JPH0372302A - Composition for coating - Google Patents

Composition for coating

Info

Publication number
JPH0372302A
JPH0372302A JP1208871A JP20887189A JPH0372302A JP H0372302 A JPH0372302 A JP H0372302A JP 1208871 A JP1208871 A JP 1208871A JP 20887189 A JP20887189 A JP 20887189A JP H0372302 A JPH0372302 A JP H0372302A
Authority
JP
Japan
Prior art keywords
group
coating
refractive index
film
colloidal dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1208871A
Other languages
Japanese (ja)
Other versions
JP2805877B2 (en
Inventor
Takeaki Iriyou
毅明 井領
Junji Kawashima
川嶋 淳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16563500&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0372302(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1208871A priority Critical patent/JP2805877B2/en
Publication of JPH0372302A publication Critical patent/JPH0372302A/en
Application granted granted Critical
Publication of JP2805877B2 publication Critical patent/JP2805877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To improve refractive index, surface hardness and durability by using the colloidal dispersing element of the fine particle of tungsten trioxide, the colloidal dispersing element of the fine particles of the metal oxide of >=1 kinds selected from Al, Ti, Zr, Si, etc., and a specific org. silicon compd. or the hydrolyzate thereof as essential components. CONSTITUTION:This compsn. consists essentially of the colloidal dispersing element of the fine particle of the tungsten trioxide, the colloidal dispersing element of the fine particle of the metal oxide of >=1 kinds selected from the Al, Ti, Zr, Sn, Sb, Ta, Ce, La, In, and Si, and the org. silicon compd. expressed by formula I or the hydrolyzate thereof. In the formula I, R1 denotes 1 to 6C hydrocarbon group, vinyl group, methacryloxy group, mercapto group, amino group or org. group having an epoxy group; R<2> denotes 1 to 4C hydrocarbon group; R<3> denotes 1 to 5C hydrocarbon group, alkoxyalkyl group or hydrogen; (a) denotes 0 or 1. The high refractive index, the high surface hardness and the durability are obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高い屈折率を有する透明被覆層を形成するた
めのコーティング用組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coating composition for forming a transparent coating layer having a high refractive index.

さらに詳しくは、透明被覆層が紫外線を吸収することに
より、プラスチック基材等の紫外線による買置あるいは
劣化を防ぐことのできる透明被覆層を選択するコーティ
ング用組成物に関する。
More specifically, the present invention relates to a coating composition in which a transparent coating layer is selected that absorbs ultraviolet rays, thereby preventing damage or deterioration of plastic substrates and the like due to ultraviolet rays.

〔従来の技術〕[Conventional technology]

合成樹脂製レンズ、特にジエチレングリコールビス(ア
リルカーボネート)樹脂レンズは、ガラスレンズに比較
し、安全性、易加工性、ファツション性などにおいて優
れており、さらに近年、反射防止技術、ハードコート技
術、l\−ドコート+反射防11″技術の開発により、
急速に普及している。
Synthetic resin lenses, especially diethylene glycol bis(allyl carbonate) resin lenses, are superior to glass lenses in terms of safety, ease of processing, and fashionability, and in recent years, anti-reflection technology, hard coat technology, etc. - With the development of decoat + anti-reflection 11" technology,
It is rapidly becoming popular.

しかし、ジエチレングリコールビス(アリルカーボネー
ト)樹脂の屈折率は1.50とガラスレンズに比べ小さ
い為に、外周部がガラスレンズに比べ厚くなるという欠
点を有している。この為、眼鏡レンズのプラスチック化
は、高屈折率樹脂材料による薄型プラスチックレンズへ
の要望を高めている。その為の技術提案として、特開昭
59−133211号公報、特開昭60−199016
号公報などの1.60前後の屈折率を有する高屈折率樹
脂材料が提案されている。
However, since the refractive index of diethylene glycol bis(allyl carbonate) resin is 1.50, which is smaller than that of a glass lens, it has the disadvantage that the outer periphery is thicker than that of a glass lens. For this reason, the use of plastic eyeglass lenses has increased the demand for thin plastic lenses made of high refractive index resin materials. As a technical proposal for this purpose, Japanese Patent Application Laid-Open Nos. 59-133211 and 60-199016
High refractive index resin materials having a refractive index of around 1.60 have been proposed, such as those disclosed in Japanese Patent Application Publication No.

一方、プラスチックメガネレンズの欠点である傷が付き
易いという問題を解決する為に、シリコン系のバートコ
−1・被膜をプラスチックレンズ表面にコーティングす
る方法が一般に行われている。
On the other hand, in order to solve the drawback of plastic eyeglass lenses, which is that they are easily scratched, a method of coating the surfaces of plastic lenses with a silicone-based Bartco-1 film is generally practiced.

しかし、屈折率が1,60前後の高屈折率樹脂レンズに
同様の方法を適用した場合には、樹脂レンズとコーテイ
ング膜の屈折率差による干渉縞が発生する為、外観不良
の原因となる。この問題を解決する為の技術提案として
、特公昭61−54 ’331号公報、特公昭63−3
7142号公報のようにシリコン系コーティング組成物
に使われている二酸化ケイ素微粒子のコロイド状分散体
を、高イし 屈折率を有するAj7STi、Zr、So、sbの金属
酸化物微粒子のコロイド状分散体に置き換えるといった
高屈折率コーティング用組成物が提案されている。
However, if the same method is applied to a high refractive index resin lens with a refractive index of around 1.60, interference fringes will occur due to the difference in refractive index between the resin lens and the coating film, resulting in poor appearance. As a technical proposal to solve this problem, Japanese Patent Publication No. 61-54 '331, Japanese Patent Publication No. 63-3
A colloidal dispersion of fine particles of silicon dioxide used in silicon-based coating compositions as disclosed in Japanese Patent No. 7142 is replaced with a colloidal dispersion of fine particles of metal oxides of Aj7STi, Zr, So, and sb having a high refractive index. High refractive index coating compositions have been proposed that replace the above.

