintaining adhesive strength and light resistance, the thickness is preferably applied between 0.1 micron and 20 micron.

また被覆方法としてはコーティング(ディップコート、
スピンコード、スプレーコー)、刷毛mす、流し塗りな
ど)やプラズマCVDなどの薄膜形成方法な′どが可能
である。
Coating methods include coating (dip coating,
Thin film forming methods such as spin coating, spray coating, brush coating, flow coating, etc.) and plasma CVD are possible.

さらに、実用性を高める目的で前記透明材料の被覆径各
種の被覆を表面に形成させることも可能である。例えば
表面硬度を向上させる目的には各種のポリシロキサン系
化合物で被覆する方法が有用である。さらには反射防止
を目的に無機酸化物の真空蒸着も可能である。
Furthermore, for the purpose of increasing practicality, it is also possible to form coatings of various diameters of the transparent material on the surface. For example, a method of coating with various polysiloxane compounds is useful for the purpose of improving surface hardness. Furthermore, vacuum deposition of an inorganic oxide is also possible for the purpose of antireflection.

また基材と被膜の接着性を向上させる目的で。Also for the purpose of improving the adhesion between the base material and the coating.

あらかじめ基材表面を処理することも有効な手段であり
、各種の化学的、物理的な方法が適用される。とくに好
ましく用いられる方法としてはアルカリ、酸などによる
化学的処理、コロナ放電、低温プラズマなどによる物理
化学的処理がある。中でも低温プラズマによる表面処理
は簡便さ、効果の点でとくに好ましく適用される。
It is also an effective means to treat the surface of the base material in advance, and various chemical and physical methods can be applied. Particularly preferred methods include chemical treatment using alkali, acid, etc., and physicochemical treatment using corona discharge, low-temperature plasma, etc. Among these, surface treatment using low-temperature plasma is particularly preferred in terms of simplicity and effectiveness.

本発明の趣旨を明瞭にするため次に実施例を掲げるが9
本発明はこれらの実施例に限定されるものではない。
In order to clarify the gist of the present invention, Examples are given below.
The present invention is not limited to these examples.

なお実施例において評価は次の方法で行なった。In addition, in the examples, evaluation was performed by the following method.

黄変度 スガ試験機製、カラーコンピュータ S M −3を用
いてYI値(YELLOW−INDEX  ) ヲ測定
した。
The YI value (YELLOW-INDEX) was measured using a color computer SM-3 manufactured by Suga Test Instruments.

YI値は黄変度と相関がありYI値が大きいほど黄変が
激しい。
The YI value is correlated with the degree of yellowing, and the larger the YI value, the more intense the yellowing.

密着性 複合体表面に基材に達するゴバン目(1mm角)を被膜
の上から鋼ナイフでT′lOo個入れて、セロハン粘着
テープ(商品名”中口テープ“ニチバン株式会社製品)
を強くはりっけ、90度方向に急速にはがし、被膜のは
くりの有無を調べた。
Using a steel knife, insert T'lOo goblets (1 mm square) on the surface of the adhesive composite that reach the base material, and apply cellophane adhesive tape (trade name: "Nakaguchi Tape", manufactured by Nichiban Co., Ltd.).
was strongly applied and rapidly peeled off in a 90 degree direction, and the presence or absence of peeling of the film was examined.

〔実施例〕〔Example〕

実施例1 (1)被コーテイング基材の調整 テトラブロムビスフェノールAのエチレンオキサイド2
モル付加体に1モルのアクリル酸をエステル化により結
合させた水酸基含有化合物1モルに対し、ヘキサメチレ
ンジイソシアネートを0.9モル付加させた多官能アク
リレートモノマーヲ含むモノマー70部とスチレン60
部をインプロピルパーオキサイドを重合開始剤としてキ
ャスト重合した基材を低温プラズマ処理を行ない1表面
処理された基材を得た。
Example 1 (1) Preparation of substrate to be coated Ethylene oxide 2 of tetrabromobisphenol A
70 parts of a monomer containing a polyfunctional acrylate monomer with 0.9 mol of hexamethylene diisocyanate added to 1 mol of a hydroxyl group-containing compound in which 1 mol of acrylic acid is bonded to a molar adduct by esterification, and 60 parts of styrene.
A base material obtained by cast polymerization using inpropyl peroxide as a polymerization initiator was subjected to low-temperature plasma treatment to obtain a surface-treated base material.

(2)被覆用組成物の調製 ポリビニルアルコール(日本合成化学社製、商品名1ゴ
ーセノール”AL−0<5)50部を水450部に溶か
して被覆用コーテイング材を得た。
(2) Preparation of coating composition 50 parts of polyvinyl alcohol (manufactured by Nippon Gosei Kagaku Co., Ltd., trade name 1 GOHSENOL"AL-0<5) was dissolved in 450 parts of water to obtain a coating material.