尚、コーテイング膜の塗布に当って、樹脂レンズ基材の
前処理が行われており、一般的な方法として、アルカリ
処理、酸処理などの化学的処理方法、あるいは、紫外線
照射処理、プラズマ処理などの物理的処理方法、さらに
は界面活性物質の添加などの添加剤処理方法がある。
In addition, when applying the coating film, the resin lens base material is pretreated, and common methods include chemical treatment methods such as alkali treatment and acid treatment, ultraviolet irradiation treatment, plasma treatment, etc. There are physical treatment methods, as well as additive treatment methods such as addition of surface-active substances.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述の従来技術の内、特公昭61−54331
号公報、特公昭63−37142号公報のコーティング
用組成物は、以下のような課題を有していた。例えば、
AI、Z r s S n N S bの金属酸化物微
粒子のコロイド状分散体を1.60前後の高屈折率樹脂
のコーティング用組成物として用いた場合、シリコン系
のコーティング用組成物に比べ塗布、硬化時の干渉縞の
発生を抑えることができるものの、コーティング被膜と
しての屈折率に限界がある。これは、金属酸化物微粒子
+11゜体としては、ある程度の高い屈折率を持つもの
の、一般にコーティング材料として用いる際には、シリ
コン系のカップリング剤等を混合する為、被膜目体の屈
折率は1.57程度が限界であり、自ずと干渉縞の改善
にも限界があった。また、Tiの金属酸化物微粒子のコ
ロイド状分散体をコーティング用組成物として用いた場
合は、TiCh[;1身が前記金属酸化物に比べ高い屈
折率を有するン、bに、形成された被膜は、高屈折率層
を提供するのと同時に、被膜の屈折率の選択の幅も広く
なるという長所がある。しかし、TiO2は耐候性が極
めて悪い為に、TiO2シリコン系カップリング剤から
溝底される被膜の場合シリコン系カップリング剤の有機
成分の分前、あるいは樹1&基材表面での劣化を招き、
その耐久性に課題があった。
However, among the above-mentioned conventional technologies,
The coating compositions disclosed in Japanese Patent Publication No. 63-37142 had the following problems. for example,
When a colloidal dispersion of metal oxide fine particles of AI, ZrsSnNSb is used as a coating composition for a high refractive index resin of around 1.60, the coating composition is lower than that of a silicone-based coating composition. Although it is possible to suppress the occurrence of interference fringes during curing, there is a limit to the refractive index of the coating film. Although it has a relatively high refractive index as a metal oxide fine particle +11° body, when used as a coating material, a silicon-based coupling agent, etc. is generally mixed, so the refractive index of the coating material is The limit was about 1.57, and there was naturally a limit to the improvement of interference fringes. Furthermore, when a colloidal dispersion of Ti metal oxide fine particles is used as a coating composition, the coating formed on TiCh[;1 has a higher refractive index than the metal oxide, and This has the advantage that it not only provides a high refractive index layer, but also allows a wider range of choices for the refractive index of the coating. However, since TiO2 has extremely poor weather resistance, in the case of a film formed from a TiO2 silicon-based coupling agent, it may deteriorate before the organic components of the silicon-based coupling agent or on the surface of the wood 1 and substrate.
There was an issue with its durability.

また、透明被覆層の形成に先立って行われる前処理方法
の中で、基材と被膜の間での良好な密着性を確保すると
いう点で、プラズマ処理は、是+4の濡れ特性、接着性
の改良効果が優れている。しかし、プラズマ処理を施し
た場合、初期の密着性は充分確保できるものの、耐候試
験において紫外線による被膜と基材界面での劣化が発生
し、急激な密着性低下を招くという課題があった。
In addition, among the pretreatment methods performed prior to the formation of the transparent coating layer, plasma treatment has a +4 wettability and adhesive property in terms of ensuring good adhesion between the substrate and the coating. The improvement effect is excellent. However, when plasma treatment is applied, although sufficient initial adhesion can be ensured, there is a problem in that during weathering tests, the interface between the film and the base material deteriorates due to ultraviolet rays, leading to a rapid decline in adhesion.

そこで本発明は、これら課題を解決するもので、その目
的とするところは、高い屈折率と高い表面硬度、耐久性
を有し、かつ被膜形成峙の前処理としてプラズマ処理を
施した場合に、耐候試験における密着性低下およびプラ
スチック基材の費変を防ぐことのできる紫外線吸収効果
を合わせ持つ高屈折率樹脂レンズのコーティング用組成
物を提供することにある。
The present invention aims to solve these problems, and its purpose is to have a high refractive index, high surface hardness, and durability, and when plasma treatment is performed as a pretreatment before film formation. The object of the present invention is to provide a composition for coating a high refractive index resin lens, which also has an ultraviolet absorption effect that can prevent a decrease in adhesion in a weather test and a change in the cost of a plastic base material.

〔課題を71?決するための手段〕 本発明のコーティング用組成物は、下記(1)または(
2)の組成物により提供されることを特徴とする。
[71 assignments? Means for determining] The coating composition of the present invention has the following (1) or (
2).

(1)下記A、BおよびCを主成分としてなるコーティ
ング用組成物。
(1) A coating composition comprising the following A, B and C as main components.

A、三酸化タングステン微粒子のコロイド状分散体。A, Colloidal dispersion of fine tungsten trioxide particles.

B、ANSTiSZrSSs、Sb、Ta5Ce。B, ANSTiSZrSSs, Sb, Ta5Ce.

La、In5Siから選ばれる1種以上の金属酸化物微
粒子のコロイド状分散体。
A colloidal dispersion of fine particles of one or more metal oxides selected from La and In5Si.

C1一般式が 2 a R’   S i (OR’ )3−mで表される有機
ケイ素化合物またはその加水分解物。(ここではR1は
、炭素数1から6の炭素水素基、ビニル基、メタクリロ
キシ基、メルカプト基、アミノ基、またはエポキシ基を
有する有機基、R2は、炭素数1から4の炭化水素基、
R3は、炭素数1から5の炭化水素基1、アルコキシア
ルキル基または水素、aは、0または1を表す)。
An organosilicon compound or a hydrolyzate thereof whose C1 general formula is represented by 2aR'Si(OR')3-m. (Here, R1 is an organic group having a carbon hydrogen group having 1 to 6 carbon atoms, a vinyl group, a methacryloxy group, a mercapto group, an amino group, or an epoxy group; R2 is a hydrocarbon group having 1 to 4 carbon atoms;
R3 represents a hydrocarbon group 1 having 1 to 5 carbon atoms, an alkoxyalkyl group, or hydrogen; a represents 0 or 1).

(2)AI?STi、Zr、5nSSbSTaSCe、
La、In、Stから選ばれる1種以上の金属酸化物と
三酸化タングステンから構成される微粒子のコロイド状
分散体および前記Cに記載の有機ケイ素化合物またはそ
の加水分解物を主成分としてなるコーティング用組成物
(2) AI? STi, Zr, 5nSSbSTaSCe,
A colloidal dispersion of fine particles consisting of one or more metal oxides selected from La, In, and St and tungsten trioxide, and a coating containing the organosilicon compound or its hydrolyzate described in C above as a main component. Composition.

本発明の請求項(1)におけるA成分の三酸化タングス
テン微粒子のコロイド状分散体、さらにはB成分のAl
、Tis Zr、5nSSb、Ta5Ce、La、In
5Siの酸化物微粒子のコロイド状分散体とは、金属酸
化物微粒子の平均粒径が約1〜300mμ、好ましくは
約1〜200mμのものである。これは、粒子径のあま
り小さいものは作成が困難であり、コストが高くて実用
的でなく、また、あまり大きなものは一般に透明感が低
下する為、上記範囲内のものが好ましい。また、これら
A成分、B成分の分散媒としては、水、炭化水素、エス
テル類、ケトン類、アルコール類、有機カルボン酸類な
どをあげることができる。また、これらの分散媒は2N
以上の混合物として用いることも可能である。尚、B成
分については、2種以上の金属酸化物微粒子のコロイド
状分散体の併用を行うことができ、その混合種および混
合比は目的とする被膜特性による適宜決定されるもので
ある。
The colloidal dispersion of tungsten trioxide fine particles as the component A in claim (1) of the present invention, and further the Al component as the component B.
, Tis Zr, 5nSSb, Ta5Ce, La, In
The colloidal dispersion of 5Si oxide fine particles is one in which the metal oxide fine particles have an average particle size of about 1 to 300 mμ, preferably about 1 to 200 mμ. If the particle size is too small, it is difficult to produce, high cost, and impractical, and if the particle size is too large, the transparency generally decreases, so particles within the above range are preferable. Further, examples of the dispersion medium for these components A and B include water, hydrocarbons, esters, ketones, alcohols, and organic carboxylic acids. In addition, these dispersion media are 2N
It is also possible to use a mixture of the above. As for component B, a colloidal dispersion of two or more kinds of metal oxide fine particles can be used in combination, and the mixture type and mixing ratio are appropriately determined depending on the desired film characteristics.

また、本発明の請求項(2)におけるAl、Ti%Zr
1Sn、Sb、Ta、Ce、Las In。
Moreover, Al, Ti%Zr in claim (2) of the present invention
1Sn, Sb, Ta, Ce, Las In.

Stから遣ばれる1種以上の金属酸化物と三酸化タング
ステンから構成される微粒子のコロイド状分散体とは、
一つの微粒子が三酸化タングステンと前記金属酸化物と
の混合粒子であり、微粒子の平均粒径および分散媒埠は
、前記請求項(1)のA成分、B成分と同様の条件を満
足するものである。
A colloidal dispersion of fine particles consisting of one or more metal oxides derived from St and tungsten trioxide is
One fine particle is a mixed particle of tungsten trioxide and the metal oxide, and the average particle diameter and dispersion medium volume of the fine particle satisfy the same conditions as the A component and the B component of the above claim (1). It is.

本発明において、三酸化タングステン微粒子のコロイド
状分散体あるいは外の金属酸化物と二酸化タングステン
から構成される微粒子のコロイド状分散体を用いる主な
目的は、二酸化タングステンが紫外線吸収効果を持つた
め、その効果を活用して透明被膜層に紫外線吸収能を付
与し、プラスチック基材と被膜の界面および基材内部の
光劣化を防止するためである。これにより、プラスチッ
ク基材にプラズマ処理等の放電処理を施しコーティング
組成物を塗布、硬化した際にも、コート膜の紫外線吸収
能により基材と透明被膜層の界面が光劣化から保護され
、耐候試験後も良好な密着性が確保できる。さらに、三
酸化タングステン自体は比較的高い屈折率を有する為、
透明被膜層の商用折率化という点でも効果がある。ただ
し、三酸化タングステン単独では、得られる被膜の硬さ
が劣る為、前記記載の高面折率金属酸化物のコロイド状
分散体あるいは三酸化タングステンとこれら金属酸化物
の複合粒子のコロイド状分散体を用いる必要がある。
In the present invention, the main purpose of using a colloidal dispersion of tungsten trioxide fine particles or a colloidal dispersion of fine particles composed of an external metal oxide and tungsten dioxide is because tungsten dioxide has an ultraviolet absorption effect. This is to utilize the effect to impart ultraviolet absorption ability to the transparent coating layer and prevent photodeterioration at the interface between the plastic base material and the coating and inside the base material. As a result, even when the coating composition is applied and cured by subjecting the plastic substrate to discharge treatment such as plasma treatment, the interface between the substrate and the transparent coating layer is protected from photodeterioration by the ultraviolet absorption ability of the coating film, making it weather resistant. Good adhesion can be ensured even after the test. Furthermore, since tungsten trioxide itself has a relatively high refractive index,
It is also effective in increasing the commercial refractive index of the transparent coating layer. However, since the hardness of the resulting film is inferior when using tungsten trioxide alone, a colloidal dispersion of the above-mentioned high surface refractive index metal oxide or a colloidal dispersion of composite particles of tungsten trioxide and these metal oxides is used. It is necessary to use

尚、コーティング用組成物の固形分中に占める金属酸化
物微粒子の割合は、10重量%から90重量%が適当で
あり、10重量%以下では硬さ、紫外線吸収能、屈折率
が不充分であり、また90重量%以上では、基材と被膜
の密着力が低下する2)、好ましくない。また、固形分
中の全金属酸化物中に占める三酸化タングステンの割合
は20重量%から90重量%が適当であり、20重量%
以下では、被膜の紫外線吸収能が不充分であり、90%
以上になると被膜の硬さがi」Iられなくなるl′h、
好ましくない。
The appropriate proportion of metal oxide fine particles in the solid content of the coating composition is 10% to 90% by weight, and if it is less than 10% by weight, the hardness, ultraviolet absorption ability, and refractive index may be insufficient. If the amount is 90% by weight or more, the adhesion between the base material and the coating decreases2), which is not preferable. In addition, the appropriate proportion of tungsten trioxide in the total metal oxide in the solid content is 20% to 90% by weight, and 20% by weight.
Below 90%, the UV absorption ability of the coating is insufficient.
If it exceeds the hardness of the coating,
Undesirable.

2 a 本発明のC成分である一般式がR’−3i(OR’ )
 Q−*で表されるH機ケイ素化合物またはその加水分
解物としては、メチルトリメトキシシラン、エチルトリ
エトキシシラン、メチルトリエトキシシラン、フェニル
トリエトキシシラン、ジメチルジメトキシシラン、フェ
ニルメチルジメトキシシラン、ビニルトリエトキシシラ
ン、ビニルトリメトキシシラン、ビニルトリス(β−メ
トキシエトキシ)シラン、γ−グリシドキシブロビルト
リメトキシシラン、γ−グリシドキシブロビルメチルジ
エトキシシラン、β−(3,4−エポキシシクロヘキシ
ル)エチルトリメトキシシラン、γメタクリキシプロピ
ルトリメトキシシラン、Nβ(アミノエチル)γ−アミ
ノプロピルトリメトキシシラン、N−β(アミノエチル
)γ−アミノプロピルメチルジメトシシラン、γ−アミ
ノプロピルトリエトキシシラン、N−フェニル−γ−ア
ミノプロピルトリメトキシシラン、γ−メルカプトプロ
ピルトリメトキシシラン等がある。これらはfli独で
用いても、2種以上を混合して用いてもよい。また、こ
れらはアルコール等の有機溶剤中、酸の存在下で加水分
解して使用する方が好ましく、単独で加水分解後に金属
酸化物のコロイド状分散体と混合しても、あるいは金属
酸化物のコロイド状分散体と混合後に加水分解をしても
いずれでも良い。これら、有機ケイ素化金物またはその
加水分解物のコーティング組成物の固形分中に占める割
合は、10重量%から90重量%が適当であり、1−0
重量%以Fでは、基材と被膜の密着力が低下する為、好
ましくない。
2a The general formula of the C component of the present invention is R'-3i(OR')
Examples of the H silicon compound represented by Q-* or its hydrolyzate include methyltrimethoxysilane, ethyltriethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, and vinyltriethoxysilane. Ethoxysilane, vinyltrimethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxybrobyltrimethoxysilane, γ-glycidoxybrobylmethyldiethoxysilane, β-(3,4-epoxycyclohexyl) Ethyltrimethoxysilane, γ-methacryxypropyltrimethoxysilane, Nβ (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, Examples include N-phenyl-γ-aminopropyltrimethoxysilane and γ-mercaptopropyltrimethoxysilane. These fli may be used alone or in combination of two or more types. In addition, it is preferable to use these by hydrolyzing them in an organic solvent such as alcohol in the presence of an acid. Hydrolysis may be carried out after mixing with the colloidal dispersion. The appropriate proportion of these organosiliconized metals or their hydrolysates in the solid content of the coating composition is 10% to 90% by weight, and 1-0% by weight.
If the F content exceeds % by weight, the adhesion between the base material and the coating decreases, which is not preferable.