(3)  コーティング基材の作製 前記(1)によって得られた基材に、前記(2)で調製
したポリビニルアルコール水溶液を引き上げ速度10偽
/分の条件で基材両面に浸漬塗布し、さらに−昼夜室温
下にて自然乾燥させ、複合体を得た。
(3) Preparation of coating substrate The polyvinyl alcohol aqueous solution prepared in (2) above was dip-coated on both sides of the substrate at a pulling rate of 10 mm/min to the substrate obtained in (1) above, and - The mixture was air-dried day and night at room temperature to obtain a composite.

なお被膜の厚みは6ミクロンであった。また酸素透過係
数は10 x 10  cII、 ex / cwl、
sea、c+nHgであった。
The thickness of the coating was 6 microns. Also, the oxygen permeability coefficient is 10 x 10 cII, ex/cwl,
sea, c+nHg.

(4)性能評価 (3)で得た複合体をカーボンアークランプを備えたフ
ェードメータ(スガ試験機製)にセットし。
(4) Performance evaluation The composite obtained in (3) was set in a fade meter (manufactured by Suga Test Instruments) equipped with a carbon arc lamp.

100時間経ったところで複合体を取り出し、黄変度を
評価した。結果を表−1に示す。
After 100 hours, the composite was taken out and the degree of yellowing was evaluated. The results are shown in Table-1.

実施例2 (1)被覆用組成物の調整 (a)  γ−グリシドキシプロビルトリメトキシシラ
ンの加水分解物の調整 回転子を備えた反応器中にγ−グリシドキシプロピルト
リメトキシシラン256gを仕込み、液温を10℃に保
ち、マグネティックスターラで攪拌しながら0.01規
定塩酸水溶液54gを徐々に滴下する。滴下終了後冷却
をやめて、γ−グリシドキシグロビルトリメトキシシラ
ンの加水分解物を得た。
Example 2 (1) Preparation of the coating composition (a) Preparation of hydrolyzate of γ-glycidoxypropyltrimethoxysilane 256 g of γ-glycidoxypropyltrimethoxysilane in a reactor equipped with a rotor. was charged, the liquid temperature was maintained at 10°C, and 54 g of a 0.01N hydrochloric acid aqueous solution was gradually added dropwise while stirring with a magnetic stirrer. After completion of the dropwise addition, cooling was stopped to obtain a hydrolyzate of γ-glycidoxyglobyltrimethoxysilane.

(b)  塗料の調整 ポリビニルアルコール(日本合成化学社製、商品名” 
−f−センール’ A L−06)(7) 15重1%
の水溶液100gに対して、前記γ−グリシドキシプロ
ビルトリメトキシシラン加水分解物5重量%および分散
溶剤として1.4−ジオキサン40重量%を加え、さら
にアルミニウムアセチルアセトナート1重量係加え、十
分攪拌して塗料とした。
(b) Paint preparation Polyvinyl alcohol (manufactured by Nippon Gosei Kagaku Co., Ltd., trade name)
-f-Senur' A L-06) (7) 15 weight 1%
To 100 g of an aqueous solution, 5% by weight of the above γ-glycidoxypropyltrimethoxysilane hydrolyzate and 40% by weight of 1,4-dioxane as a dispersion solvent were added, and 1% by weight of aluminum acetylacetonate was added, and the mixture was sufficiently dissolved. The mixture was stirred to form a paint.

(2)  コーティング基材の作製 実施例1と同様にして得た基材に前記(1)で調整した
被覆用組成物を引き上げ速度1o(1)7分の条件で基
材両面に浸漬塗布し1次いで82°c/12分の予備乾
燥を行ない、さらに150℃/2時間乾燥して複合体を
得た。被膜の酸素透過係数は。
(2) Preparation of coating base material The coating composition prepared in (1) above was applied to both sides of the base material by dip coating at a pulling speed of 1 o (1) for 7 minutes on a base material obtained in the same manner as in Example 1. First, preliminary drying was performed at 82°C for 12 minutes, and further drying was performed at 150°C for 2 hours to obtain a composite. What is the oxygen permeability coefficient of the film?

40 X 1.Oc+++ 、clI/ c+n 、s
ec、cmHgであった。
40 x 1. Oc+++, clI/c+n, s
ec, cmHg.

(3)性能評価 (2)で得た複合体を実施例1と同様の方法で評価した
。結果を表−1に示す。
(3) Performance evaluation The composite obtained in (2) was evaluated in the same manner as in Example 1. The results are shown in Table-1.