また、90重量%以上では被膜の屈折率が低くなり、干
渉縞の発生が起こる為、好ましくない。
Moreover, if it is more than 90% by weight, the refractive index of the coating becomes low and interference fringes occur, which is not preferable.

また、これらの有機ケイ素化金物は触媒が存在しなくて
も硬化が可能であるが、さらに硬化を促進するために各
種の硬化触媒を用いることが可能である。例えば、n−
ブチルアミン、トリエチルアミン、グアニジン、ビグア
ニドなどのアミン類、グリシンなどのアミノ酸類、アル
ミニウムアセチルアセトホー1−、クロムアセチルアセ
トネート、チタニルアセチルアセトネート、コバルトア
セチルアセトネートなどの金属アセチルアセトネート、
酢酸ナトリウム、ナフテン酸亜鉛、ナフチン酸コバルト
、オクチル酸亜鉛、オクチル酸スズなどのh゛機酸金属
塩、過塩素酸、過塩素酸アンモニウム、過塩素酸マグネ
シウムなどの過塩素酸類あるいはその塩、塩酸、リン酸
、硝酸、パラトルエンスルホン酸などの酸、または5n
C12、AN Cll3、FeCg3、Ti(17*、
ZnCl3、SbCg、などのルイス酸である金属塩化
物などが使用できる。
Further, these organosilicate metals can be cured even in the absence of a catalyst, but various curing catalysts can be used to further promote curing. For example, n-
Amines such as butylamine, triethylamine, guanidine, biguanide, amino acids such as glycine, metal acetylacetonates such as aluminum acetylacetopho-1-, chromium acetylacetonate, titanyl acetylacetonate, cobalt acetylacetonate,
Hydrochloric acid metal salts such as sodium acetate, zinc naphthenate, cobalt naphthate, zinc octylate, tin octylate, perchloric acids or their salts such as perchloric acid, ammonium perchlorate, magnesium perchlorate, hydrochloric acid , phosphoric acid, nitric acid, para-toluenesulfonic acid, or 5n
C12, AN Cll3, FeCg3, Ti(17*,
Metal chlorides that are Lewis acids such as ZnCl3 and SbCg can be used.

また、本発明のコーティング用組成物は、形成される被
膜の染色性の向上、あるいは各種耐久性の改良を目的に
、多官能性エポキシ化合物、多価アルコール、多価カル
ボン酸、または多価カルボン酸無水物より選ばれる1一
種以上を使用することができる。多官能性エポキシ化合
物としては、(ポリ)エチレングリコール、(ポリ)プ
ロピレングリコール、ネオペンチルグリコール、カテコ
ール、レゾルシノール、アルキレングリコールなどの二
官能性アルコールのジグリシジルエーテル、またはグリ
セリン、トリメチロールプロパンなどの三官能性アルコ
ールのジまたはトリグリシジンルエーテルなどがあげら
れる。多価アルコールとしては、(ポリ)エチレングリ
コール、(ポリ)プロピレングリコール、ネオペンチル
グリコール、カテコール、レゾルシノール、アルキレン
グリコールなどの二官能性アルコール、または、グリセ
リン、トリメチロールプロパンなどの三官能性アルコー
ル、または、ポリビニルアルコールなどがあげられる。
In addition, the coating composition of the present invention may contain a polyfunctional epoxy compound, a polyhydric alcohol, a polycarboxylic acid, or a polycarboxylic acid for the purpose of improving the dyeability of the formed film or improving various durability. One or more types selected from acid anhydrides can be used. Examples of polyfunctional epoxy compounds include diglycidyl ethers of difunctional alcohols such as (poly)ethylene glycol, (poly)propylene glycol, neopentyl glycol, catechol, resorcinol, and alkylene glycol, or triglycidyl ethers of difunctional alcohols such as glycerin and trimethylolpropane. Examples include di- or triglycidine ethers of functional alcohols. Examples of polyhydric alcohols include difunctional alcohols such as (poly)ethylene glycol, (poly)propylene glycol, neopentyl glycol, catechol, resorcinol, and alkylene glycol; or trifunctional alcohols such as glycerin and trimethylolpropane; , polyvinyl alcohol, etc.

多価カルボン酸としては、マロン酸、コハク酸、アジピ
ン酸、アゼライン酸、マレイン酸、オルソフタル酸、テ
レフタル酸、フマル酸、イタコン酸、オキザロ酢酸など
があげられる。多価カルボン酸無水物としては、無水コ
ハク酸、無水マレイン酸、無水イタコン酸、1.2−ジ
メチルマレイン酸無水物、無水フタル酸、ヘキサヒドロ
フタル酸無水物、無水ナフタル酸などがあげられる。
Examples of polyhydric carboxylic acids include malonic acid, succinic acid, adipic acid, azelaic acid, maleic acid, orthophthalic acid, terephthalic acid, fumaric acid, itaconic acid, and oxaloacetic acid. Examples of the polycarboxylic anhydride include succinic anhydride, maleic anhydride, itaconic anhydride, 1,2-dimethylmaleic anhydride, phthalic anhydride, hexahydrophthalic anhydride, naphthalic anhydride, and the like.

また、本発明のコーティング用組成物は、アルコール酸
、ケトン類、セロソルブ類、カルボン酸類などの溶媒を
単独または混合して加えることによって、固形分濃度の
調節を行うことができる。
Furthermore, the solid content concentration of the coating composition of the present invention can be adjusted by adding solvents such as alcoholic acids, ketones, cellosolves, and carboxylic acids singly or in combination.

また、必要に応して、少量の界面活性剤、帯電防止剤、
紫外線吸収材を添加し、コート液の塗布性、コート膜の
性能を改良することもできる。
In addition, if necessary, a small amount of surfactant, antistatic agent,
It is also possible to add an ultraviolet absorber to improve the coating properties of the coating solution and the performance of the coating film.

尚、本発明におけるコーティング用組成物の塗布にあた
っては、基材と被膜の密着性を向上させる目的で、基材
表面をあらかじめアルカリ処理、酸処理、界面活性剤処
理、ブライマー処理またはプラズマ処理等を行うことが
効果的である。
In applying the coating composition of the present invention, the surface of the substrate is subjected to alkali treatment, acid treatment, surfactant treatment, brimer treatment, plasma treatment, etc. in advance in order to improve the adhesion between the substrate and the coating. What you do is effective.

また、塗布、硬化方法としては、ディッピング法、スピ
ンナー法、スプレー法あるいはフロー法によりコーテイ
ング液を均一に塗布した後、40〜200℃の温度で数
峙間加熱乾燥することにより被膜を形成することができ
る。被膜の膜厚は、1〜30μmが適当で、1μm未満
の場合は得られた被膜の耐擦傷性が充分でなく、30μ
mを越える場合は被膜にクラックを生じ易い。尚、形成
される被膜上に、無機物からなる単層、多層の反射防止
膜を設けることにより、反射の低減、透過中の向上を図
ることも可能である。
As for the coating and curing method, the coating liquid is uniformly applied by a dipping method, a spinner method, a spray method, or a flow method, and then a film is formed by heating and drying at a temperature of 40 to 200°C for several seconds. I can do it. The appropriate thickness of the film is 1 to 30 μm; if it is less than 1 μm, the scratch resistance of the resulting film is insufficient, and the thickness is less than 30 μm.
If it exceeds m, cracks are likely to occur in the coating. Note that it is also possible to reduce reflection and improve transmission by providing a single-layer or multi-layer anti-reflection film made of an inorganic substance on the formed film.

本発明の対象となる塗布基材としては、透明な材料であ
れば、ガラス、プラスチック共に良好な耐久性が得られ
るが、本発明の目的から、屈折串が1.50から1.8
0前後の透明材料に対し、干渉縞防止効果の点で、特に
有効である。
As the coating substrate to which the present invention is applied, if it is a transparent material, good durability can be obtained for both glass and plastic.
It is particularly effective in preventing interference fringes for transparent materials around 0.

以下、実施例により、本発明を更に詳しく説明するが、
本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

〔実 施 例〕〔Example〕

実施例1 撹拌装置を備えたフラスコ中に、水分散三酸化タングス
テンゾル(日冷化学工業(株)製、WO3濃度20重量
%)150g、および5b2o。
Example 1 In a flask equipped with a stirring device, 150 g of water-dispersed tungsten trioxide sol (manufactured by Nikrei Kagaku Kogyo Co., Ltd., WO3 concentration 20% by weight) and 5b2o.

メタノールゾル(日冷化学工業(株)製、商品名“サン
コロイドAMT−130” 、5b20s濃度30重量
%)toog、エタノール177.2g1 γ−グリシ
ドキシブロピルトリメトキシシラン57.1gを撹拌し
つつ順に加え、その後0゜05規定塩酸水15.7gを
30分間かけて滴下した。続いてシリコン系界面活性剤
(日本ユニカー(株)製、商品名“Y−7002”)を
0.25g添加した後、0℃で24時間放置し熟成を行
いコーテイング液を得た。
Methanol sol (manufactured by Nichirei Kagaku Kogyo Co., Ltd., trade name "Sancolloid AMT-130", 5b20s concentration 30% by weight) toog, 177.2 g of ethanol, 57.1 g of γ-glycidoxypropyltrimethoxysilane were stirred. Then, 15.7 g of 0.05N hydrochloric acid solution was added dropwise over 30 minutes. Subsequently, 0.25 g of a silicone surfactant (manufactured by Nippon Unicar Co., Ltd., trade name "Y-7002") was added, and the mixture was allowed to stand at 0° C. for 24 hours to ripen, thereby obtaining a coating liquid.

次に高屈折率樹脂レンズ生地((株)IrfINセイコ
ー製、商品名“セイコーハイロード°、屈折串1.60
、直径75m箇、−3,0OD)を5重量%濃度のNa
OH水溶液に5分間浸漬し、洗浄、乾燥した後、前記コ
ーティング波を用い、引上げ速度15cm/分の条件で
デイピング法により塗布した。塗布後、80℃で1時間
、100℃で2時間加熱・硬化を行った。尚、得られた
被膜の膜厚は2.3μmであった。
Next, a high refractive index resin lens fabric (manufactured by IrfIN Seiko Co., Ltd., product name “Seiko High Road °, refraction skewer 1.60
, 75m diameter, -3,0OD) with a concentration of 5% Na
After being immersed in an OH aqueous solution for 5 minutes, washed, and dried, it was coated by a dipping method using the coating wave described above at a pulling speed of 15 cm/min. After coating, heating and curing were performed at 80°C for 1 hour and at 100°C for 2 hours. The thickness of the obtained film was 2.3 μm.

以上の方法により得られた合成樹脂レンズについて次の
性能評価試験を行い、結果を第1表に示した。
The following performance evaluation tests were conducted on the synthetic resin lenses obtained by the above method, and the results are shown in Table 1.

(1)外観:干渉縞の発生の有無について、背景を黒く
した状態で螢光灯の光をレンズ表面で反射させ、光の干
渉による虹模様の発生を肉眼で観察した。判定は次のよ
うにして行った。
(1) Appearance: To determine the presence or absence of interference fringes, fluorescent lamp light was reflected on the lens surface with a black background, and the formation of rainbow patterns due to light interference was observed with the naked eye. The judgment was made as follows.

○:虹模様が認められない。○: Rainbow pattern is not observed.

Δ:かすかに虹模様が認められる。Δ: A faint rainbow pattern is observed.

×:はっきりと虹模様が認められる。×: A rainbow pattern is clearly recognized.

(2)耐擦傷性: #0000スチールウールにより荷
重1kg/cjで10往復させた後の被膜の状態をみた
(2) Scratch resistance: The state of the coating was observed after it was reciprocated 10 times with #0000 steel wool at a load of 1 kg/cj.

A:はとんど傷がつかない。A: It hardly gets scratched.

B:少し傷がつく。B: Slight damage.

C:多く傷がつく。C: Many scratches occur.

(3)密着性:80℃の温水中に2時間浸漬した後、レ
ンズ表面にナイフで縦横にそれぞれ1關間隔で11本の
平行線状の傷をっけ、100個のマス目をつくり、セロ
ファンテープを接着、剥離後に被膜が♂りがれずに残っ
たマス口の数をみた。
(3) Adhesion: After immersing in warm water at 80℃ for 2 hours, use a knife to make 11 parallel line-shaped scratches on the lens surface at 1-square intervals, creating 100 squares. After gluing cellophane tape and peeling it off, we looked at the number of squares that remained without the film peeling off.

(4)耐候性:キセノンログライフフェードメーター(
スガ試験機(株)製)を用い、150時間暴露した後、
以下の評価を行った。
(4) Weather resistance: xenon log life fade meter (
After exposure for 150 hours using Suga Test Instruments Co., Ltd.
The following evaluations were made.