比較例1 実施例1の(1)と同様にして得た基材を、被覆せずに
評価した。結果を表−1に示す。
Comparative Example 1 A substrate obtained in the same manner as in Example 1 (1) was evaluated without being coated. The results are shown in Table-1.

比較例2 (1)  被覆用組成物の調製 ポリビニルブチラール10部をブタノール90部に溶か
して被覆用コーテイング材を得た。
Comparative Example 2 (1) Preparation of coating composition 10 parts of polyvinyl butyral was dissolved in 90 parts of butanol to obtain a coating material.

(2)  コーティング基材の作成 実施例1の(1)と同様の基材に前記(1)で調製した
ポリビニルブチラール溶液を引き上げ速度10cmZ分
の条件で基材両面に浸漬塗布し9次いで82’o/12
分の予備乾燥を行ない、さらに90°0/2時間乾燥し
て複合体を得た。被膜の酸素透過係数は、  117 
x 10−12cm3.c+++ / em 0gea
、 cmHg テアツタ。
(2) Preparation of coating base material The polyvinyl butyral solution prepared in (1) above was applied to both sides of the base material by dip coating on the same base material as in (1) of Example 1 at a pulling speed of 10 cm. o/12
The mixture was pre-dried for 1 minute and further dried at 90° for 0/2 hour to obtain a composite. The oxygen permeability coefficient of the film is 117
x 10-12cm3. c++++ / em 0gea
, cmHg.

(3)  性能評価 (2)で得た複合体を実施例1と同様の方法で評価した
。結果を表−1に示す。
(3) Performance evaluation The composite obtained in (2) was evaluated in the same manner as in Example 1. The results are shown in Table-1.

実施例3 (1)被覆用組成物の調整 (a)  r−グリシドキシプロビルトリメトキシシラ
ンの加水分解物の調整 実施例2と同様にしてγ−グリシドキシプロビルトリメ
トキシシランの加水分解物を得た。
Example 3 (1) Preparation of coating composition (a) Preparation of hydrolyzate of r-glycidoxypropyltrimethoxysilane Hydrolysis of γ-glycidoxypropyltrimethoxysilane in the same manner as in Example 2 A decomposition product was obtained.

(b)  塗料の調整 ポリビニルアルコールの15重量%の水溶液100gに
対して、前記γ−グリシドキシプロビルトリメトキシシ
ラン加水分解物5重量%、メタノール分散コロイド状シ
リカ(触媒化成工業社製。
(b) Preparation of paint: 5% by weight of the above γ-glycidoxypropyltrimethoxysilane hydrolyzate and methanol-dispersed colloidal silica (manufactured by Catalysts Kasei Kogyo Co., Ltd.) for 100 g of a 15% by weight aqueous solution of polyvinyl alcohol.

商品名 03CAL−1132)40重量%および分散
溶剤として1.4−ジオキサン40重量%加えて、さら
にアルミニウムアセチルアセトナート1重量%を加え、
十分攪拌して塗料とした。
Product name 03CAL-1132) 40% by weight and 40% by weight of 1,4-dioxane as a dispersion solvent were added, and further 1% by weight of aluminum acetylacetonate was added.
The mixture was sufficiently stirred to form a paint.

(2)  コーティング基材の作製 実施例1と同様にして得られた基材に前記(1)で調製
した被覆用組成物を、実施例2の(2)と同様の方法で
塗布、乾燥し複合体を得た。被膜の酸素透(3)性能評
価 (2)で得た複合体を4週問屋外に放置したのち。
(2) Preparation of coating base material The coating composition prepared in (1) above was applied to a base material obtained in the same manner as in Example 1, and dried in the same manner as in (2) of Example 2. Obtained a complex. Oxygen permeability of the film (3) After the composite obtained in performance evaluation (2) was left outdoors for 4 weeks.

黄変度及び被膜の密着性を評価した。結果を表−2に示
す。
The degree of yellowing and adhesion of the film were evaluated. The results are shown in Table-2.

比較例f3 実施例1と同様にして得た基材を被覆を施さず実施例3
と同様に性能評価した。結果を表−2に示す。
Comparative Example f3 Example 3 was prepared using a base material obtained in the same manner as in Example 1 without coating.
The performance was evaluated in the same way. The results are shown in Table-2.