■外観:し・ンズの着色を肉眼で観察した。■Appearance: The coloring of the seeds was observed with the naked eye.

■密着性:試験後のレンズについて、前記(3)と同様
のクロスカット・テープ試験を暴露面について行った。
(2) Adhesion: After testing, the same cross-cut tape test as in (3) above was performed on the exposed surface of the lens.

実施例2 前記実施例1て用いたと同じ高屈折率レンズ中地を、表
面処理用プラズマ装置(真空器械工業(株)製)を用い
、エアー流量100m1/分、出力50w、真空度(1
,2torrで30秒間処即金行った後、実施例1のコ
ーティングi(lを用いて同様の方法て被膜を設けた。
Example 2 The same high refractive index lens core as used in Example 1 was treated using a surface treatment plasma device (manufactured by Shinku Kikai Kogyo Co., Ltd.) at an air flow rate of 100 m1/min, an output of 50 W, and a degree of vacuum (1
, 2 torr for 30 seconds, a coating was applied in the same manner using coating i (l) of Example 1.

得られた被膜の膜厚は2,5μmであった。The film thickness of the obtained film was 2.5 μm.

以上の方法で得られた合成樹脂レンズを実施例1と同様
の方法で評価し、その結果を第1表に示した。
The synthetic resin lenses obtained by the above method were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 撹社装置を備えたフラスコ中に、実施例1で用いたと同
じ水分散三酸化タングステンゾル、15「)glおよび
5b20.メタノールゾル66.7g5イソプロピルア
ルコ一ル分散コロイダルシリカ(触媒化或王業(株)製
、商品名“05CAL1432”、固形分濃度30重量
%)66.7g1γ−グリシドキシプロビルメチルジェ
トキシ・シラン42.9.を撹袢しつつ順に加え、(1
,05規定塩酸水7.5fを30分間かけて滴下した。
Example 3 In a flask equipped with a stirrer, 15 g of the same water-dispersed tungsten trioxide sol used in Example 1 and 66.7 g of isopropyl alcohol-dispersed colloidal silica (catalyzed or 66.7 g of γ-glycidoxypropyl methyljethoxy silane (manufactured by Wangye Co., Ltd., product name "05CAL1432", solid content 30% by weight) was added in order with stirring, and (1
, 7.5f of 05N hydrochloric acid solution was added dropwise over 30 minutes.

続いて実施例1で用いたと同じシリコン系界面活性剤0
.25gを添加した後、0℃で24時間放置し熟成を行
いコーテイング液を得た。
Next, the same silicone surfactant 0 used in Example 1 was added.
.. After adding 25 g, the mixture was left to stand at 0° C. for 24 hours to age and obtain a coating liquid.

次に実施例1て用いたと同じ高屈折率レンズ生地に実施
例1と同様のアルカリ処理を行った後、本実施例のコー
テイング液に引上げ速度15cm/分の条件でディッピ
ング法で塗布し、実施例1と同様に加熱・硬化した。得
られた被膜の膜厚は2゜4μmであった。
Next, the same high refractive index lens fabric used in Example 1 was subjected to the same alkali treatment as in Example 1, and then applied to the coating solution of this example by dipping at a pulling speed of 15 cm/min. It was heated and cured in the same manner as in Example 1. The thickness of the obtained film was 2.4 μm.

以上の方法により得られた合成樹脂レンズを実施例1と
同様の方法で評価し、その結果を第1表に示した。
The synthetic resin lenses obtained by the above method were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

実施例4 前記実施例1て用いたと同じ高屈折率レンズ生地を実施
例2と同様の方法でプラズマ処理した後、実施例3て調
製したコーテイング液を用いて塗布・硬化した。塗布、
硬化の条件は実施例3と同様に行った。(+−%られた
被膜の膜厚は2,6μmであった。
Example 4 The same high refractive index lens fabric used in Example 1 was plasma treated in the same manner as in Example 2, and then coated and cured using the coating solution prepared in Example 3. coating,
The curing conditions were the same as in Example 3. (The film thickness of the +-% film was 2.6 μm.

以上の方法により(りられた合成樹脂レンズを実施例1
と同様の方法て評価し、その結果を第1表に示した。
The synthetic resin lens obtained by the above method (Example 1)
The results are shown in Table 1.

実施例5 撹t[”装置を備えたフランス中に、水を分散媒とする
二酸化タングステン、五酸化アンチモン及び二酸化ケイ
素が重量比で4対3 &=J 3からなる金属酸化物微
粒子のコロイド秋分媒体([1産化学り業(株)製、固
形分濃度20!T!量%)250g、γグリシドキシブ
ロビルトリメトキシシラン71゜43に1メチルセロソ
ルブ158.96gを撹袢しつつ順に加え、その後、0
.05規定塩酸水19.61srを30分間かけて滴下
した。続いて実施例1で用いたと同じシリコン系界面活
性剤0゜25gを添加した後、0℃で24時間M装し熟
成を行いコーテイング液を得た。
Example 5 A colloidal equinox of metal oxide fine particles consisting of tungsten dioxide, antimony pentoxide and silicon dioxide in a weight ratio of 4:3 &=J3 using water as a dispersion medium was prepared in France equipped with a stirring device. While stirring 158.96 g of 1-methyl cellosolve into 250 g of medium (manufactured by 1-sanka Kirigyo Co., Ltd., solid content concentration 20! T! amount %) and γ-glycidoxybrobyltrimethoxysilane 71°43, add, then 0
.. 19.61 sr of 05N hydrochloric acid solution was added dropwise over 30 minutes. Subsequently, 0.25 g of the same silicone surfactant as used in Example 1 was added, and the mixture was aged for 24 hours at 0.degree. C. to obtain a coating liquid.

次に高屈折半樹脂レンズ/E:地((株)版部セイコー
製、商品名“セイコーブラックス■”、屈折r+、%1
.56、直径75mm、−3,0OD)を実施例1と同
様の方法でアルカリ処理した後、本実施例で得られたコ
ーテイング液を用い、引上げ速度17(7)7分の条件
でディッピング法により塗布した。塗布後、80℃で1
時間、110℃で3肪間加熱・硬化を行った。尚、得ら
れた被膜の膜厚は、2.7μmであった。
Next, high refractive semi-resin lens/E: Ground (manufactured by Hanbe Seiko Co., Ltd., product name "Seiko Blacks ■", refraction r+, %1
.. 56, diameter 75 mm, -3,0 OD) was treated with alkali in the same manner as in Example 1, and then treated with the dipping method using the coating liquid obtained in this example at a pulling rate of 17 (7) 7 minutes. Coated. 1 at 80℃ after coating
Heating and hardening was performed at 110° C. for 3 hours. The thickness of the obtained film was 2.7 μm.