表−1 PVA :ポリビニルアルコール aps :γ−グリシドキシプロビルトリメトキシシラ
ン PVB :ポリビニルブチラール sto、  :微粒子状シリカ 〔発明の効果〕 本発明によって得られる複合成形体は、コーティング層
のガスバリヤ−性が優れているので以下に示す効果があ
る。
Table-1 PVA: Polyvinyl alcohol aps: γ-glycidoxypropyltrimethoxysilane PVB: Polyvinyl butyral sto, : Particulate silica [Effects of the invention] The composite molded article obtained by the present invention has a coating layer with gas barrier properties. Since it is excellent, it has the following effects.

(1)IIIl′1候性、耐光性に優れている。とくに
紫外線照射による黄変色の減少に有効である。
(1) Excellent weatherability and light resistance. It is particularly effective in reducing yellowing caused by ultraviolet irradiation.

(2)樹脂の酸化劣化を防止する。(2) Preventing oxidative deterioration of resin.

(3)使用寿命を長くすることができ、長期間使用して
も物性等の変化が極めて少ない。
(3) The service life can be extended, and there is very little change in physical properties even after long-term use.

特許出願人  東 し 株 式 会 社手続補正書Patent Applicant Azuma Stock Exchange Company Procedures Amendment

Claims (1)

【特許請求の範囲】[Claims] 主鎖および/または側鎖に芳香環を有する高屈折率樹脂
レンズの表面を、酸素透過係数が100×10^−^1
^2cm^3・cm/cm^2・sec・cmHg以下
の主として有機ポリマーからなる透明膜で被覆したこと
を特徴とする高屈折率プラスチックレンズ複合体。
The surface of a high refractive index resin lens having an aromatic ring in the main chain and/or side chain has an oxygen permeability coefficient of 100×10^-^1
A high refractive index plastic lens composite body, characterized in that it is coated with a transparent film mainly made of an organic polymer with a refractive index of ^2cm^3.cm/cm^2.sec.cmHg or less.
JP60002130A 1985-01-11 1985-01-11 Composition body of high refractive index plastic lens Pending JPS61162002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002130A JPS61162002A (en) 1985-01-11 1985-01-11 Composition body of high refractive index plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002130A JPS61162002A (en) 1985-01-11 1985-01-11 Composition body of high refractive index plastic lens

Publications (1)

Publication Number Publication Date
JPS61162002A true JPS61162002A (en) 1986-07-22

Family

ID=11520755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002130A Pending JPS61162002A (en) 1985-01-11 1985-01-11 Composition body of high refractive index plastic lens

Country Status (1)

Country Link
JP (1) JPS61162002A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700487A (en) * 1971-02-23 1972-10-24 American Optical Corp Polycarbonate substrate with durable,abrasion and scratch-resistant,antifogging coating
JPS5282433A (en) * 1975-12-29 1977-07-09 American Optical Corp Wear resistant optical element and method of making same
JPS58169101A (en) * 1982-03-30 1983-10-05 Seiko Epson Corp Synthetic resin lens having hard coat layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700487A (en) * 1971-02-23 1972-10-24 American Optical Corp Polycarbonate substrate with durable,abrasion and scratch-resistant,antifogging coating
JPS5282433A (en) * 1975-12-29 1977-07-09 American Optical Corp Wear resistant optical element and method of making same
JPS58169101A (en) * 1982-03-30 1983-10-05 Seiko Epson Corp Synthetic resin lens having hard coat layer

Similar Documents

Publication Publication Date Title
US6057039A (en) Coating composition
US5789476A (en) Film-forming coating solution and synthetic resin lens
EP0195493A2 (en) Transparent article and process for preparation thereof
JPS60221702A (en) Molding having transparent coating layer
CA2965610C (en) Coating composition and optical article having a coat layer made of the coating composition
JP4745324B2 (en) Plastic lens
JPWO2010122912A1 (en) Coating composition
JP3559805B2 (en) High refractive index coating composition and coated article obtained from the composition
US5691838A (en) Infrared-blocking optical fiber
JPH09227830A (en) Coating composition and synthetic resin lens with cured coating of said composition
JPH08295846A (en) Coating composition and laminate
JPH08311408A (en) Coating composition, and its production and laminate
JPS6289902A (en) Transparent molding
US5340893A (en) Cast resin for optical use
US4930879A (en) Synthetic resin lens
JP3812685B2 (en) Coating composition and laminate
JPS61162002A (en) Composition body of high refractive index plastic lens
US20150152269A1 (en) Antifog sheet
JPS62151801A (en) Transparent coated composite body
JP3064605B2 (en) Synthetic resin lens
JPH0372302A (en) Composition for coating
JPH10324846A (en) Composition for use in coating, laminated product and lens for eyeglass
JPH08311401A (en) Composition for coating and manufacture and multilayer material thereof
JP2003292896A (en) Coating composition and laminate
JPH11174205A (en) Synthetic resin lens with antireflection film