以上の方法で得られた合成樹脂レンズ実施例1と同様の
方法で評価し、その結果を第1表に示した。
The synthetic resin lens obtained by the above method was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

実施例6 前記実施例5で用いたと同じ高屈折率レンズ生地を実施
例2と同様の方法でプラズマ処理した後、実施例5で調
製したコーチ2fング液を用いて塗布・硬化した。塗布
・硬化の条件は実施例5と同様に行った。得られた被膜
の膜厚は2.8μmであった。
Example 6 The same high refractive index lens fabric as used in Example 5 was plasma treated in the same manner as in Example 2, and then coated and cured using the Coach 2f liquid prepared in Example 5. The coating and curing conditions were the same as in Example 5. The film thickness of the obtained film was 2.8 μm.

以上の方法により得られた合成樹脂レンズを実施例1と
同様の方法で評価し、その結果を第1表に示した。
The synthetic resin lenses obtained by the above method were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

実施例7 実施例1で得られたレンズを真空中、200wの出力の
Arガスプラズマ中に30秒間暴露させた後、真空蒸着
法によりレンズ側から大気側へ向かって、5i02、Z
rO2,5i02、ZrO2,5i02の5層の薄膜を
形成した。形成された反射防止膜の光学的膜厚は、順に
5tO2が約λ。/4、次のZrO2と5i02の合計
膜厚が約λo / 4、次のZrO2が約λ。/4、そ
して最上層の5i02が約λo/4である。尚、設計波
長λ0は、510nmである。
Example 7 After exposing the lens obtained in Example 1 to Ar gas plasma with an output of 200 W in vacuum for 30 seconds, 5i02, Z was applied from the lens side toward the atmosphere side by vacuum evaporation method.
A five-layer thin film of rO2, 5i02 and ZrO2, 5i02 was formed. The optical thickness of the formed antireflection film is approximately λ for 5tO2. /4, the total film thickness of the next ZrO2 and 5i02 is about λo/4, and the next ZrO2 is about λ. /4, and the top layer 5i02 is about λo/4. Note that the design wavelength λ0 is 510 nm.

以上の方法により得られた合成樹脂レンズを実施例1と
同様の方法で評価し、その結果を第1表に示した。
The synthetic resin lenses obtained by the above method were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

第  1 表 比較例1 撹拌装置を備えたフラスコ中に、実施例3で用いたと同
じイソプロピルアルコール分散コロイダルシリカ75g
1およびイソプロピルアルコール185g、γ−グリシ
ドキシブロビルトリメトキシシラン32gを撹拌しつつ
順に加え、0.05規定塩酸8.8gを30分間かけて
滴下した。
Table 1 Comparative Example 1 In a flask equipped with a stirring device, 75 g of the same isopropyl alcohol-dispersed colloidal silica used in Example 3 was added.
1, 185 g of isopropyl alcohol, and 32 g of γ-glycidoxybrobyltrimethoxysilane were added in this order with stirring, and 8.8 g of 0.05N hydrochloric acid was added dropwise over 30 minutes.

続いて、実施例1で用いたと同じシリコン系界面活性剤
0.15gを添加した後、0℃で24時間放置し熟成を
行い、コーテイング液を得た。
Subsequently, 0.15 g of the same silicone surfactant as used in Example 1 was added, and the mixture was left to mature at 0° C. for 24 hours to obtain a coating liquid.

このコーテイング液を用い、実施例1で用いたと同じ高
屈折率レンズ生地を実施例2と同様の方法でプラズマ処
理した後、引上げ速度15cm/分の条件でディッピン
グ法により塗布し、その後、実施例1と同様の方法で加
熱・硬化した。得られた被膜の膜厚は、2.5ttmで
あった。
Using this coating liquid, the same high refractive index lens fabric used in Example 1 was plasma treated in the same manner as in Example 2, and then coated by dipping at a pulling speed of 15 cm/min. It was heated and cured in the same manner as in 1. The film thickness of the obtained film was 2.5 ttm.

以上の方法により得られた合成樹脂レンズを実施例1と
同様の方法で評価し、その結果を第1表に示した。
The synthetic resin lenses obtained by the above method were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

比較例2 前記比較例1におけるイソプロピルアルコール分散コロ
イダルシリカを実施例1で用いた5b205メタノール
ゾルに変える他は、比較例1と同様にしてコーテイング
液を得た。
Comparative Example 2 A coating liquid was obtained in the same manner as in Comparative Example 1, except that the isopropyl alcohol-dispersed colloidal silica in Comparative Example 1 was replaced with the 5b205 methanol sol used in Example 1.

このコーテイング液を用い、実施例1で用いたと同じ高
屈折率レンズ生地を実施例2と同様の方法でプラズマ処
理した後、比較例1と同様の方法て被膜を設けた。被膜
の膜厚は、2.5μmであった。
Using this coating liquid, the same high refractive index lens fabric used in Example 1 was plasma treated in the same manner as in Example 2, and then a coating was provided in the same manner as in Comparative Example 1. The film thickness of the film was 2.5 μm.

以上の方法により得られた合成樹脂レンズを実施例1と
同様の方法で評価し、その結果を第1表に示した。
The synthetic resin lenses obtained by the above method were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明のコーティング用組成物を用
いる事により、高い屈折率と高い表面硬度・耐久性を有
する高屈折率樹脂レンズ用被膜を得ることができる。
As described above, by using the coating composition of the present invention, a high refractive index resin coating for lenses having a high refractive index and high surface hardness and durability can be obtained.

さらに、実施例からも明らかなごとく、本発明のコーテ
ィング用組成物によって得られる被膜は、紫外線吸収効
果を合わせ持つ為に、被膜形成時の前処理としてプラズ
マ処理を行った場合に、耐候試験後密着性の低下がなく
、かつプラスチック基材の黄変をも防ぐことができる。
Furthermore, as is clear from the examples, in order to have the ultraviolet absorption effect, the coating obtained by the coating composition of the present invention can be used after a weathering test when plasma treatment is performed as a pretreatment during coating formation. There is no decrease in adhesion and yellowing of the plastic base material can also be prevented.

尚、本発明のコーティング用組成物は、高屈折率樹脂レ
ンズばかりではなく、その他の高屈折率樹脂材料、高屈
折率ガラス等の応用も可能である。
The coating composition of the present invention can be applied not only to high refractive index resin lenses, but also to other high refractive index resin materials, high refractive index glasses, and the like.

Claims (2)

【特許請求の範囲】[Claims] (1)下記A、BおよびCを主成分としてなることを特
徴とするコーティング用組成物。A、三酸化タングステ
ン微粒子のコロイド状分散体。 B、Al、Ti、Zr、Sn、Sb、Ta、Ce、La
、In、Siから選ばれる1種以上の金属酸化物微粒子
のコロイド状分散体。 C、一般式が ▲数式、化学式、表等があります▼ で表される有機ケイ素化合物またはその加水分解物。(
ここではR^1は、炭素数1から6の炭化水素基、ビニ
ル基、メタクリロキシ基、メルカプト基、アミノ基、ま
たはエポキシ基を有する有機基、R^2は、炭素数1か
ら4の炭化水素基、R^3は、炭素数1から5の炭化水
素基、アルコキシアルキル基または水素、aは、0また
は1を表す)。
(1) A coating composition characterized by comprising the following A, B and C as main components. A, Colloidal dispersion of fine tungsten trioxide particles. B, Al, Ti, Zr, Sn, Sb, Ta, Ce, La
A colloidal dispersion of one or more metal oxide fine particles selected from , In, and Si. C. An organosilicon compound or its hydrolyzate whose general formula is ▲There are mathematical formulas, chemical formulas, tables, etc.▼. (
Here, R^1 is a hydrocarbon group having 1 to 6 carbon atoms, a vinyl group, a methacryloxy group, a mercapto group, an amino group, or an organic group having an epoxy group, and R^2 is a hydrocarbon group having 1 to 4 carbon atoms. The group R^3 represents a hydrocarbon group having 1 to 5 carbon atoms, an alkoxyalkyl group, or hydrogen; a represents 0 or 1).
(2)Al、Ti、Zr、Sn、Sb、Ta、Ce、L
a、In、Siから選ばれる1種以上の金属酸化物と三
酸化タングステンから構成される微粒子のコロイド状分
散体および請求項1に記載の前記Cの一般式で表される
有機ケイ素化合物またはその加水分解物を主成分として
なることを特徴とするコーティング用組成物。
(2) Al, Ti, Zr, Sn, Sb, Ta, Ce, L
A colloidal dispersion of fine particles composed of one or more metal oxides selected from a, In, and Si and tungsten trioxide, and an organosilicon compound represented by the general formula of C according to claim 1 or its A coating composition characterized by containing a hydrolyzate as a main component.
JP1208871A 1989-08-11 1989-08-11 Composition for coating Expired - Fee Related JP2805877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208871A JP2805877B2 (en) 1989-08-11 1989-08-11 Composition for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208871A JP2805877B2 (en) 1989-08-11 1989-08-11 Composition for coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8210340A Division JP2798068B2 (en) 1996-08-08 1996-08-08 Composition for coating

Publications (2)

Publication Number Publication Date
JPH0372302A true JPH0372302A (en) 1991-03-27
JP2805877B2 JP2805877B2 (en) 1998-09-30

Family

ID=16563500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208871A Expired - Fee Related JP2805877B2 (en) 1989-08-11 1989-08-11 Composition for coating

Country Status (1)

Country Link
JP (1) JP2805877B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415690A (en) * 1992-06-12 1995-05-16 Nikon Corporation Coating composition
JPH10130576A (en) * 1996-10-24 1998-05-19 Nof Corp Coating material composition
US6010778A (en) * 1992-06-04 2000-01-04 Nikon Corporation Coating composition utilizing modified sol having tin oxide-tungsten oxide complex colloid particles and lens coated therewith
KR100267444B1 (en) * 1991-06-13 2000-11-01 마쯔무라 미노루 Plastic lens
KR100295375B1 (en) * 1995-03-03 2001-09-17 나루세 스스무 The coating-forming coating liquid and the synthetic resin lens
JP2002309170A (en) * 2001-04-11 2002-10-23 Nippon Yushi Basf Coatings Kk Coating composition, coating finishing method and coated article
JP2010204640A (en) * 2009-02-09 2010-09-16 Hoya Corp Dyed plastic lens fabrication method
JP2010204641A (en) * 2009-02-09 2010-09-16 Hoya Corp Dyed plastic lens fabrication method
JP2017503906A (en) * 2013-11-22 2017-02-02 フーイャォ グラス インダストリー グループ カンパニー リミテッド Ultraviolet-absorbing coating-forming coating liquid and ultraviolet-absorbing glass [refer to related applications] This application was filed on November 22, 2013 with the title of the invention as "ultraviolet-absorbing coating-forming coating liquid and ultraviolet-absorbing glass". And claim the priority of Chinese Patent Application No. 201310597206.2, the entire contents of which are incorporated herein by reference.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100267444B1 (en) * 1991-06-13 2000-11-01 마쯔무라 미노루 Plastic lens
US6010778A (en) * 1992-06-04 2000-01-04 Nikon Corporation Coating composition utilizing modified sol having tin oxide-tungsten oxide complex colloid particles and lens coated therewith
US5415690A (en) * 1992-06-12 1995-05-16 Nikon Corporation Coating composition
KR100295375B1 (en) * 1995-03-03 2001-09-17 나루세 스스무 The coating-forming coating liquid and the synthetic resin lens
JPH10130576A (en) * 1996-10-24 1998-05-19 Nof Corp Coating material composition
JP2002309170A (en) * 2001-04-11 2002-10-23 Nippon Yushi Basf Coatings Kk Coating composition, coating finishing method and coated article
JP2010204640A (en) * 2009-02-09 2010-09-16 Hoya Corp Dyed plastic lens fabrication method
JP2010204641A (en) * 2009-02-09 2010-09-16 Hoya Corp Dyed plastic lens fabrication method
JP2017503906A (en) * 2013-11-22 2017-02-02 フーイャォ グラス インダストリー グループ カンパニー リミテッド Ultraviolet-absorbing coating-forming coating liquid and ultraviolet-absorbing glass [refer to related applications] This application was filed on November 22, 2013 with the title of the invention as "ultraviolet-absorbing coating-forming coating liquid and ultraviolet-absorbing glass". And claim the priority of Chinese Patent Application No. 201310597206.2, the entire contents of which are incorporated herein by reference.
US11015068B2 (en) 2013-11-22 2021-05-25 Fuyao Glass Industry Group Co., Ltd Coating liquid used for forming ultraviolet absorption coating and ultraviolet absorption glass

Also Published As

Publication number Publication date
JP2805877B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US4275118A (en) Pigment-free coatings with improved resistance to weathering
JP5566306B2 (en) Coating composition, method for producing the composition, and laminate having a hard coat layer
JPS6029702A (en) Plastic lens
JPWO2007046357A1 (en) Hard coat layer forming composition and optical lens
WO2010134464A1 (en) Coating composition and optical article
JP3840664B2 (en) Coating composition
JP6480951B2 (en) Optical composition having a coating composition and a coating layer comprising the coating composition
JP3559805B2 (en) High refractive index coating composition and coated article obtained from the composition
JP5414449B2 (en) Coating composition
JPH08295846A (en) Coating composition and laminate
JP3852100B2 (en) Coating composition and laminate thereof
JPH0251163B2 (en)
JPH0372302A (en) Composition for coating
JPS5813101B2 (en) Composition consisting of a dispersion of colloidal silica and colloidal titania
JP2594042B2 (en) Anti-reflective coating
JPH03172369A (en) Coating composition
JP3064605B2 (en) Synthetic resin lens
JPS624060B2 (en)
JP2001294812A (en) Coating composition, and lense made of synthetic resin
JPH036276A (en) Coating composition
JPH08311401A (en) Composition for coating and manufacture and multilayer material thereof
JP2798068B2 (en) Composition for coating
JPH08231807A (en) Primer composition and plastic lens
JPS60262833A (en) Coated synthetic resin material
JPS63305175A (en) Coating composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees